Балансир (BMS) для LI-ION аккумуляторов своими руками
Балансиры для li-ion аккумуляторов
Балансиры для li-ion аккумуляторов
Плата балансировки 3S li-ion аккумуляторов 18650: подключение платы балансировки
Плата балансировки 3S li-ion аккумуляторов 18650: подключение платы балансировки
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Мы больше не будем рекомендовать вам подобный контент.
Отмена
Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.
Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.
Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.
Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.
Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.
Плата защиты литиевого аккумулятора
Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.
Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена, как обязательный элемент во всех аккумуляторов для бытовых приборов.
РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.
Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.
Схемы плат защиты литиевого аккумулятора
Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.
Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.
LM
317
Простое зарядное устройство, стабилизатор тока.
Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.
ТР4056
Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.
Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.
Этапы контроля:
- постоянно, напряжение на аккумуляторе;
- предзарядка, если на клеммах меньше 2,9В;
- максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
- при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
- При токе 0,1С зарядка отключается.
Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.
NCP
1835
Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.
Особенности:
- малое количество элементов;
- заряжает сильно разряженные аккумуляторы током около 30 мА;
- детектирует незаряжаемые батарейки, подает сигнал;
- можно задать время заряда от 6 до 748 минут.
Видео
Посмотрите на видео полный обзор платы заряда ТП4056
Обычно в любой системе, состоящей из нескольких последовательно включенных батарей, возникает проблема разбалансировки заряда отдельных батарей. Выравнивание заряда — это метод проектирования, позволяющий увеличить безопасность эксплуатации батарей, время работы без подзарядки и срок службы.Новейшие микросхемы защиты батарей и указатели заряда компании Texas Instruments — BQ2084, семейства BQ20ZXX, BQ77PL900 и BQ78PL114, представленные в производственной линейке компании, — необходимы для реализации этого метода.
ЧТО ТАКОЕ РАЗБАЛАНСИРОВКА БАТАРЕЙ?
Перегрев или перезаряд ускоряют износ батареи и могут вызвать воспламенение или даже взрыв. Программно-аппаратные средства защиты уменьшают опасность. В блоке из многих батарей, включенных последовательно (обычно такие блоки применяются в лаптопах и медицинском оборудовании) существует возможность разбалансировки батарей, что ведет к их медленной, но неуклонной деградации.
Не существует двух одинаковых батарей, всегда есть небольшие отличия в состоянии заряда батарей (СЗБ), саморазряда, емкости, сопротивлении и температурных характеристиках, даже если речь идет о батареях одинаковых типов, от одного производителя и даже из одной производственной партии. При формировании блока из нескольких батарей производитель обычно подбирает схожие по СЗБ батареи посредством сравнения напряжений на них. Однако отличия в параметрах отдельных батарей все равно остаются, а со временем могут и возрасти. Большинство зарядных устройств определяет полный заряд по суммарному напряжению всей цепочки последовательно включенных батарей. Поэтому напряжение заряда отдельных батарей может варьироваться в широких пределах, но не превышать порогового значения напряжения, при котором включается защита от перезаряда. Однако в слабом звене — батарее с малой емкостью или большим внутренним сопротивлением напряжение может быть выше, чем на остальных полностью заряженных батареях. Дефектность такой батареи проявится позже при длительном цикле разряда. Высокое напряжение такой батареи после завершения заряда свидетельствует об ее ускоренной деградации. При разряде по тем же причинам (большое внутренне сопротивление и малая емкость) на этой батарее будет наименьшее напряжение. Сказанное означает, что при заряде на слабой батарее может сработать защита от перенапряжения, в то время как остальные батареи блока еще не будут заряжены полностью. Это приведет к недоиспользованию ресурсов батарей.
МЕТОДЫ БАЛАНСИРОВКИ
Разбалансировка батарей оказывает существенное нежелательное воздействие на время работы без подзарядки и срок службы. Выравнивание напряжения и СЗБ батарей лучше всего производить при их полном заряде. Существуют два метода балансировки батарей — активный и пассивный. Последний иногда называют «резисторной балансировкой». Пассивный метод довольно прост: разряд батарей, нуждающихся в балансировке, производят через байпасные цепи, рассеивающие мощность. Эти байпасные цепочки могут быть интегрированы в батарейный блок или помещаться во внешней микросхеме. Такой метод предпочтительно использовать в недорогих приложениях. Практически вся избыточная энергия от батарей с большим зарядом рассеивается в виде тепла — это главный недостаток пассивного метода, т.к. он сокращает время работы батарей без подзарядки. В активном методе балансировки для передачи энергии от батарей с большим зарядом к менее заряженным батареям используются индуктивности или емкости, потери энергии в которых незначительны. Поэтому активный метод существенно более эффективен, нежели пассивный. Конечно, за повышение эффективности приходится платить — использовать дополнительные относительно дорогостоящие компоненты.
ПАССИВНЫЙ МЕТОД БАЛАНСИРОВКИ
Наиболее простое решение — выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивающая защиту батарейных блоков с 5-10 последовательно включенными батареями, используется в инструментах без токопроводящего кабеля, скутерах, бесперебойных источниках питания и медицинском оборудовании. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 1. Сравнивая напряжение батарей с запрограммированными порогами, микросхема при необходимости включает режим балансировки. На рисунке 2 показан принцип действия. Если напряжение какой-либо батареи превышает заданный порог, заряд прекращается, подключаются байпасные цепочки. Заряд не возобновляется до тех пор, пока напряжение батареи ни снизится ниже порогового и процедура балансировки прекратится.
Рис. 1.
Микросхема BQ77PL900, используемая в автономном
режиме работы для защиты блока батарей
При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего импеданса батарей (см. рис. 3). Дело в том, что внутренний импеданс вносит свой вклад в разброс напряжений при заряде. Микросхема защиты батарей не может определить, чем вызвана разбалансировка напряжений: разной емкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся на 100% заряженными. В микросхеме указателя заряда BQ2084 используется улучшенная версия балансировки, основанная на изменении напряжения. Чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика. Другое преимущество BQ2084 — измерение и анализ напряжения всех батарей, входящих в блок. Однако в любом случае этот метод применим лишь в режиме зарядки.
Рис. 2.
Пассивный метод, основанный на балансировке по напряжению
Рис. 3.
Пассивный метод балансировки по напряжению
неэффективно использует емкость батарей
Микросхемы семейства BQ20ZXX, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении СЗБ и емкости батареи. В этой технологии для каждой батареи вычисляется заряд Q NEED , необходимый для достижения полностью заряженного состояния, после чего находится разница ΔQ между Q NEED всех батарей. Затем микросхема включает силовые ключи, через которые происходит балансировка батареи до состояния ΔQ = 0. Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время: и при зарядке, и при разрядке батарей. При использовании технологии Impedance Track достигается более точная балансировка батарей (см. рис. 4).
Рис. 4.
АКТИВНАЯ БАЛАНСИРОВКА
По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной батареи к менее заряженной вместо резисторов используются индуктивности и емкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии. PowerPump использует n-канальный p-канальный MOSFET и дроссель, который расположен между парой батарей. Схема показана на рисунке 5. MOSFET и дроссель составляют промежуточный понижающий/повышающий преобразователь. Если BQ78PL114 определяет, что верхней батарее нужно передать энергию в нижнюю, на выводе PS3 формируется сигнал частотой около 200 кГц с коэффициентом заполнения около 30%. Когда ключ Q1 открыт, энергия из верхней батареи запасается в дросселе. Когда ключ Q1 закрывается, энергия, запасенная в дросселе, через обратный диод ключа Q2 поступает в нижнюю батарею.
Рис. 5.
Потери энергии при этом невелики и в основном происходят в диоде и дросселе. Микросхема BQ78PL114 реализует три алгоритма балансировки:
- по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше;
- по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
- по СЗБ (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20ZXX при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. рис. 6)
Рис. 6.
Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с внутренними байпасными ключами. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее чем 5%) можно достичь за один или два цикла.
Кроме того, технология PowerPump имеет и другие очевидные преимущества: балансировка может происходить при любом режиме работы — заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию. По сравнению с пассивным методом теряется гораздо меньше энергии.
ОБСУЖДЕНИЕ ЭФФЕКТИВНОСТИ АКТИВНОГО И ПАССИВНОГО МЕТОДА БАЛАНСИРОВКИ
Технология PowerPump быстрее производит балансировку. При разбалансировке 2% батарей емкостью 2200 мА·ч она может быть произведена за один или два цикла. При пассивной балансировке встроенные в батарейный блок силовые ключи ограничивают максимальное значение тока, поэтому может потребоваться много больше циклов балансировки. Процесс балансировки может быть даже прерван при большой разнице параметров батарей.
Увеличить скорость пассивной балансировки можно за счет использования внешних компонентов. На рисунке 7 приведен типичный пример такого решения, которое можно использовать совместно с микросхемами BQ77PL900, BQ2084 или семейства BQ20ZXX. Вначале включается внутренний ключ батареи, который создает небольшой ток смещения, протекающий через резисторы R Ext1 и R Ext2 , включенные между выводами батареи и микросхемой. Напряжение «затвор-исток» на резисторе RExt2 включает внешний ключ, и ток балансировки начинает протекать через открытый внешний ключ и резистор R Bal .
Рис. 7.
Принципиальная схема пассивной балансировки
с использованием внешних компонентов
Недостаток этого метода заключается в том, что одновременно не может происходить балансировка смежной батареи (см. рис. 8а). Это происходит из-за того, что когда открыт внутренний ключ смежной батареи, через резистор R Ext2 не может протекать ток. Поэтому ключ Q1 остается закрытым даже тогда, когда открыт внутренний ключ. На практике эта проблема не имеет большого значения, т.к. при таком способе балансировки батарея, подключенная к Q2 быстро балансируется, а следом за ней балансируется и батарея, подключенная к ключу Q2.
Другая проблема заключается в возникновении высокого напряжения сток-исток V DS , которое может возникнуть когда балансируется каждая вторая батарея. На рисунке 8б показан случай, когда балансируются верхняя и нижняя батареи. При этом напряжение V DS среднего ключа может превысить максимально допустимое. Решение этой проблемы — ограничение максимального значения резистора R Ext или исключение возможности одновременной балансировки каждой второй батареи.
Метод быстрой балансировки — новый путь улучшения безопасности эксплуатации батарей. При пассивной балансировке цель заключается в том, чтобы сбалансировать емкость батарей, но из-за малых токов балансировки это возможно лишь в конце цикла заряда. Другими словами, перезаряд плохой батареи может быть предотвращен, но это не увеличит время непрерывной работы без подзаряда, т.к. слишком много энергии будет потеряно в байпасных резистивных цепочках.
При использовании технологии активной балансировки PowerPump одновременно достигаются две цели — балансировка емкости в конце цикла заряда и минимальное различие напряжений в конце цикла разряда. Энергия запасается и отдается слабой батарее, а не рассеивается в виде тепла в байпасных цепях.
ЗАКЛЮЧЕНИЕ
Корректная балансировка напряжения батарей — один из путей увеличения безопасности эксплуатации батарей и увеличения срока их службы. Новые технологии балансировки отслеживают состояние каждой батареи, что позволяет увеличить срок их службы и повысить безопасность эксплуатации. Технология быстрой активной балансировки PowerPump увеличивает время работы без подзарядки, а также позволяет максимально и с высокой эффективностью сбалансировать батареи в конце цикла разряда.
Есть у меня старый шуруповерт, лежал без дела довольно долго, соответственно аккумуляторы приказали долго жить. И вот недавно он мне потребовался, кухню собирать. Если интересно как я его оживил переделкой на литий менее чем за 100 рублей — то добро пожаловать под кат.
Дрель у меня такая — на 18 вольт, 9Н*м
Навскидку мне корячилось три варианта
1. купить новый недорогой шуруповерт рублей за 1500-2500 — просто, быстро, но это не наш метод, тк старая дрель будет лежать мертвым грузом, а выкинуть рука не поднимется,
2. заказать NiCd аккумуляторы — около 900-1200р — а смысл, если новый можно за 1500р взять?
3. переделать на литиевые, а вот тут бюджет может быть разным. Ознакомившись с вопросом на маське выяснил, что для переделки на литий в идеале нужно:
— плата 3S, 4S или 5S в зависимости от размера батареи (мне на 18 вольт дрели надо 5 банок АКБ, соответственно 5S — около 800р)
— желательно плата балансировки (если плата защиты без балансира), особенно желательно если аккумуляторы не новые или из разных партий
— сами Li-ion АКБ, желательно токовые, те расчитанные на высокие токи работы — от 350р за штуку, за 5 шт — от 1700р.
По итогу дороговато выходит для моей дешевой старой дрели (см 1 пункт), поэтому было решено делать свой ультра-бюджетный вариант с блэкджеком балансировкой.
У меня был старый аккумулятор от ноутбука (отдали за так), разобрав который обнаружил в нем такие банки Samsung. За исключением 2 банок остальные были вполне рабочие, зарядил каждую в повер банке
проверил их после зарядки на ток КЗ (не более 1 секунды — это может быть опасно, тк банки без защиты).
Как видно, банки вполне живые — кратковременный ток отдачи по КЗ от 10 до 20А.
Накидал такую схему переделки, по ней и буду делать.
Так как аккумуляторы не токовые для облегчения их работы было решено ставить по 2 акб в параллель (при рабочем токе например в 10А, ток выдаваемый каждым акб будет 10/2=5А). Для этого желательно подобрать пары с похожими характеристиками отдачи по току. Исправляю схему:
В принципе, моя дрель, судя по характеристикам не особо мощная, поэтому в принципе можно было бы и по одной банке ставить, правда проживут они скорее всего меньше, но так как батареи у меня были в количестве 10 штук решил ставить все 10.
Процесс сборки не фотографировал, в принципе там ничего интересного, батареи паять можно к уже приваренным лепесткам не боясь что перегреешь.
Так как все 10 аккумуляторов в старый блок не влезли, получилось немного колхозно
ну ничего, берем синюю (какая была) изоленту и прячем все лишнее —
уже лучше)
Как видите сбоку я вывел зарядно-балансировочный разъем, который выпаял из сломанной видеокарты (или материнской платы, не помню уже). Так как мне надо 10 контактов, пришлось использовать такой db15, если бы аккумуляторов меньше применил бы вот db9 — их найти проще
Осталось спаять зарядное. В качестве источников напряжения 5 вольт взял 5 ненужных зарядок от мобильников, как раз нашел 5 штук, правда все разные, на разный ток от 600 до 900мА. В идеале использовать одинаковые, так зарядка бы происходила примерно одновременно и можно было бы оценивать какие банки долше заряжаются.
Важно! Делать нужно точно по схеме используя на каждый контролер заряда свой отдельный блок питания 5-8В, то есть блоки питания должны быть гальванически развязаны друг от друга. Один мощный блок питания на все контроллеры использовать нельзя — будет короткое замыкание акумуляторов (у TP4056 общий по входу и выходу корпус-минус).
Для уменьшения размеров конструкции вынул зарядные из корпусов. На тыловую сторону приклеил на двухсторониий скотч контроллер заряда TP4056 и убрал конструкцию в отдельный корпус
Вот так выглядит при включении в 220В
Синим светит контроллер заряда — индикация о том что нагрузка не подключена (или акб заряжены), красным и зеленым — светодиоды зарядных от мобильников.
Теперь подключим аккумулятор-
Видно что заряжаются только 3 банки (горит красный диод), а оставшиеся 2 — нет (горит синий диод). Это потому что я его недавно заряжал, и разрядились только 3 из 5 акб. Такм образом, видно что при каждой зарядке происходит балансировка всей батареи — в этом главный плюс этой схемы, особенно это важно при использовании таких поюзанных акб от батареи ноутбука.
Для наглядности снял ролик, возможно что-то упустил в рассказе, то смотрите на видое —
Подведем итоги.
Плюсы
1. Дешево — мне потребовалось купить только контроллеры заряда TP4056, что обошлось мне в 60 рублей за 5 штук, остальное было или достал бесплатно. Сейчас доставка у этого продавца только платная, +еще около 1$, можно найти и дешевле наверное.
2. Балансировка аккумуляторов при каждой зарядке.
Минусы
1. Нет защиты по току, поэтому я не ставлю фиксатор патрона на блокировку (значек сверла) поэтому защита по току чисто механическая — патрон прощелкивается и не блокируется при зажиме, ток кз не возникает. В принципе данной защиты считаю достаточно.
2. Если нет старых зарядок от мобильников, то выйдет немного дороже. Но их можно и у знакомых поспрашивать — наверняка у многих валяются без дела.
3. Нет защиты от переразряда. Ну тут надо смотреть если мощность упала — сразу на зарядку! А вообще это же литий, тут не надо как на никеле ждать когда батарея сядет, а лучше заряжать при возможности — так батареи и прослужат дольше.
В общем данную схему считаю имеющей право на жизнь, особенно для реанимации таких недорогих и не супермощных шуруповертов.
ps в коментах дали
При работе над некоторыми конструкциями питающимися от автономного источника питания, возник вопрос в выборе последних.
На мой взгляд из доступных лучшие LI-ION аккумуляторы, тем более, что у меня есть некое количество незащищенных банок от ноутбуковских батарей. Но с ними возникает уже широко известная проблема — их сложный алгоритм зарядки при несоблюдении которого постоянно не дозаряжен аккумулятор быстро выйдет со строя, а при перезаряде также, но с активным разрушением. Резкий перезаряд наступает при превышении напряжения на заряжаемом элементе на 1-2 сотых вольта от требуемого, проследить такое практически невозможно, поэтому производители рекомендуют автоматические ограничители.
Есть решения и готовые устройства для этих целей как приставки к зарядным устройствам для незащищенных аккумуляторов, так и встраиваемые в аккумулятор.
В общем, для незащищенных аккумуляторов нужен балансир — ограничитель напряжения заряда и защита от чрезмерного разряда. Делать множество мелких девайсов на каждую банку пока нету смысла, решил сделать приставку к зарядному устройству.
Интересное и простое решение нашлось у
чехов . Такой себе мощный стабилитрон, срабатывающий при граничном для элемента напряжении. Повторяемость схемы отличная, при заведомо исправных деталях.
Схема одного модуля.
Балансир составлен из трех идентичных независимых модулей и предназначен для
зарядки одно элементного аккумулятора, батареи из двух или трех последовательно соединенных банок.
Зарядка одного Li-ION
элемента возможна различными напряжениями, балансир здесь служит и как делитель напряжения если зарядное рассчитано на большее количество элементов..
Также и при зарядке двух последовательных элементов от различных напряжений
Заряд батареи из трех элементов. Для 4 и более банок, думаю решение понятно — увеличение количества модулей в схеме.
Вид готового ограничителя, реализуемого фирмой «E-Fly».
То, что получилось у меня. С таким теплоотводом заряжая током до 1-3 ампер соединеных несколько батарей паралельно или при очень большой разницы в емкости элементов по окончании заряда могу не бояться за здоровье транзисторов.
С задранной защитной панелью.
При исполнении без теплоотводов транзисторы смогут выдержать ток до 0.5 А, при больших токах (до 3-х Ампер) нужна хорошая теплоотдача.
Нагрев транзисторов происходит только при достижении аккумулятора граничного напряжения зарядки, когда лишнее напряжение будет гасится сопротивлением открытого транзистора. В этом и заключается принцип защиты от перезаряда. Это очень удобно при зарядке последовательной батареи с неравномерно заряженных элементов. При достижении граничного напряжения элемента, открывается транзистор и основной ток идет мимо аккумулятора, другие аккумуляторы батареи, которые еще не достигли конечного заряда, продолжают заряжаться. Отключенный таким образом аккумулятор продолжает заряжаться очень малым током стабилизированного напряжения (капельный заряд). При срабатывании защиты всех модулей, заряд условно закончен и систему можно отключать, для простого устройства такая работа вполне прилична.
Настройка
Порог срабатывания ограничителя 4.200 вольта, при первоначальной настройке устройства нужно с большой точностью сделать регулировку этого значения.
На устройство без подсоединенных аккумуляторов подается напряжение от источника питания, зарядного устройства с ограничителем тока в пределах 0.15-1А. Напряжение можно подавать как на отдельный модуль 4.5-5 вольт так и на всю схему 13.5-15 вольт, и подстроечным резистором в каждом модуле выставляем порог зажигания светодиода 4.16 вольта, контролируя на выходных клеммах напряжение. Все модули должны быть отрегулированы на один порог с точностью до 0.001 вольта.
Даже новые, но дешевые вольтметры и прочие комбинированные приборы имеют погрешности, это надо учесть. Источник питания использовать стабилизированный с хорошей фильтрацией. Зарядное устройство для которого предназначен этот ограничитель также должно иметь функцию ограничения тока, хороший выходной фильтр и быть рассчитано на напряжение, которое равно суммарному напряжению батареи заряженных аккумуляторов + 1-3 вольта. Если использовать
этот девайс в качестве балансира для выравнивания банок планируется с готовым
зарядным для аккумуляторов в котором уже автоматически контролируется напряжение полного заряда с последующим отключением, нужно узнать порог этого отключения, и регулировать ограничитель уже под имеющееся зарядное устройство, это может быть 4.10
— 4.19
вольт или типа того.
Я регулировал порог срабатывания так:
Последовательно соединил лабораторный блок питания, автомобильную лампочку 12 вольт 1 ампер в качестве ограничителя тока и сам ограничитель. Подал напряжение 15 вольт и меряя на выходе модуля мультиметром напряжение регулировкой подстроечного добивался показания 4.16 вольта на каждом модуле, так как не имелось под руками точнее прибора, да и блок питания имеет на выходе некую пульсацию напряжения не смотря на все фильтра. Этот блок питания и служит мне зарядным устройством.
Вместо указанных мощных транзисторов можно применить КТ818, цоколевка у них немного иная и без переделки печатной платы их можно установить со стороны дорожек, припаяв как корпуса DPAK
или “лицом“ в обратную сторону.
Печатная плата в формате Sprint-layout 6.0 , при печати делать зеркально. Позиционные номера деталей указаны в лае.
Особенности:
—Балансир
—
—Контроль по току
—
Описание выводов
:
| Режим 4S: | Режим 3S: |
| » B- » — общий минус батареи » B1 » — +3,7В » B2 » — +7,4В » B3 » — +11,1В » B+ » — общий плюс батареи | » B- » — общий минус батареи » B1 » — закоротить на «B-» » B2 » — +3,7В » B3 » — +7,4В » B+ » — общий плюс батареи » P- » — минус нагрузки (зарядного устройства) » P+ » — плюс нагрузки (зарядного устройства) |
«>
Особенности:
—Балансир
: Плата контроля HCX-D119 для 3S/4S Li-Ion батареи имеет встроенную функцию балансира. При этом, в процессе заряда батареи, напряжение на кажой из ячеек выравнивается до значения 4,2В.
Для того, чтобы воспользоваться функцией выравнивания напряжения вам необходимо выдержать батарею под напряжением 12,6/16,8В не менее 60 — 120 мин после окончания активной фазы зарядки батареи. Для работы балансира важно, чтобы напряжение было не выше 12,6 / 16,8В: при превышении этих напряжений контроллер встанет в состоянии защиты и балансировка аккумуляторов производиться не будет
—Контроль напряжения на каждой из ячеек
: При выходе напряжения на какой-либо из ячеек за пороговые значения вся батарея автоматически отключается.
—Контроль по току
: При превышении током нагрузки пороговых значений вся батарея автоматически отключается.
— Возможность работы c батареями 3S
(3 последовательных аккумулятора) Контроллер HCX-D119 имеет 100% совместимость с Li-Ion батареями 3S (11,1В). Для переключения контроллера в режим 3S необходимо перемкнуть контакты R8, а резистор R7 переместить на R11 (R7, при этом, остается разорванным) и площадку «B1» замкнуть на площадку «B-«
Описание выводов
:
| Режим 4S: | Режим 3S: |
| » B- » — общий минус батареи » B1 » — +3,7В » B2 » — +7,4В » B3 » — +11,1В » B+ » — общий плюс батареи » P- » — минус нагрузки (зарядного устройства) » P+ » — плюс нагрузки (зарядного устройства) | » B- » — общий минус батареи » B1 » — закоротить на «B-» » B2 » — +3,7В » B3 » — +7,4В » B+ » — общий плюс батареи » P- » — минус нагрузки (зарядного устройства) » P+ » — плюс нагрузки (зарядного устройства) |
Конечно же раздельный заряд. Но это только для моего конкретного случая.
Часто приходится работать в поле без сети, шуруповерт всегда под рукой. Аккумуляторы уже старенькие, напрашивалось улучшение. Вытряхнул сдохшие NiCd из шуруповертных картриджей и запихал в оба корпуса LiPo, каждую на 5 банок. Ляпота, но заряжать надо так же в поле или в машине и заряжать желательно с балансировкой, потому как все 5 банок в каждом акке ведут себя по-своему, сказывается кетай. Балансировку при зарядке можно делать по-разному, способов — тьма тьмущая. Наиболее простой — торможение перезаряженных банок нагрузкой, перегон в тепло. Так и делает настольный IMAX B6, а мне не нравится что заряжает он всю батарею долго при включенной балансировке.
Прикинул и подумал, что проще всего схемотехнически будет заряжать каждую банку в батарее по отдельности. Как-то гугля способы балансировки наткнулся на схожую мысль:
«Bloody cheaters… When I was thinking about this, I was going to build bunch of DCDC»s where voltage of each contact is individually controlled => each cell might be charged with individual charge plan. Apparently, this is just too complex.
«
А мне это показалась менее сложным: лепим DC-DC с 5 выходами и на каждый цепляем микросхему-зарядник, коих для Li-Ion легион! И греться, подумалось, должно меньше: тормозить же банки не надо! (Ага, щаз, зарядные микрухи греются как сволочи!)
Вот такая вот схемка нарисовалась:
Схема несложная, случилась проблема только с выбором транзистора. Я широким жестом воткнул сначала IRLS3034, у которого ёмкость затвора оказалась не по зубам драйверу LM3478, пришлось поставить что-то менее понтовое. На каждый канал — по STC4054G, вариант дешевый и удовлетворяющий поставленной задаче. Вот и плата в сборе, развелась в один слой:
Производитель зарядной микросхемы STC4054G рекомендует дорожки на плате делать максимально толстыми и по возможности использовать полигоны на обоих сторонах платы для теплоотведения. Я раздолбай не послушался, а зря: микрухи греются как надо, даже при выставленном токе заряда в 400 мА на банку.
И с другого ракурса:
Заряжает и греется, зараза:
Ну раз греется — надо охлаждать. Подобрал удобный корпус из алюминия, засверлил крышку под разъемы, крепеж и светодиоды. Круглые отверстия — круглой фрезой, прямоугольные — прямоугольной)
Собран и готов к отплытию:
Была идея покрасить в черный цвет, но уже лень. Да и баловство это — ёжику этому написано жить в машине под ногами поближе к прикуривателю.
В следующий раз еще подумаю про балансировку. Уж очень нравится идея трансформатора-робингуда, который у богатых банок берет и бедным банкам в аккумуляторе отдаёт. Вроде как и КПД выше и тепла меньше. Но опять же, богатые аккумуляторы доятся туда-сюда, пока бедные не зальются; такое ведь не сильно хорошо?
UPD:
По параметрам трансформатора и номиналам. Трансформатор мотался на не очень хорошем сердечнике, то что было под рукой, 2 х МП140-1, КП19х11х4.8. Первичка 21 виток 0,35 проводом, вторички одновременно 11 витков проводом 0,51. Частотозадающие R1C1 — на ~100 кГц, 4,7кОм/0,1 мкФ. Делитель в обратной связи R2R3 — 21кОм/8,2кОм. R4 — 75 кОм, шунт R5R6 — по 0,1 Ом (в итоге 0,05 Ом). VD1 — SMBJ15, VD2 — SM4005. VD4 какой-то шоттки от 1 А, С5 — 330 мкФ х 25В, VD8 — стабилитрон 5V1, C10 — 0,1 мкФ. R7 — 470 Ом, R12 — 2 кОм, что примерно дает 400 мА.
Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о двух простеньких платках, предназначенных для контроля за сборками Li-Ion аккумуляторов, именуемые BMS. В обзоре будет тестирование, а также несколько вариантов переделки шуруповерта под литий на основе этих плат или подобных. Кому интересно, милости прошу под кат.
Update 1, Добавлен тест рабочего тока плат и небольшое видео по красной плате
Update 2, Поскольку тема вызвала небольшой интерес, поэтому постараюсь дополнить обзор еще несколькими способами переделки шурика, чтобы получился некий простенький FAQ
Общий вид:
Краткие ТТХ плат:
Примечание:
Сразу же хочу предупредить – с балансиром только синяя плата, красная без балансира, т.е. это чисто плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока. А также вопреки некоторым убеждениям ни одна из них не имеет контроллера заряда (CC/CV), поэтому для их работы необходима специальная платка с фиксированным напряжение и ограничением тока.
Габариты плат:
Размеры плат совсем небольшие, всего 56мм*21мм у синей и 50мм*22мм у красной:
Вот сравнение с аккумуляторами АА и 18650:
Внешний вид:
Начнем с :
При более детальном рассмотрении можно увидеть контроллер защиты – S8254AA и компоненты балансировки для 3S сборки:
К сожалению, рабочий ток по заявлению продавца всего 8А, но судя по даташитам один мосфет AO4407A рассчитан на 12А (пиковый 60А), а у нас их два:
Еще отмечу, что ток балансировки совсем небольшой (около 40ma) и активируется балансировка, как только все ячейки/банки перейдут в режим CV (вторая фаза заряда).
Подключение:
попроще, ибо не имеет балансира:
Она также выполнена на основе контроллера защиты – S8254AA, но рассчитана на более высокий рабочий ток в 15А (опять же по заявлениям производителя):
Ходя по даташитам на используемые силовые мосфеты, рабочий ток заявлен 70А, а пиковый 200А, хватит даже одного мосфета, а у нас их два:
Подключение аналогичное:
Итого, как мы видим, на обеих платах присутствует контроллер защиты с необходимой развязкой, силовые мосфеты и шунты для контроля проходящего тока, но в синей есть еще и встроенный балансир. Я особо не вникал в схему, но похоже, что силовые мосфеты запараллелены, поэтому рабочие токи можно умножать на два. Важное примечание — максимальные рабочие токи ограничиваются токовыми шунтами! Про алгоритм заряда (CC/CV) эти платки не знают. В подтверждение тому, что это именно платы защиты, можно судить по даташиту на контроллер S8254AA, в котором о зарядном модуле ни слова:
Сам контроллер рассчитан на 4S соединение, поэтому с некоторой доработкой (судя по даташиту) – подпайкой кондера и резистора, возможно, заработает красная платка:
Синюю платку так просто доработать до 4S не получится, придется допаивать элементы балансира.
Тестирование плат:
Итак, переходим к самому главному, а именно к тому, насколько они пригодны для реального применения. Для тестирования нам помогут следующие приспособления:
— сборный модуль (три трех/четырехрегистровых вольтметра и холдер для трех 18650 аккумуляторов), который мелькал в моем обзоре зарядника , правда, уже без балансировочного хвостика:
— двухрегистровый ампервольтметр для контроля тока (нижние показания прибора):
— понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития:
— зарядно-балансировочное устройство iCharger 208B для разряда всей сборки
Стенд простой — плата преобразователь подает фиксированное постоянное напряжение 12,6V и ограничивает зарядный ток. По вольтметрам смотрим, на каком напряжении срабатывают платы и как отбалансированы банки.
Для начала посмотрим главную фишку синей платы, а именно балансировку. На фото 3 банки, заряженные на 4,15V/4,18V/4,08V. Как видим – разбалансировка. Подаем напряжение, зарядный ток постепенно падает (нижний приборчик):
Поскольку платка не имеет каких-либо индикаторов, то окончание балансировки можно оценить только на глаз. Амперметр за час с лишним до окончания уже показывал по нулям. Кому интересно, вот небольшой ролик о том, как работает балансир в этой плате:
В итоге банки отбалансированы на уровне 4,210V/4,212V/4,206V, что весьма неплохо:
При подаче напряжения чуть большего 12,6V, как я понял, балансир неактивен и как-только напряжение на одной из банок достигнет 4,25V, то контроллер защиты S8254AA отключает заряд:
Такая же ситуация и с красной платой, контроллер защиты S8254AA отключает заряд также на уровне 4,25V:
Теперь пройдемся по отсечке при нагрузке. Разряжать буду, как уже упоминал выше, зарядно-балансировочным устройством iCharger 208B в режиме 3S током 0,5А (для более точных замеров). Поскольку мне не очень хочется ждать разряда всей батареи, поэтому я взял один разряженный аккумулятор (на фото зеленый Самсон INR18650-25R).
Синяя плата отключает нагрузку, как только напряжение на одной из банок достигнет 2,7V. На фото (без нагрузки->перед отключением->окончание):
Как видим, ровно на 2,7V плата отключает нагрузку (продавец заявлял 2,8V). Как мне кажется, немного высоковато, особенно если учитывать тот факт, что в тех же шуруповертах нагрузки огромные, следовательно, и просадка напряжения большая. Все же желательно в таких приборах иметь отсечку под 2,4-2,5V.
Красная плата, наоборот, отключает нагрузку, как только напряжение на одной из банок достигнет 2,5V. На фото (без нагрузки->перед отключением->окончание):
Вот здесь вообще все отлично, но нет балансира.
Update 1: Тест нагрузки:
По току отдачи нам поможет следующий стенд:
— все тот же холдер/держатель для трех 18650 аккумуляторов
— 4-х регистровый вольтметр (контроль общего напряжения)
— автомобильные лампы накаливания в качестве нагрузки (к сожалению, у меня всего 4 лампы накаливания по 65W, больше не имею)
— мультиметр HoldPeak HP-890CN для измерения токов (макс 20А)
— качественные медные многожильные акустические провода большого сечения
Пару слов о стенде: аккумуляторы соединены «вальтом», т.е. как бы друг за другом, для уменьшения длины соединительных проводов, а следовательно и падения напряжения на них при нагрузке будет минимальным:
Соединение банок на холдере («вальтом»):
В качестве щупов для мультиметра выступили качественные провода с крокодилами от зарядно-балансировочного устройства iCharger 208B, ибо HoldPeak’овские не внушают доверие, да и лишние соединения будут вносить дополнительные искажения.
Для начала потестим красную плату защиты, как самую интересную в плане токовой нагрузки. Припаяем силовые и побаночные провода:
Получается что-то типа этого (нагрузочные соединения получились минимальной длины):
Я уже упоминал в разделе о переделке шурика о том, что подобные холдеры не очень предназначены для таких токов, но для тестов пойдет.
Итак, стенд на основе красной платки (по замерам не более 15А):
Коротко поясню: плата держит 15А, но у меня нет подходящей нагрузки, чтобы вписаться в этот ток, поскольку четвертая лампа добавляет еще около 4,5-5А, а это уже за пределами платки. При 12,6А силовые мосфеты теплые, но не горячие, самое то для продолжительной работы. При токах более 15А плата уходит в защиту. Я замерял с резисторами, они добавляли пару ампер, но стенд уже разобран.
Огромный плюс красной платы – нет блокировки защиты. Т.е. при срабатывании защиты ее не нужно активировать подачей напряжения на выходные контакты. Вот небольшой видеоролик:
Немного поясню. Поскольку лампы накаливания в холодном виде имеют низкое сопротивление, да к тому же еще включены параллельно, то платка думает, что произошло короткое замыкание и срабатывает защита. Но благодаря тому, что у платы нет блокировки, можно немного разогреть спиральки, сделав более «мягкий» старт.
Синяя платка держит больший ток, но на токах более 10А силовые мосфеты сильно греются. На 15А платка выдержит не более минуты, ибо через 10-15 секунд палец уже не держит температуру. Благо остывают быстро, поэтому для кратковременной нагрузки вполне подойдут. Все бы ничего, но при срабатывании защиты плата блокируется и для разблокировки необходимо подавать напряжение на выходные контакты. Это вариант явно не для шуруповерта. Итого, ток в 16А держит, но мосфеты очень сильно греются:
Вывод:
лично мое мнение таково, что для электроинструмента отлично подойдет обычная плата защиты без балансира (красная). Она имеет высокие рабочие токи, оптимальное напряжение отсечки в 2,5V, да и легко дорабатывается до конфигурации 4S (14,4V/16,8V). Я считаю – это самый оптимальный выбор для переделки бюджетного шурика под литий.
Теперь по синей платке. Из плюсов – наличие балансировки, но рабочие токи все же небольшие, 12А (24А) это для шурика с крутящим моментом 15-25Нм несколько маловато, особенно когда патрон уже почти стопорит при затяжке самореза. Да и напряжение отсечки всего 2,7V, а это значит, что при сильной нагрузке часть емкости батареи останется невостребованной, поскольку на высоких токах просадка напряжения на банках приличная, да и они рассчитаны на 2,5V. И самый большой минус – плата при сработке защиты блокируется, поэтому применение в шуруповерте нежелательно. Синюю платку лучше использовать в каких-нибудь самоделках, но это опять же, лично мое мнение.
Возможные схемы применения или как переделать питание шурика на литий:
Итак, как же можно переделать питание любимого шурика с NiCd на Li-Ion/Li-Pol? Эта тема уже достаточно заезжена и решения, в принципе, найдены, но я вкратце повторюсь.
Для начала скажу лишь одно – в бюджетных шуриках стоит лишь плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока (аналог обозреваемой красной платы). Никакой балансировки там нет. Более того, даже в некоторых брендовых электроинструментах нет балансировки. Это же относится ко всем инструментам, где есть гордые надписи «Зарядка за 30 минут». Да, они заряжаются за полчаса, но отключение происходит тогда, как только напряжение на одной из банок достигнет номинала или сработает плата защиты. Не трудно догадаться, что банки будут заряжены не полностью, но разница всего 5-10%, поэтому не столь важно. Главное запомнить, заряд с балансировкой идет, как минимум, несколько часов. Поэтому возникает вопрос, а оно вам надо?
Итак, самый распространенный вариант выглядит так:
Сетевое ЗУ со стабилизированным выходом 12,6V и ограничением тока (1-2А) -> плата защиты ->
В итоге: дешево, быстро, приемлемо, надежно. Балансировка гуляет в зависимости от состояния банок (емкость и внутреннее сопротивление). Вполне рабочий вариант, но через некоторое время разбалансировка даст о себе знать по времени работы.
Более правильный вариант:
Сетевое ЗУ со стабилизированным выходом 12,6V, ограничением тока (1-2А) -> плата защиты с балансировкой -> 3 последовательно соединенных аккумулятора
В итоге: дорого, быстро/медленно, качественно, надежно. Балансировка в норме, емкость батареи максимальная
Итого, будем стараться сделать наподобие второго варианта, вот как можно сделать:
1) Li-Ion/Li-Pol аккумуляторы, платы защиты и специализированное зарядно-балансировочное устройство (iCharger, iMax). Дополнительно придется вывести балансировочный разъем. Минусов всего два – модельные зарядники недешевые, да и обслуживать не очень удобно. Плюсы – высокий ток заряда, высокий ток балансировки банок
2) Li-Ion/Li-Pol аккумуляторы, плата защиты с балансировкой, DC преобразователь с токоограничением, БП
3) Li-Ion/Li-Pol аккумуляторы, плата защиты без балансировки (красная), DC преобразователь с токоограничением, БП. Из минусов только то, что со временем появится разбалансировка банок. Для минимизации разбалансировки, перед переделкой шурика необходимо подогнать напряжение к одному уровню и желательно брать банки из одной партии
Первый вариант сгодится только тем, кто имеет модельное ЗУ, но мне кажется, если им нужно было, то они уже давным давно переделали свой шурик. Второй и третий варианты практически одинаковые и имеют право на жизнь. Необходимо лишь выбрать, что важнее – скорость или емкость. Я считаю, что самый оптимальный вариант – последний, но только раз в несколько месяцев нужно балансировать банки.
Итак, хватит болтовни, переходим к переделке. Поскольку я не имею шурика на NiCd аккумах, поэтому о переделке только на словах. Нам будет нужно:
1) Источник питания:
Первый вариант. Блок питания (БП), как минимум, на 14V или больше. Ток отдачи желателен не менее 1А (в идеале около 2-3А). Нам подойдет блок питания от ноутбуков/нетбуков, от зарядных устройств (выход более 14V), блоки для питания светодиодных лент, видеозаписывающей аппаратуры (DIY БП), например или :
— Понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития, например или :
— Второй вариант. Готовые блоки питания для шуриков с токоограничением и выходом 12,6V. Стоят недешево, как пример из моего обзора шуруповерта MNT — :
— Третий вариант. :
2) Плата защиты с балансиром или без оного. То току желательно брать с запасом:
Если использоваться будет вариант без балансира, то необходимо подпаять балансировочный разъем. Это нужно для контроля напряжения на банках, т.е. для оценки разбалансировки. И как вы понимаете, нужно будет периодически дозаряжать батарею побаночно простым зарядным модулем TP4056, если началась разбалансировка. Т.е. раз в несколько месяцев, берем платку TP4056 и заряжаем поочереди все банки, которые по окончании заряда имеют напряжение ниже 4,18V. Данный модуль корректно отрубает заряд на фиксированном напряжении 4,2V. Данная процедура займет час-полтора, зато банки будут более-менее отбалансированы.
Написано немного сумбурно, но для тех, кто в танке:
Через пару месяцев ставим на зарядку батарею шуруповерта. По окончании заряда достаем балансировочный хвостик и меряем напряжение на банках. Если получается что-то вроде этого – 4,20V/4,18V/4,19V, то балансировка, в принципе не нужна. Но если картина следующая – 4,20V/4,06V/4,14V, то берем модуль TP4056 и дозаряжаем поочереди две банки до 4,2V. Другого варианта, кроме специализированных зарядников-балансиров я не вижу.
3) Высокотоковые аккумуляторы:
Я уже ранее писал пару небольших обзоров о некоторых из них – и . Вот основные модели высокотоковых 18650 Li-Ion аккумуляторов:
— Sanyo UR18650W2 1500mah (20А макс.)
— Sanyo UR18650RX 2000mah (20А макс.)
— Sanyo UR18650NSX 2500mah (20А макс.)
— Samsung INR18650-15L 1500mah (18А макс.)
— Samsung INR18650-20R 2000mah (22А макс.)
— Samsung INR18650-25R 2500mah (20А макс.)
— Samsung INR18650-30Q 3000mah (15А макс.)
— LG INR18650HB6 1500mah (30А макс.)
— LG INR18650HD2 2000mah (25А макс.)
— LG INR18650HD2C 2100mah (20А макс.)
— LG INR18650HE2 2500mah (20А макс.)
— LG INR18650HE4 2500mah (20А макс.)
— LG INR18650HG2 3000mah (20А макс.)
— SONY US18650VTC3 1600mah (30А макс.)
— SONY US18650VTC4 2100mah (30А макс.)
— SONY US18650VTC5 2600mah (30А макс.)
Я рекомендую проверенные временем дешевенькие Samsung INR18650-25R 2500mah (20А макс.), Samsung INR18650-30Q 3000mah (15А макс.) или LG INR18650HG2 3000mah (20А макс.). С другими баночками особо не сталкивался, но лично мой выбор — Samsung INR18650-30Q 3000mah. У Лыж был небольшой технологический дефект и начали появляться фейки с заниженной токоотдачей. Статью о том, как отличить фейк от оригинала могу скинуть, но чуть позже, нужно поискать ее.
Как все это хозяйство соединить:
Ну и пару слов о соединении. Используем качественные медные многожильные провода приличного сечения. Это качественные акустические или обычные ШВВП/ПВС сечением 0,5 или 0,75 мм2 из хозмага (вспарываем изоляцию и получаем качественные проводочки разного цвета). Длина соединительных проводников должна быть минимальной. Аккумуляторы, желательны из одной партии. Перед их соединением желательно зарядить их до одного напряжения, чтобы как можно дольше не было разбалансировки. Пайка аккумуляторов не представляет ничего сложного. Главное иметь мощный паяльник (60-80Вт) и активный флюс (паяльная кислота, например). Паяется на ура. Главное потом протереть место пайки спиртом или ацетоном. Сами аккумуляторы размещаются в батарейном отсеке от старых NiCd банок. Располагать лучше треугольником, минус к плюсу или как в народе «вальтом», по аналогии с этим (один аккум будет расположен наоборот), либо чуть выше хорошее пояснение (в разделе тестирование):
Так, соединяющие аккумуляторы провода, получатся короткими, следовательно, падение драгоценного напряжения в них под нагрузкой будет минимальным. Использовать холдеры на 3-4 аккумулятора не рекомендую, не для таких токов они предназначены. Побаночные и балансировочные проводники не так важны и могут быть меньшего сечения. В идеале, аккумы и плату защиты лучше запихать в батарейный отсек, а понижающий DC преобразователь отдельно в док станцию. Светодиодные индикаторы заряд/заряжено можно заменить своими и вывести на корпус докстанции. При желании можно добавить в батарейный модуль минивольтметр, но это лишние деньги, ибо общее напряжение на АКБ только косвенно скажет об остаточной емкости. Но если есть желание, почему бы и нет. Вот :
Теперь прикинем по ценам:
1) БП – от 5 до 7 долларов
2) DC/DC преобразователь – от 2 до 4 долларов
3) Платы защиты — от 5 до 6 долларов
4) Аккумуляторы – от 9 до 12 долларов (3-4$ штучка)
Итого, в среднем 15-20$ за переделку (со скидками/купонами), либо 25$ без оных.
Update 2, еще несколько способов переделки шурика:
Следующий вариант (подсказали по комментам, спасибо I_R_O
и cartmannn
):
Использовать недорогие 2S-3S зарядные устройства типа (это производитель того же iMax B6) или всевозможные копии B3/B3 AC/imax RC B3 () или ()
Оригинальный SkyRC e3 имеет зарядный ток на каждую банку 1,2А против 0,8А у копий, должен быть точен и надежен, но в два раза дороже копий. Совсем недорого можно купить на том же . Как я понял по описанию, он имеет 3 независимых зарядных модуля, что-то сродни 3 модулей TP4056. Т.е. SkyRC e3 и его копии не имеют балансировки как таковой, а просто заряжают банки до одного значения напряжения (4,2V) одновременно, поскольку у них не выведены силовые разъемы. В ассортименте SkyRC есть действительно зарядно-балансировочные устройства, например, но ток балансировки всего 200ma и стоит уже в районе 15-20 долларов, зато умеет заряжать лифешки (LiFeP04) и токи заряда до 3А. Кому интересно, могут ознакомиться с модельным рядом .
Итого, для данного варианта необходимо любое из вышеперечисленных 2S-3S зарядных устройств, красная или аналогичная (без балансировки) плата защиты и высокотоковые аккумуляторы:
Как по мне, очень хороший и экономичный вариант, наверно, я бы остановился на нем.
Еще один вариант, предложенный камрадом Volosaty
:
Использовать так называемый «Чешский балансир»:
Где он продается лучше спросить у него, я первый раз о нем услышал, :-). По токам ничего не подскажу, но судя по описанию, ему необходим источник питания, поэтому вариант не такой бюджетный, но вроде как интересный в плане зарядного тока. Вот ссылка на . Итого, для данного варианта необходимы: источник питания, красная или аналогичная (без балансировки) плата защиты, «чешский балансир» и высокотоковые аккумуляторы.
Преимущества:
Я уже ранее упоминал о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение лицом к лицу – типичная батарея шурика из NiCd аккумов против литиевой:
+ высокая плотность энергии. У типичной никелевой батареи 12S 14,4V 1300mah запасенная энергия 14,4*1,3=18,72Wh, а у литиевой батареи 4S 18650 14,4V 3000mah — 14,4*3=43,2Wh
+ отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
+ меньшие габариты и вес при одинаковых параметрах с NiCd
+ быстрое время заряда (не боятся больших токов заряда) и понятная индикация
+ низкий саморазряд
Из минусов Li-Ion можно отметить только:
— низкая морозостойкость аккумуляторов (боятся отрицательных температур)
— требуется балансировка банок при заряде и наличие защиты от переразряда
Как видим, преимущества лития налицо, поэтому зачастую имеет смысл переделки питания…
+173
+366
При работе над некоторыми конструкциями питающимися от автономного источника питания, возник вопрос в выборе последних.
На мой взгляд из доступных лучшие LI-ION аккумуляторы, тем более, что у меня есть некое количество незащищенных банок от ноутбуковских батарей. Но с ними возникает уже широко известная проблема — их сложный алгоритм зарядки при несоблюдении которого постоянно не дозаряжен аккумулятор быстро выйдет со строя, а при перезаряде также, но с активным разрушением. Резкий перезаряд наступает при превышении напряжения на заряжаемом элементе на 1-2 сотых вольта от требуемого, проследить такое практически невозможно, поэтому производители рекомендуют автоматические ограничители.
Есть решения и готовые устройства для этих целей как приставки к зарядным устройствам для незащищенных аккумуляторов, так и встраиваемые в аккумулятор.
В общем, для незащищенных аккумуляторов нужен балансир — ограничитель напряжения заряда и защита от чрезмерного разряда. Делать множество мелких девайсов на каждую банку пока нету смысла, решил сделать приставку к зарядному устройству.
Интересное и простое решение нашлось у
чехов . Такой себе мощный стабилитрон, срабатывающий при граничном для элемента напряжении. Повторяемость схемы отличная, при заведомо исправных деталях.
Схема одного модуля.
Балансир составлен из трех идентичных независимых модулей и предназначен для
зарядки одно элементного аккумулятора, батареи из двух или трех последовательно соединенных банок.
Зарядка одного Li-ION
элемента возможна различными напряжениями, балансир здесь служит и как делитель напряжения если зарядное рассчитано на большее количество элементов..
Также и при зарядке двух последовательных элементов от различных напряжений
Заряд батареи из трех элементов. Для 4 и более банок, думаю решение понятно — увеличение количества модулей в схеме.
Вид готового ограничителя, реализуемого фирмой «E-Fly».
То, что получилось у меня. С таким теплоотводом заряжая током до 1-3 ампер соединеных несколько батарей паралельно или при очень большой разницы в емкости элементов по окончании заряда могу не бояться за здоровье транзисторов.
С задранной защитной панелью.
При исполнении без теплоотводов транзисторы смогут выдержать ток до 0.5 А, при больших токах (до 3-х Ампер) нужна хорошая теплоотдача.
Нагрев транзисторов происходит только при достижении аккумулятора граничного напряжения зарядки, когда лишнее напряжение будет гасится сопротивлением открытого транзистора. В этом и заключается принцип защиты от перезаряда. Это очень удобно при зарядке последовательной батареи с неравномерно заряженных элементов. При достижении граничного напряжения элемента, открывается транзистор и основной ток идет мимо аккумулятора, другие аккумуляторы батареи, которые еще не достигли конечного заряда, продолжают заряжаться. Отключенный таким образом аккумулятор продолжает заряжаться очень малым током стабилизированного напряжения (капельный заряд). При срабатывании защиты всех модулей, заряд условно закончен и систему можно отключать, для простого устройства такая работа вполне прилична.
Настройка
Порог срабатывания ограничителя 4.200 вольта, при первоначальной настройке устройства нужно с большой точностью сделать регулировку этого значения.
На устройство без подсоединенных аккумуляторов подается напряжение от источника питания, зарядного устройства с ограничителем тока в пределах 0.15-1А. Напряжение можно подавать как на отдельный модуль 4.5-5 вольт так и на всю схему 13.5-15 вольт, и подстроечным резистором в каждом модуле выставляем порог зажигания светодиода 4.16 вольта, контролируя на выходных клеммах напряжение. Все модули должны быть отрегулированы на один порог с точностью до 0.001 вольта.
Даже новые, но дешевые вольтметры и прочие комбинированные приборы имеют погрешности, это надо учесть. Источник питания использовать стабилизированный с хорошей фильтрацией. Зарядное устройство для которого предназначен этот ограничитель также должно иметь функцию ограничения тока, хороший выходной фильтр и быть рассчитано на напряжение, которое равно суммарному напряжению батареи заряженных аккумуляторов + 1-3 вольта. Если использовать
этот девайс в качестве балансира для выравнивания банок планируется с готовым
зарядным для аккумуляторов в котором уже автоматически контролируется напряжение полного заряда с последующим отключением, нужно узнать порог этого отключения, и регулировать ограничитель уже под имеющееся зарядное устройство, это может быть 4.10
— 4.19
вольт или типа того.
Я регулировал порог срабатывания так:
Последовательно соединил лабораторный блок питания, автомобильную лампочку 12 вольт 1 ампер в качестве ограничителя тока и сам ограничитель. Подал напряжение 15 вольт и меряя на выходе модуля мультиметром напряжение регулировкой подстроечного добивался показания 4.16 вольта на каждом модуле, так как не имелось под руками точнее прибора, да и блок питания имеет на выходе некую пульсацию напряжения не смотря на все фильтра. Этот блок питания и служит мне зарядным устройством.
Вместо указанных мощных транзисторов можно применить КТ818, цоколевка у них немного иная и без переделки печатной платы их можно установить со стороны дорожек, припаяв как корпуса DPAK
или “лицом“ в обратную сторону.
Печатная плата в формате Sprint-layout 6.0 , при печати делать зеркально. Позиционные номера деталей указаны в лае.
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Выходом из данной ситуации может быть применение популярного . Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.
Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).
Прислал:
Нет, речь пойдет не о рыболовной приманке, и даже не о цирковых акробатах балансирующих под куполом. Речь будет о том, как добиться баланса параметров аккумуляторов, соединённых последовательно.
Как известно, ячейка аккумулятора — достаточно низковольтное устройство, поэтому их обычно соединяют в пачки последовательно. В идеале, если параметры всех аккумуляторов одинаковы, мы имеем источник с напряжением в n-раз большим, чем одиночная ячейка, и заряжать-разряжать его мы можем как единый более высоковольтный аккумулятор.
Увы, так будет только в идеале. Каждый аккумулятор в этой пачке, как и всё в этом мире, уникален, и найти двух совершенно одинаковых невозможно, да и их характеристики — ёмкость, утечки, степень заряженности, будут меняются от времени и температуры.
Конечно, изготовители аккумуляторов стараются подбирать максимально близкие по параметрам, но различия всегда есть. И со временем, такие разбалансы характеристик могут ещё и возрастать.
Эти различия характеристик ячеек ведут к тому, что аккумуляторы работают по разному и, в результате общая ёмкость составной батареи будет ниже, чем составляющих её ячеек, это раз, а во-вторых, ресурс такого аккумулятора также будет ниже, т.к. он определяется самым «слабым» аккумулятором, который будет изнашиваться быстрее других.
Что же делать?
Есть два основных критерия для оценки степени балансировки ячеек:
1. Выравнивание напряжения на ячейках,
2. Выравнивание заряда в ячейках.
Достигать своих целей в достижении этих методов балансирования также можно двумя способами:
1. Пассивным и
2. Активным.
Поясним сказанное.
С критериями балансировки всё понятно, либо мы просто добиваемся равенства напряжений на ячейках, либо каким-либо образом вычисляем заряд аккумулятора и добиваемся, чтобы эти заряды сравнялись (при этом напряжения могут и различаться).
Со способами реализации тоже ничего сложного. В пассивном методе мы просто переводим в тепло энергию в наиболее заряженных аккумуляторных ячейках, до тех пор, пока напряжения или заряды в них не сравняются.
В активном же способе любым способом перекачиваем заряд из одной ячейки в другую, по возможности с минимальными потерями. Современная схемотехника легко реализует такие способности.
Понятно, что рассеять проще, чем перекачать, а сравнить напряжения проще, чем сравнить заряды.
Также эти методы могут применяться как при зарядке, так и при разрядке. Чаще всего, конечно, балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.
При разрядке всегда применяют только активную перекачку заряда, но такие системы весьма редки, из-за большей сложности схемы.
Поглядим на практическую реализацию вышесказанного.
При зарядке, в простейшем случае на выходе ЗУ ставится устройство, называемое «балансиром».
Далее, чтобы не сочинять самому, просто вставлю кусок текста из статьи с сайта http://www.os-propo.info/content/view/76/60/ . Речь идет о зарядке литиевых аккумуляторов.
«Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке LiPo с пороговым значением 4.20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно банке LiPo, пропускающий через себя большую часть тока заряда (1А и более) и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Фактически, выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.
В такой схеме поставленная задача заряда и выравнивания пары разных паков реально осуществима. Но такие балансиры на практике бывают только самодельными. Все фирменные микропроцессорные балансиры используют другой принцип работы.
Вместо того, чтобы рассеивать полные токи заряда в конце, микропроцессорный балансир постоянно контролирует напряжения на банках и постепенно выравнивает их в течение всего процесса заряда. К банке, заряженной больше других, балансир подключает параллельно некоторое сопротивление (порядка 50-80 Ом в большинстве балансиров), пропускающее через себя часть зарядного тока и лишь чуть-чуть замедляющее заряд этой банки, не останаливая его полностью. В отличие от транзистора на радиаторе, способного взять на себя основной ток заряда, это сопротивление обеспечивает лишь небольшой ток балансировки — порядка 100мА, а потому такой балансир не требует массивных радиаторов. Именно этот ток балансировки указывается в технических характеристиках балансиров и обычно составляет не более 100-300мА.
Такой балансир существенно не нагревается, поскольку процесс идет в течение всего заряда, и тепло при небольших токах успевает рассеиваться без радиаторов. Очевидно, что если ток заряда будет существенно выше тока балансировки, то при большом разбросе напряжений на банках балансир не успеет выровнять их до того момента, как самая заряженная банка достигнет порогового напряжения.
»
Конец цитаты.
Примером рабочей схемы простейшего балансира могут служить следующие (взято с сайта http://www.zajic.cz/).
Рис.1. Простая схема балансира.
Фактически это мощный стабилитрон, кстати, весьма точный, нагруженный
на низкоомную нагрузку, роль которой здесь выполняют диоды D2…D5.
Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если
оно поднимается выше порога, открывает мощный транзистор T1, пропуская
через себя весь ток от ЗУ.
Рис.2. Простая схема балансира.
Аналогично работает и вторая схема (Рис.2.), но в ней всё тепло выделяется в транзисторе Т1, который греется как «чайник» — радиатор видно на картинке ниже.
На Рис.3 видно, что балансир состоит из 3-х каналов, каждый из которых выполнен по схеме Рис.2.
Конечно, промышленность уже давно освоила подобные схемы, которые выпускаются в виде законченной микросхемы. Их выпускают многие компании. Как пример, воспользуюсь материалами статьи о методах балансировки, опубликованной на сайте «РадиоЛоцман» http://www.rlocman.ru/shem/schematics.html?di=59991 , которые буду частично изменять или убирать, чтобы не раздувать статью.
Цитата:
» Пассивный метод балансировки.
Наиболее простое решение — выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивает защиту батарейных блоков с 5-10 последовательно включенными батареями. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 4. Сравнивая напряжение банки с пороговым, микросхема, при необходимости, включает режим балансировки для каждой из банок.
Рис.4. Микросхема BQ77PL900, и второй аналог, где лучше видно внутреннее устройство (взят отсюда
http://qrx.narod.ru/bp/bat_v.htm ).
На Рис. 5 показан принцип её действия. Если напряжение какой-либо батареи превышает заданный порог, включаются полевые транзисторы и подключают параллельно ячейке аккумулятора нагрузочный резистор, через который ток идет в обход ячейки и уже не заряжает её. Остальные ячейки при этом продолжают заряжаться.
При падении напряжения, полевик закрывается и зарядка может продолжаться. Таким образом, в конце зарядки на всех ячейках будет присутствовать одинаковое напряжение.
При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего сопротивления батарей (см. Рис. 6.). Дело в том, что на этом сопротивлении падает часть напряжения когда через аккумулятор протекает ток, что вносит дополнительную погрешность в разброс напряжений при заряде.
Микросхема защиты батарей не может определить, чем вызван разбаланс — разной ёмкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся заряженными на 100%.
В микросхеме BQ2084 используется улучшенная версия балансировки, также основанная на изменении напряжения, но, чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика.
Рис. 5. Пассивный метод, основанный на балансировке по напряжению.
Рис. 6. Пассивный метод балансировки по напряжению.
Микросхемы семейства BQ20Zхх, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении состояния заряда батарей (СЗБ) и ёмкости батареи.
В этой технологии для каждой батареи вычисляется заряд Qneed, необходимый для полной её зарядки, после чего находится разница?Q между Qneed всех батарей. Затем микросхема включает силовые ключи, которые разряжают все ячейки до уровня наименее заряженной, до тех пор, пока заряды не уравняются
Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время, как при при зарядке, так и при разрядке аккумулятора.
Однако, как уже говорилось выше, при разряде этот метод использовать глупо, т.к. энергии всегда не хватает.
Основное преимущество этой технологии — более точная балансировка батарей (см. рис. 7) по сравнению с другими пассивными методами.
Рис. 7. Пассивная балансировка, основанная на СЗБ и ёмкости.
Активная балансировка
По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной ячейки к менее заряженной, вместо резисторов используются индуктивности и ёмкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии.
PowerPump использует n-канальный p-канальный полевой транзисторы и дроссель, который расположен между парой батарей. Схема показана на Рис.8. Полевики и дроссель составляют собой понижающий/повышающий преобразователь.
Например, если BQ78PL114 определяет, что верхняя ячейка заряжена больше, чем нижняя, то на выводе PS3 формируется сигнал открывающий транзистор Q1 с частотой около 200 кГц и скважностью около 30%.
При закрытом Q2 получается стандартная схема понижающего импульсного стабилизатора, при этом внутренний диод Q2 замыкает ток индуктивности во время закрытого состояния ключа Q1.
При перекачке же из нижней ячейки в верхнюю, когда открывается только ключ Q2 получаем также типовую схему, но уже повышающего импульсного стабилизатора.
Ключи Q1 и Q2, естественно, одновременно никогда открываться не должны.
Рис. 8. Балансировка по технологии PowerPump.
Потери энергии при этом невелики и почти вся энергия перетекает из сильно заряженной в малозаряженную банку. Микросхема BQ78PL114 реализует три алгоритма балансировки:
— по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше, но при этом потерь почти нет;
— по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
— по состоянию заряда батареи (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20Zxx при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. Рис. 9.)
Рис. 9. Активная балансировка по алгоритму выравнивания состояния заряда батареи
.
Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с рассеиванием энергии. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее 5%) можно достичь уже за один или два цикла.
Кроме того, технология PowerPump имеет и другие преимущества: балансировка может происходить при любом режиме работы — заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию.
» (Конец частичного цитирования.)
Продолжим описание активных способов перекачки заряда из одной ячейки в другую следующей схемой, которую нашел в Интернете на сайте «HamRadio» http://qrx.narod.ru/bp/bat_v.htm .
В качестве схемы перекачки заряда использован не индуктивный, а ёмкостной накопитель. Например, широко известны, так называемые, преобразователи напряжения на коммутируемых конденсаторах. Одна из массовых — это микросхема ICL7660 (MAX1044 или отечественный аналог КР1168ЕП1).
В основном микросхема используется для получения отрицательного напряжения, равного напряжению её питания. Однако, если отрицательное напряжение на её выходе окажется по каким-то причинам больше по величине, чем положительное напряжение питания, то микросхема начнёт качать заряд «в обратную сторону», забирая из минуса, и отдавая в плюс, т.е. она всё время пытается уравнять эти два напряжения.
Это свойство и использовано для балансировки двух аккумуляторных ячеек. Схема такого балансира приведена на Рис.10.
Рис.10. Схема балансира с ёмкостной перекачкой заряда.
Микросхема с высокой частотой подключает конденсатор С1 либо к верхнему аккумулятору G1, либо к нижнему G2. Соответственно С1 будет заряжаться от более заряженного и разряжаться в более разряженный, каждый раз перенося какую-то порцию заряда.
Со временем напряжения на аккумуляторах станут одинаковыми.
Энергия в схеме практически не рассеивается, КПД схему может достигать до 95…98% в зависимости от напряжения на аккумуляторах и выходного тока, который зависит от частоты переключения и ёмкости С1.
При этом собственно потребление микросхемы составляет всего несколько десятков микроампер, т.е. находится ниже уровня саморазряда многих аккумуляторов, и поэтому микросхему можно даже не отключать от аккумулятора и она будет постоянно неспешно выполнять работу по выравниванию напряжения на ячейках.
Реально ток перекачки может достигать 30…40мА, но КПД при этом снижается. Обычно десяток мА. Также напряжение питания может быть от 1.5 до 10В, а это значит, что микросхема может балансировать как обычные Ni-Mh пальчики, так и литиевые аккумуляторы.
Практическое замечание: на Рис.10. показана схема которая балансирует аккумуляторы с напряжением меньше 3В, поэтому её шестая ножка (LV) подключена к выходу 3. Для балансировки литиевых аккумуляторов с более высоким напряжением, вывод 6 нужно оставить свободным, никуда не подключать.
Также, этим методом возможно балансировать не только два, но и большее количество аккумуляторов. На Рис.11. показано, как это сделать.
Рис.11. Каскадирование микросхем перекачки заряда.
Ну, и напоследок, ещё одно схемное решение, реализующее ёмкостную передачу заряда от одного аккумулятора к другому.
Если в ICL7660 представляла собой мультиплексор, который мог подключать конденсатор С1 только к двум источникам, то взяв мультиплексор с большим числом каналов переключения, (3, 4, 8) можно одной микросхемой уравнивать напряжения уже на трех, четырех или восьми банках. Причем, банки могут быть соединены как угодно, как последовательно, так и параллельно. Главное, чтобы напряжение питания микросхемы было выше максимального напряжения на банках.
Схема так называемого «обратимого преобразователя напряжения», описанного в журнале «Радио» 1989, № 8, показана на Рис.12.
Рис.12. Обратимый преобразователь напряжения в качестве балансира на мультиплексоре 561КП1..
К выравнивающему устройству может быть подключено до четырех элементов. Конденсатор С2 поочередно подключается к различным элементам, обеспечивая перекачку энергии этих элементов и выравнивание напряжения на них
Число элементов в батарее может быть уменьшено. В этом случае вместо исключенных элементов достаточно подключить конденсатор емкостью 10..20мкФ.
Ток балансировки такого источника весьма мал до 2 мА. Но так как он работает постоянно, не отключаясь от аккумуляторов, то свою задачу — уравнивание зарядов ячеек, он выполняет.
В заключение хочу заметить, что современная элементная база позволяет выполнять балансировку ячеек составного аккумулятора практически без потерь и уже достаточно проста, чтобы перестать быть чем-то «крутым» и недоступным.
И поэтому радиолюбителю, конструирующему устройства на аккумуляторах, полагаю, стоит задуматься о переходе на активные методы перекачки энергии между банками в батарее, пусть хотя бы «по старинке», ориентируясь на равенство напряжений между аккумуляторными ячейками, а не зарядов в них.
Все статьи на сайте разрешены к копированию, но с обязательным указанием ссылки на нас .
Наверняка, каждый радиолюбитель сталкивался с проблемой, подключая литиевые аккумуляторы последовательно, замечал что один садиться быстро а другой еще вполне держит заряд, но из за другого севшего вся батарея не выдает нужного напряжения. Это происходит от того что при зарядке всего блока батарей, они заряжаются не равномерно, и часть батарей набирают полную емкость а часть нет. Это приводит не только к быстрому разряду, но и к выходу из строя отдельных элементов, из за постоянной не до зарядки.
Исправить проблему достаточно просто, на каждый аккумуляторный элемент нужен так называемый балансир, устройство которое после полной зарядки батареи блокирует ее дальнейший перезаряд, и управляющим транзистором обводит зарядный ток мимо элемента.
Схема балансира достаточно проста, собрана на прецизионном управляемом стабилитроне TL431A, и транзисторе прямой проводимости BD140.
После долгих экспериментов схема немного изменилась, в место резисторов было установлено 3 последовательно включенных диода 1N4007, работать балансир стал как по мне стабильней, диоды при зарядке ощутимо греются, это следует учитывать при разводке платы.
Принцип работы
очень прост, пока напряжение на элементе меньше 4,2 вольта, идет зарядка, управляемый стабилитрон и транзистор закрыты и не влияют на процесс зарядки. Как только напряжение достигнет 4,2 вольта, стабилитрон начинает открывать транзистор, который через резисторы суммарным сопротивлением 4 Ома шунтирует аккумулятор, тем самым не давая напряжению подняться выше верхнего порога 4,2 вольта, и дает возможность зарядиться остальным аккумуляторам. Транзистор с резисторами спокойно пропускает ток около 500 мА, при этом он нагревается градусов до 40-45. Как только на балансире загорелся светодиод аккумулятор который к нему подключен полностью заряжен. То есть, если у вас соединено 3 аккумулятора, то окончанием заряда нужно считать загорание светодиодов на всех трех балансирах.
Настройка
очень проста, подаем на плату (без аккумулятора) напряжение 5 вольт через резистор примерно 220 Ом, и меряем на плате напряжение, оно должно быть 4,2 вольта, если оно отличается то подбираем резистор 220 кОм в небольших пределах.
Напряжение для зарядки нужно подавать примерно на 0,1-0,2 вольта больше чем напряжение на каждом элементе в заряженном состоянии, пример: у нас 3 последовательно соединенных аккумулятора по 4,2 вольта в заряженном состоянии, суммарное напряжение 12,6 вольта. 12,6 + 0,1 + 0,1 + 0,1 = 12,9 вольта. Также следует ограничит ток заряда на уровне 0,5 А.
Как вариант стабилизатора напряжения и тока можно использовать микросхему LM317, включение стандартное с даташита, схема выглядит следующим образом.
Трансформатор нужно выбирать с расчета — напряжение заряженной батареи + 3 вольта по переменке, для корректной работы LM317. Пример у вас батарея 12,6 вольта + 3 вольт = трансформатор нужен 15-16 вольт переменного напряжения.
Так как LM317 линейный регулятор, и падение напряжения на нем превратится в тепло, обязательно устанавливаем ее на радиатор.
Теперь немного о том как рассчитать делитель
R3-R4 для стабилизации напряжения
, а очень просто по формуле R3+R4=(Vo/1.25-1)*R2
, величина Vo — это напряжение окончания заряда (максимальное выходное после стабилизатора).
Пример: нам нужно получить на выходе 12,9 вольта для 3-х. батарей с балансирами. R3+R4=(12.9/1.25-1)*240=2476,8 Ом. что примерно ровняется 2,4 кОм + у нас стоит подстроечный резистор, для точной подстройки (470 Ом), что позволит нам, без проблем установить расчетное выходное напряжение.
Теперь расчет выходного тока, за него отвечает резистор Ri, формула простая Ri=0.6/Iз
, где Iз — максимальный ток заряда. Пример нам нужен ток 500 мА, Ri=0.6/0,5А= 1,2 Ом. Следует учитывать, что через данный резистор течет зарядный ток, потому мощность его стоит брать 2 Вт. Вот и все, платы я не выкладываю, они будут когда я соберу зарядное устройство с балансиром для своего металлоискателя.
Сейчас на рынке полно зарядных устройств. Автоматы и нет, с измерением емкости и без него. Большинство зарядных устройств универсальны и могут заряжать элементы любой химии. Литий-ион и литий-полимер все чаще применяют в разных устройствах.
Не так давно я переделывал аккумулятор шуруповерта на литий-ионные элементы формата 18650. Заряжаю его умным зарядным устройством Turnigy. Но данное зарядное есть не у каждого.
Понадобится для сборки
Принял решение, собрать простое зарядное устройство с балансиром для литий-иона. Зарядное устройство имеет 3 одинаковых независимых канала. Им можно заряжать от одного элемента до трех. Если нужно, можно добавлять любое количество каналов. У меня же их три, то есть 3S или 11.1 вольт.
Корпусом для балансирующего зарядного устройства является корпус от сгоревшего роутера D-link. Если есть возможность, берите корпус побольше, очень тесно получается в нем работать.
Одним из главным компонентном, являются блоки питания каждого канала. Их роль выполняю платы зарядных устройств планшетов, с выходом 5 Вольт и током от 1 Ампера (или можно купить на Али Экспресс — .
Контроллерами заряда служат платы из Китая — . На каждый канал, свой контроллер. У меня платы без защиты, но она в данном случае не нужна. Можно применять платы контроллеров вместе с разъемами, у меня на двух они отсутствуют, сняты для других проектов. Цена на данные модули копеечная. Если занимаетесь доработкой устройств на литий-ионе и литий-полимере, то данные контроллеры незаменимы.
Изготовление балансировочного зарядного устройства
Платы контроллеров заряда нужно припаять к выходам плат зарядок. Можно и отдельно. Я припаял на толстые жилы от силового кабеля, так конструкция более жесткая.
На платах контроллеров заряда имеются светодиоды, которые индицируют заряд и окончание заряда. Их нужно выпаять. Вместо них будут обычные светодиоды, разного цвета. Они будут прикреплены к окошкам, где раньше моргали светодиоды роутера.
К светодиодам припаял провода от старого шлейфа жесткого диска компьютера. Если есть светодиоды с общим анодом(плюсом), то лучше применить их. У меня таких не оказалось, применил что есть.
На место старых светодиодов, припаиваем шлейфы со светодиодами. На фото у меня зеленый светодиод на 3 мм. Пришлось заменить, оказались паленые, не проверил перед распайкой.
Для задней панели нужно вырезать накладку. В ней проделываем пропилы под выключатель питания и выходной разъем на 4 пина. Разъем снял со старого жесткого диска. Можно применить любой, на нужное количество пинов, с током 1-2 Ампера.
Выключатель снял со старого блока питания компьютера. Накладку прикручиваем на два винта, для жесткости.
Выходной разъем приклеиваем на эпоксидный клей или соду с супер клеем. Я для быстроты приклеил и одним и другим.
Плата зарядок с контроллерами, приклеил на термо клей. Но перед фиксацией припаял сетевые проводочки.
Один из сетевых проводочков, припаиваем к выключателю. Второй, непосредственно к второму проводу сетевого шнура.
Теперь приклеиваем светодиоды. Я клеил термо клеем, можно и содой с супер клеем.
Распаиваем выходные перемычки.
Плюс первого контроллера на первую ножку выходного разъема. Минус его на вторую ножку и соединяем с плюсом второго контроллера. И так далее.
Корпус скручиваем и откладываем в сторону.
Сделаем провод под данной зарядное устройство.
Применил два отрезка проводов от компьютерного блока питания. Спаял в порядке с первого контакта одного разъема к контакту второго.
Подключаем зарядное устройство к аккумулятору шуруповерта (). Красный светодиод индицирует о идущем процессе заряда. По окончанию заряда, загорается зеленый светодиод. Соответственно загораются значки на корпусе: Wi-Fi, второй и четвертый компьютеры.
Вот такое зарядное устройство у нас получилось. Затраты минимальны, а польза большая.
Данным устройством можно заряжать сборки на литий-полимерах, те которые применяют моделисты в своем транспорте. Главное сделать правильный провод зарядки.
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Выходом из данной ситуации может быть применение популярного . Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.
Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).
Если в прошлые годы наиболее интересные отечественные технологические новости были преимущественно связаны с программным обеспечением, то в 2019 г. много интересного происходило в области аппаратного. Тем более, что государство решительно взялось за импортозамещение, и не только софтверное.
Госорганы в 2019 году фактически угробили «Т-платформы»: компания в агонии, «80% сотрудников уволились», выключен сайт
К неиссякающему потоку проблем компании «Т-платформы», чей основатель и гендиректор находится под стражей, добавилось масштабное сокращение штата. Организации не хватает денег не только на зарплаты, но и, возможно, даже на поддержку корпоративного сайта, пишет CNews.
«Ростех» хочет создать российские чипы для Bluetooth, Wi-Fi, NFC и Интернета вещей
«Ростех» предлагает разработать в России чипы для беспроводных технологий Bluetooth, Wi-Fi, ZigBee, NFC, LPWAN, NB-IoT и Thread. Также должны появиться собственные системы на кристалле для интернета вещей и базовые станции LPWAN. Общие инвестиции в развитие интернета вещей в России до 2030 г. составят более 200 млрд руб.
«Касперский» работает над первым в России чипом для ускорения искусственного интеллекта
«Лаборатория Касперского» подписала соглашение о стратегическом сотрудничестве с разработчиком первого в России нейроморфного процессора для аппаратного ускорения работы систем с искусственным интеллектом. Чип позволит локально обрабатывать большие объемы данных и даст возможность нейросетям дообучаться в процессе работы.
России нужен «Мир», желательно, весь: в России обяжут предустанавливать на смартфоны Mir Pay вместо Apple Pay и Google Pay
«Известия» сообщают о том, что Федеральная антимонопольная служба (ФАС) рассматривает возможность сделать сервис Mir Pay обязательным приложением для предустановки на продаваемой в России электронике. Судя по тенденциям последнего года, подобная инициатива должна быть одобрена властями страны.
Незапуск почти половины спутников в Роскосмосе объяснили санкциями по радиационно-стойким микросхемам и неготовностью OneWeb
«Роскосмос» не выполнил 45 запусков в основном из-за неготовности космических аппаратов компании OneWeb и Минобороны, рассказал генеральный директор российской корпорации Дмитрий Рогозин, комментируя заявление вице-премьера Юрия Борисова о том, что в этом году космические пусковые программы России выполнены «чуть более чем на 50 процентов». Об этом сообщает ТАСС.
Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о двух простеньких платках, предназначенных для контроля за сборками Li-Ion аккумуляторов, именуемые BMS. В обзоре будет тестирование, а также несколько вариантов переделки шуруповерта под литий на основе этих плат или подобных. Кому интересно, милости прошу под кат.
Update 1, Добавлен тест рабочего тока плат и небольшое видео по красной плате
Update 2, Поскольку тема вызвала небольшой интерес, поэтому постараюсь дополнить обзор еще несколькими способами переделки шурика, чтобы получился некий простенький FAQ
Общий вид:
Краткие ТТХ плат:
Примечание:
Сразу же хочу предупредить – с балансиром только синяя плата, красная без балансира, т.е. это чисто плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока. А также вопреки некоторым убеждениям ни одна из них не имеет контроллера заряда (CC/CV), поэтому для их работы необходима специальная платка с фиксированным напряжение и ограничением тока.
Габариты плат:
Размеры плат совсем небольшие, всего 56мм*21мм у синей и 50мм*22мм у красной:
Вот сравнение с аккумуляторами АА и 18650:
Внешний вид:
Начнем с :
При более детальном рассмотрении можно увидеть контроллер защиты – S8254AA и компоненты балансировки для 3S сборки:
К сожалению, рабочий ток по заявлению продавца всего 8А, но судя по даташитам один мосфет AO4407A рассчитан на 12А (пиковый 60А), а у нас их два:
Еще отмечу, что ток балансировки совсем небольшой (около 40ma) и активируется балансировка, как только все ячейки/банки перейдут в режим CV (вторая фаза заряда).
Подключение:
попроще, ибо не имеет балансира:
Она также выполнена на основе контроллера защиты – S8254AA, но рассчитана на более высокий рабочий ток в 15А (опять же по заявлениям производителя):
Ходя по даташитам на используемые силовые мосфеты, рабочий ток заявлен 70А, а пиковый 200А, хватит даже одного мосфета, а у нас их два:
Подключение аналогичное:
Итого, как мы видим, на обеих платах присутствует контроллер защиты с необходимой развязкой, силовые мосфеты и шунты для контроля проходящего тока, но в синей есть еще и встроенный балансир. Я особо не вникал в схему, но похоже, что силовые мосфеты запараллелены, поэтому рабочие токи можно умножать на два. Важное примечание — максимальные рабочие токи ограничиваются токовыми шунтами! Про алгоритм заряда (CC/CV) эти платки не знают. В подтверждение тому, что это именно платы защиты, можно судить по даташиту на контроллер S8254AA, в котором о зарядном модуле ни слова:
Сам контроллер рассчитан на 4S соединение, поэтому с некоторой доработкой (судя по даташиту) – подпайкой кондера и резистора, возможно, заработает красная платка:
Синюю платку так просто доработать до 4S не получится, придется допаивать элементы балансира.
Тестирование плат:
Итак, переходим к самому главному, а именно к тому, насколько они пригодны для реального применения. Для тестирования нам помогут следующие приспособления:
— сборный модуль (три трех/четырехрегистровых вольтметра и холдер для трех 18650 аккумуляторов), который мелькал в моем обзоре зарядника , правда, уже без балансировочного хвостика:
— двухрегистровый ампервольтметр для контроля тока (нижние показания прибора):
— понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития:
— зарядно-балансировочное устройство iCharger 208B для разряда всей сборки
Стенд простой — плата преобразователь подает фиксированное постоянное напряжение 12,6V и ограничивает зарядный ток. По вольтметрам смотрим, на каком напряжении срабатывают платы и как отбалансированы банки.
Для начала посмотрим главную фишку синей платы, а именно балансировку. На фото 3 банки, заряженные на 4,15V/4,18V/4,08V. Как видим – разбалансировка. Подаем напряжение, зарядный ток постепенно падает (нижний приборчик):
Поскольку платка не имеет каких-либо индикаторов, то окончание балансировки можно оценить только на глаз. Амперметр за час с лишним до окончания уже показывал по нулям. Кому интересно, вот небольшой ролик о том, как работает балансир в этой плате:
В итоге банки отбалансированы на уровне 4,210V/4,212V/4,206V, что весьма неплохо:
При подаче напряжения чуть большего 12,6V, как я понял, балансир неактивен и как-только напряжение на одной из банок достигнет 4,25V, то контроллер защиты S8254AA отключает заряд:
Такая же ситуация и с красной платой, контроллер защиты S8254AA отключает заряд также на уровне 4,25V:
Теперь пройдемся по отсечке при нагрузке. Разряжать буду, как уже упоминал выше, зарядно-балансировочным устройством iCharger 208B в режиме 3S током 0,5А (для более точных замеров). Поскольку мне не очень хочется ждать разряда всей батареи, поэтому я взял один разряженный аккумулятор (на фото зеленый Самсон INR18650-25R).
Синяя плата отключает нагрузку, как только напряжение на одной из банок достигнет 2,7V. На фото (без нагрузки->перед отключением->окончание):
Как видим, ровно на 2,7V плата отключает нагрузку (продавец заявлял 2,8V). Как мне кажется, немного высоковато, особенно если учитывать тот факт, что в тех же шуруповертах нагрузки огромные, следовательно, и просадка напряжения большая. Все же желательно в таких приборах иметь отсечку под 2,4-2,5V.
Красная плата, наоборот, отключает нагрузку, как только напряжение на одной из банок достигнет 2,5V. На фото (без нагрузки->перед отключением->окончание):
Вот здесь вообще все отлично, но нет балансира.
Update 1: Тест нагрузки:
По току отдачи нам поможет следующий стенд:
— все тот же холдер/держатель для трех 18650 аккумуляторов
— 4-х регистровый вольтметр (контроль общего напряжения)
— автомобильные лампы накаливания в качестве нагрузки (к сожалению, у меня всего 4 лампы накаливания по 65W, больше не имею)
— мультиметр HoldPeak HP-890CN для измерения токов (макс 20А)
— качественные медные многожильные акустические провода большого сечения
Пару слов о стенде: аккумуляторы соединены «вальтом», т.е. как бы друг за другом, для уменьшения длины соединительных проводов, а следовательно и падения напряжения на них при нагрузке будет минимальным:
Соединение банок на холдере («вальтом»):
В качестве щупов для мультиметра выступили качественные провода с крокодилами от зарядно-балансировочного устройства iCharger 208B, ибо HoldPeak’овские не внушают доверие, да и лишние соединения будут вносить дополнительные искажения.
Для начала потестим красную плату защиты, как самую интересную в плане токовой нагрузки. Припаяем силовые и побаночные провода:
Получается что-то типа этого (нагрузочные соединения получились минимальной длины):
Я уже упоминал в разделе о переделке шурика о том, что подобные холдеры не очень предназначены для таких токов, но для тестов пойдет.
Итак, стенд на основе красной платки (по замерам не более 15А):
Коротко поясню: плата держит 15А, но у меня нет подходящей нагрузки, чтобы вписаться в этот ток, поскольку четвертая лампа добавляет еще около 4,5-5А, а это уже за пределами платки. При 12,6А силовые мосфеты теплые, но не горячие, самое то для продолжительной работы. При токах более 15А плата уходит в защиту. Я замерял с резисторами, они добавляли пару ампер, но стенд уже разобран.
Огромный плюс красной платы – нет блокировки защиты. Т.е. при срабатывании защиты ее не нужно активировать подачей напряжения на выходные контакты. Вот небольшой видеоролик:
Немного поясню. Поскольку лампы накаливания в холодном виде имеют низкое сопротивление, да к тому же еще включены параллельно, то платка думает, что произошло короткое замыкание и срабатывает защита. Но благодаря тому, что у платы нет блокировки, можно немного разогреть спиральки, сделав более «мягкий» старт.
Синяя платка держит больший ток, но на токах более 10А силовые мосфеты сильно греются. На 15А платка выдержит не более минуты, ибо через 10-15 секунд палец уже не держит температуру. Благо остывают быстро, поэтому для кратковременной нагрузки вполне подойдут. Все бы ничего, но при срабатывании защиты плата блокируется и для разблокировки необходимо подавать напряжение на выходные контакты. Это вариант явно не для шуруповерта. Итого, ток в 16А держит, но мосфеты очень сильно греются:
Вывод:
лично мое мнение таково, что для электроинструмента отлично подойдет обычная плата защиты без балансира (красная). Она имеет высокие рабочие токи, оптимальное напряжение отсечки в 2,5V, да и легко дорабатывается до конфигурации 4S (14,4V/16,8V). Я считаю – это самый оптимальный выбор для переделки бюджетного шурика под литий.
Теперь по синей платке. Из плюсов – наличие балансировки, но рабочие токи все же небольшие, 12А (24А) это для шурика с крутящим моментом 15-25Нм несколько маловато, особенно когда патрон уже почти стопорит при затяжке самореза. Да и напряжение отсечки всего 2,7V, а это значит, что при сильной нагрузке часть емкости батареи останется невостребованной, поскольку на высоких токах просадка напряжения на банках приличная, да и они рассчитаны на 2,5V. И самый большой минус – плата при сработке защиты блокируется, поэтому применение в шуруповерте нежелательно. Синюю платку лучше использовать в каких-нибудь самоделках, но это опять же, лично мое мнение.
Возможные схемы применения или как переделать питание шурика на литий:
Итак, как же можно переделать питание любимого шурика с NiCd на Li-Ion/Li-Pol? Эта тема уже достаточно заезжена и решения, в принципе, найдены, но я вкратце повторюсь.
Для начала скажу лишь одно – в бюджетных шуриках стоит лишь плата защиты от перезаряда/переразряда/КЗ/высокого нагрузочного тока (аналог обозреваемой красной платы). Никакой балансировки там нет. Более того, даже в некоторых брендовых электроинструментах нет балансировки. Это же относится ко всем инструментам, где есть гордые надписи «Зарядка за 30 минут». Да, они заряжаются за полчаса, но отключение происходит тогда, как только напряжение на одной из банок достигнет номинала или сработает плата защиты. Не трудно догадаться, что банки будут заряжены не полностью, но разница всего 5-10%, поэтому не столь важно. Главное запомнить, заряд с балансировкой идет, как минимум, несколько часов. Поэтому возникает вопрос, а оно вам надо?
Итак, самый распространенный вариант выглядит так:
Сетевое ЗУ со стабилизированным выходом 12,6V и ограничением тока (1-2А) -> плата защиты ->
В итоге: дешево, быстро, приемлемо, надежно. Балансировка гуляет в зависимости от состояния банок (емкость и внутреннее сопротивление). Вполне рабочий вариант, но через некоторое время разбалансировка даст о себе знать по времени работы.
Более правильный вариант:
Сетевое ЗУ со стабилизированным выходом 12,6V, ограничением тока (1-2А) -> плата защиты с балансировкой -> 3 последовательно соединенных аккумулятора
В итоге: дорого, быстро/медленно, качественно, надежно. Балансировка в норме, емкость батареи максимальная
Итого, будем стараться сделать наподобие второго варианта, вот как можно сделать:
1) Li-Ion/Li-Pol аккумуляторы, платы защиты и специализированное зарядно-балансировочное устройство (iCharger, iMax). Дополнительно придется вывести балансировочный разъем. Минусов всего два – модельные зарядники недешевые, да и обслуживать не очень удобно. Плюсы – высокий ток заряда, высокий ток балансировки банок
2) Li-Ion/Li-Pol аккумуляторы, плата защиты с балансировкой, DC преобразователь с токоограничением, БП
3) Li-Ion/Li-Pol аккумуляторы, плата защиты без балансировки (красная), DC преобразователь с токоограничением, БП. Из минусов только то, что со временем появится разбалансировка банок. Для минимизации разбалансировки, перед переделкой шурика необходимо подогнать напряжение к одному уровню и желательно брать банки из одной партии
Первый вариант сгодится только тем, кто имеет модельное ЗУ, но мне кажется, если им нужно было, то они уже давным давно переделали свой шурик. Второй и третий варианты практически одинаковые и имеют право на жизнь. Необходимо лишь выбрать, что важнее – скорость или емкость. Я считаю, что самый оптимальный вариант – последний, но только раз в несколько месяцев нужно балансировать банки.
Итак, хватит болтовни, переходим к переделке. Поскольку я не имею шурика на NiCd аккумах, поэтому о переделке только на словах. Нам будет нужно:
1) Источник питания:
Первый вариант. Блок питания (БП), как минимум, на 14V или больше. Ток отдачи желателен не менее 1А (в идеале около 2-3А). Нам подойдет блок питания от ноутбуков/нетбуков, от зарядных устройств (выход более 14V), блоки для питания светодиодных лент, видеозаписывающей аппаратуры (DIY БП), например или :
— Понижающий DC/DC преобразователь с токоограничением и возможностью заряда лития, например или :
— Второй вариант. Готовые блоки питания для шуриков с токоограничением и выходом 12,6V. Стоят недешево, как пример из моего обзора шуруповерта MNT — :
— Третий вариант. :
2) Плата защиты с балансиром или без оного. То току желательно брать с запасом:
Если использоваться будет вариант без балансира, то необходимо подпаять балансировочный разъем. Это нужно для контроля напряжения на банках, т.е. для оценки разбалансировки. И как вы понимаете, нужно будет периодически дозаряжать батарею побаночно простым зарядным модулем TP4056, если началась разбалансировка. Т.е. раз в несколько месяцев, берем платку TP4056 и заряжаем поочереди все банки, которые по окончании заряда имеют напряжение ниже 4,18V. Данный модуль корректно отрубает заряд на фиксированном напряжении 4,2V. Данная процедура займет час-полтора, зато банки будут более-менее отбалансированы.
Написано немного сумбурно, но для тех, кто в танке:
Через пару месяцев ставим на зарядку батарею шуруповерта. По окончании заряда достаем балансировочный хвостик и меряем напряжение на банках. Если получается что-то вроде этого – 4,20V/4,18V/4,19V, то балансировка, в принципе не нужна. Но если картина следующая – 4,20V/4,06V/4,14V, то берем модуль TP4056 и дозаряжаем поочереди две банки до 4,2V. Другого варианта, кроме специализированных зарядников-балансиров я не вижу.
3) Высокотоковые аккумуляторы:
Я уже ранее писал пару небольших обзоров о некоторых из них – и . Вот основные модели высокотоковых 18650 Li-Ion аккумуляторов:
— Sanyo UR18650W2 1500mah (20А макс.)
— Sanyo UR18650RX 2000mah (20А макс.)
— Sanyo UR18650NSX 2500mah (20А макс.)
— Samsung INR18650-15L 1500mah (18А макс.)
— Samsung INR18650-20R 2000mah (22А макс.)
— Samsung INR18650-25R 2500mah (20А макс.)
— Samsung INR18650-30Q 3000mah (15А макс.)
— LG INR18650HB6 1500mah (30А макс.)
— LG INR18650HD2 2000mah (25А макс.)
— LG INR18650HD2C 2100mah (20А макс.)
— LG INR18650HE2 2500mah (20А макс.)
— LG INR18650HE4 2500mah (20А макс.)
— LG INR18650HG2 3000mah (20А макс.)
— SONY US18650VTC3 1600mah (30А макс.)
— SONY US18650VTC4 2100mah (30А макс.)
— SONY US18650VTC5 2600mah (30А макс.)
Я рекомендую проверенные временем дешевенькие Samsung INR18650-25R 2500mah (20А макс.), Samsung INR18650-30Q 3000mah (15А макс.) или LG INR18650HG2 3000mah (20А макс.). С другими баночками особо не сталкивался, но лично мой выбор — Samsung INR18650-30Q 3000mah. У Лыж был небольшой технологический дефект и начали появляться фейки с заниженной токоотдачей. Статью о том, как отличить фейк от оригинала могу скинуть, но чуть позже, нужно поискать ее.
Как все это хозяйство соединить:
Ну и пару слов о соединении. Используем качественные медные многожильные провода приличного сечения. Это качественные акустические или обычные ШВВП/ПВС сечением 0,5 или 0,75 мм2 из хозмага (вспарываем изоляцию и получаем качественные проводочки разного цвета). Длина соединительных проводников должна быть минимальной. Аккумуляторы, желательны из одной партии. Перед их соединением желательно зарядить их до одного напряжения, чтобы как можно дольше не было разбалансировки. Пайка аккумуляторов не представляет ничего сложного. Главное иметь мощный паяльник (60-80Вт) и активный флюс (паяльная кислота, например). Паяется на ура. Главное потом протереть место пайки спиртом или ацетоном. Сами аккумуляторы размещаются в батарейном отсеке от старых NiCd банок. Располагать лучше треугольником, минус к плюсу или как в народе «вальтом», по аналогии с этим (один аккум будет расположен наоборот), либо чуть выше хорошее пояснение (в разделе тестирование):
Так, соединяющие аккумуляторы провода, получатся короткими, следовательно, падение драгоценного напряжения в них под нагрузкой будет минимальным. Использовать холдеры на 3-4 аккумулятора не рекомендую, не для таких токов они предназначены. Побаночные и балансировочные проводники не так важны и могут быть меньшего сечения. В идеале, аккумы и плату защиты лучше запихать в батарейный отсек, а понижающий DC преобразователь отдельно в док станцию. Светодиодные индикаторы заряд/заряжено можно заменить своими и вывести на корпус докстанции. При желании можно добавить в батарейный модуль минивольтметр, но это лишние деньги, ибо общее напряжение на АКБ только косвенно скажет об остаточной емкости. Но если есть желание, почему бы и нет. Вот :
Теперь прикинем по ценам:
1) БП – от 5 до 7 долларов
2) DC/DC преобразователь – от 2 до 4 долларов
3) Платы защиты — от 5 до 6 долларов
4) Аккумуляторы – от 9 до 12 долларов (3-4$ штучка)
Итого, в среднем 15-20$ за переделку (со скидками/купонами), либо 25$ без оных.
Update 2, еще несколько способов переделки шурика:
Следующий вариант (подсказали по комментам, спасибо I_R_O
и cartmannn
):
Использовать недорогие 2S-3S зарядные устройства типа (это производитель того же iMax B6) или всевозможные копии B3/B3 AC/imax RC B3 () или ()
Оригинальный SkyRC e3 имеет зарядный ток на каждую банку 1,2А против 0,8А у копий, должен быть точен и надежен, но в два раза дороже копий. Совсем недорого можно купить на том же . Как я понял по описанию, он имеет 3 независимых зарядных модуля, что-то сродни 3 модулей TP4056. Т.е. SkyRC e3 и его копии не имеют балансировки как таковой, а просто заряжают банки до одного значения напряжения (4,2V) одновременно, поскольку у них не выведены силовые разъемы. В ассортименте SkyRC есть действительно зарядно-балансировочные устройства, например, но ток балансировки всего 200ma и стоит уже в районе 15-20 долларов, зато умеет заряжать лифешки (LiFeP04) и токи заряда до 3А. Кому интересно, могут ознакомиться с модельным рядом .
Итого, для данного варианта необходимо любое из вышеперечисленных 2S-3S зарядных устройств, красная или аналогичная (без балансировки) плата защиты и высокотоковые аккумуляторы:
Как по мне, очень хороший и экономичный вариант, наверно, я бы остановился на нем.
Еще один вариант, предложенный камрадом Volosaty
:
Использовать так называемый «Чешский балансир»:
Где он продается лучше спросить у него, я первый раз о нем услышал, :-). По токам ничего не подскажу, но судя по описанию, ему необходим источник питания, поэтому вариант не такой бюджетный, но вроде как интересный в плане зарядного тока. Вот ссылка на . Итого, для данного варианта необходимы: источник питания, красная или аналогичная (без балансировки) плата защиты, «чешский балансир» и высокотоковые аккумуляторы.
Преимущества:
Я уже ранее упоминал о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение лицом к лицу – типичная батарея шурика из NiCd аккумов против литиевой:
+ высокая плотность энергии. У типичной никелевой батареи 12S 14,4V 1300mah запасенная энергия 14,4*1,3=18,72Wh, а у литиевой батареи 4S 18650 14,4V 3000mah — 14,4*3=43,2Wh
+ отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
+ меньшие габариты и вес при одинаковых параметрах с NiCd
+ быстрое время заряда (не боятся больших токов заряда) и понятная индикация
+ низкий саморазряд
Из минусов Li-Ion можно отметить только:
— низкая морозостойкость аккумуляторов (боятся отрицательных температур)
— требуется балансировка банок при заряде и наличие защиты от переразряда
Как видим, преимущества лития налицо, поэтому зачастую имеет смысл переделки питания…
+173
+366
Зачем вообще нужны балансиры для 12-ти вольтовые АКБ? Когда у вас система на 12 вольт, то все АКБ сколько бы их небыло в параллельном соединении, и у них всегда одинаковое напряжение. Но когда мы переходим на 24 или 48 вольт, то появляется проблема с разным напряжением на последовательно соединённых аккумуляторах. Из-за этого при заряде некоторые акб уходят в перезаряд и начинают «закипать», а другие недозаряжаются, и в итоге вся цепочка АКБ быстро теряет ёмкость и в общем приходит в негодность.
И даже полностью одинаковые АКБ со временем всё равно разбегаются по напряжению, по-этому не спасёт от проблемы даже купленные АКБ из одной партии. Для решения этой проблемы давно применяются различные балансировочные устройства, это или отдельные балансиры на каждый АКБ, или блоки на 24 и 48 вольт. Балансиры позволяют значительно продлить срок службы АКБ.
Я сам в скором будущем буду переходить на 24 вольта, так-как токи в системе стали уже большими и мне тоже понадобятся балансиры. В поисках я нашёл несколько вариантов различных по возможностям, цене и принципу работы, и ниже я сделаю обзор на эти балансировочные устройства.
VICTRON BATTERY BALANCER аккумуляторный балансир
Первым мне попались вот такие балансиры (фото ниже). Это судя по описанию активные балансиры с током балансировки 0.7А. Активные это значит что энергия с более заряженного АКБ переливается в менее заряженный, а не просто сжигается на сопротивлении. Но до конца я в этом не уверен так как описания на разных сайтах разнятся. Этот балансир для двух АКБ, то-есть на 24 вольта, с добавлением АКБ количество балансиров нужно увеличивать. На 48 вольт нужно уже три таких балансира.
Этот балансир не имеет возможности настройки под различные типы свинцовых аккумуляторов. Есть индикация работы, и реле тревоги, оно замыкается если на акб различие по напряжению превышает 0.2 вольта. Цена на этот балансир просто убила, на момент написания статьи цена на сайте была 6220 рублей
. На 48 вольт их надо три штуки и в общем нужно отдать 18660 рублей плюс доставка.
Схема подключения этих балансиров к АКБ. Светодиодные индикаторы и реле сигнализации:
Зеленый: включен, когда напряжение АКБ более 27,3 В
Оранжевый: включен при отклонении более 0,1 В
Красный: тревога (отклонение более 0, 2 В)
Реле сигнализации: нормально открытый контакт замыкается, когда включается красный светодиод. Контакт остается замкнутым до уменьшения отклонения до 0,14 В, или до снижения напряжения АКБ до 26,6 В. Сброс реле сигнализации осуществляется при помощи кнопки, подключенной к двум терминалам.
>
Из минусов слишком высокая цена, слабый ток балансировки всего 0,7А, и нет возможности настройки под свой тип АКБ. Есть более лучшие аналоги по приемлемой цене.
Устройство выравнивания заряда ЭЛНИ 2/12 на 2АКБ 12В
Нашёл так-же ещё вот такой балансир. Это уже явно активный балансир, явно превосходящий первый по току балансировки, у этого ток 5А в сравнении 0.7А у первого. Цена правда тоже не маленькая — 3600-3900 руб
на разных сайтах.
Этот балансир постоянно отслеживает напряжение соединённых последовательно акб, и выравнивает напряжение переливая энергию между АКБ. И это он делает не только во время заряда, когда АКБ уже почти зарядились, а постоянно если есть дисбаланс. И ток балансировки здесь может достигать 5А, это значит что балансир может справляться даже с большим дисбалансом по ёмкости.

На этом на наших сайтах я не нашёл ничего оригинального, что бы не имелось на алиэкспресс. Есть конечно много балансиров, но все они куплены в китае и продаются у нас втридорого. Так зачем переплачивать если можно самим купить на алиэкспресс то что предлагают наши перекупщики.
Активный балансир для 12в АКБ
На алиэкспресс я нашёл вот такой балансир. Это активный балансир с максимальным током балансировки 10А. Он отслеживает напряжение на последовательно соединённых АКБ и выравнивает напряжение переливая энергию между АКБ с точностью 10mV. Каждый балансир ставится на свой аккумулятор, и балансиры соединяются между собой. Посмотреть описание и купить можно здесь Балансир 12V
. Цена на момент написания статьи 1700 рублей, и это не дорого за такой мощный активный балансир.

Производитель этих балансиров выпускает несколько различных типов балансиров. В продаже есть балансиры на 2 вольта для отдельных свинцово-кислотных «банок». Также балансиры для литий-ионных АКБ на 3,6 и 4,2 вольта. И балансиры для аккумуляторов на 6 и 12 вольт. Все балвнсиры можно посмотреть здесь — Каталог балансиров 2/3.6/3.8/4.2/6/12 вольт
Балансир аккумуляторый на 24 вольта (12*2)
Так-же нашёл я ещё один популярный по заказам и дешовый балансир для аккмуляторов. Это балансир для двух АКБ по 12 вольт, можно ставить несколько если система на 48 вольт и выше. Ток балансировки до 5А что довольно неплохо. Единственное я так и не понял активный он или пассивный, но судя по размерам и отсутствию радиатора это активный балансир. Цена этого балансира 1760 рублей, посмотреть можно здесь — Двойной Балансир для 12в АКБ

Цена очень привлекательная, и ток балансировки очень приличный 5А, по-этому справится даже с болшой разницей по ёмкости и напряжению между АКБ в системе.
Балансир для (12×4) 48 вольт АКБ
Вот ещё один отличный активный балансир для аккумуляторов, он сделан в виде блока на 48 вольт, то-есть для четырёх последовательно соединённых АКБ. Ток балансировки до 10 ампер, и это просто отлично, позволит ликвидировать даже большой дисбаланс. Посмотреть полное описание и купить его моно по этой сылке на алиэкспресс — Балансир для 48в АКБ (12×4)
, цена 3960 рублей.

Пока это всё что мне удалось найти, хотя конечно не всё, но это основное. Есть контроллеры для солнечных батарей со встроенными балансирами, но это очень дорого пока. Есть зарядные устройства с балансировкой, но здесь они неуместны. Есть всякие электронные схемы, которые можно заставить работать как балансиры, есть варианты самостоятельного изготовления балансиров.
Прислал:
Нет, речь пойдет не о рыболовной приманке, и даже не о цирковых акробатах балансирующих под куполом. Речь будет о том, как добиться баланса параметров аккумуляторов, соединённых последовательно.
Как известно, ячейка аккумулятора — достаточно низковольтное устройство, поэтому их обычно соединяют в пачки последовательно. В идеале, если параметры всех аккумуляторов одинаковы, мы имеем источник с напряжением в n-раз большим, чем одиночная ячейка, и заряжать-разряжать его мы можем как единый более высоковольтный аккумулятор.
Увы, так будет только в идеале. Каждый аккумулятор в этой пачке, как и всё в этом мире, уникален, и найти двух совершенно одинаковых невозможно, да и их характеристики — ёмкость, утечки, степень заряженности, будут меняются от времени и температуры.
Конечно, изготовители аккумуляторов стараются подбирать максимально близкие по параметрам, но различия всегда есть. И со временем, такие разбалансы характеристик могут ещё и возрастать.
Эти различия характеристик ячеек ведут к тому, что аккумуляторы работают по разному и, в результате общая ёмкость составной батареи будет ниже, чем составляющих её ячеек, это раз, а во-вторых, ресурс такого аккумулятора также будет ниже, т.к. он определяется самым «слабым» аккумулятором, который будет изнашиваться быстрее других.
Что же делать?
Есть два основных критерия для оценки степени балансировки ячеек:
1. Выравнивание напряжения на ячейках,
2. Выравнивание заряда в ячейках.
Достигать своих целей в достижении этих методов балансирования также можно двумя способами:
1. Пассивным и
2. Активным.
Поясним сказанное.
С критериями балансировки всё понятно, либо мы просто добиваемся равенства напряжений на ячейках, либо каким-либо образом вычисляем заряд аккумулятора и добиваемся, чтобы эти заряды сравнялись (при этом напряжения могут и различаться).
Со способами реализации тоже ничего сложного. В пассивном методе мы просто переводим в тепло энергию в наиболее заряженных аккумуляторных ячейках, до тех пор, пока напряжения или заряды в них не сравняются.
В активном же способе любым способом перекачиваем заряд из одной ячейки в другую, по возможности с минимальными потерями. Современная схемотехника легко реализует такие способности.
Понятно, что рассеять проще, чем перекачать, а сравнить напряжения проще, чем сравнить заряды.
Также эти методы могут применяться как при зарядке, так и при разрядке. Чаще всего, конечно, балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.
При разрядке всегда применяют только активную перекачку заряда, но такие системы весьма редки, из-за большей сложности схемы.
Поглядим на практическую реализацию вышесказанного.
При зарядке, в простейшем случае на выходе ЗУ ставится устройство, называемое «балансиром».
Далее, чтобы не сочинять самому, просто вставлю кусок текста из статьи с сайта http://www.os-propo.info/content/view/76/60/ . Речь идет о зарядке литиевых аккумуляторов.
«Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке LiPo с пороговым значением 4.20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно банке LiPo, пропускающий через себя большую часть тока заряда (1А и более) и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Фактически, выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.
В такой схеме поставленная задача заряда и выравнивания пары разных паков реально осуществима. Но такие балансиры на практике бывают только самодельными. Все фирменные микропроцессорные балансиры используют другой принцип работы.
Вместо того, чтобы рассеивать полные токи заряда в конце, микропроцессорный балансир постоянно контролирует напряжения на банках и постепенно выравнивает их в течение всего процесса заряда. К банке, заряженной больше других, балансир подключает параллельно некоторое сопротивление (порядка 50-80 Ом в большинстве балансиров), пропускающее через себя часть зарядного тока и лишь чуть-чуть замедляющее заряд этой банки, не останаливая его полностью. В отличие от транзистора на радиаторе, способного взять на себя основной ток заряда, это сопротивление обеспечивает лишь небольшой ток балансировки — порядка 100мА, а потому такой балансир не требует массивных радиаторов. Именно этот ток балансировки указывается в технических характеристиках балансиров и обычно составляет не более 100-300мА.
Такой балансир существенно не нагревается, поскольку процесс идет в течение всего заряда, и тепло при небольших токах успевает рассеиваться без радиаторов. Очевидно, что если ток заряда будет существенно выше тока балансировки, то при большом разбросе напряжений на банках балансир не успеет выровнять их до того момента, как самая заряженная банка достигнет порогового напряжения.
»
Конец цитаты.
Примером рабочей схемы простейшего балансира могут служить следующие (взято с сайта http://www.zajic.cz/).
Рис.1. Простая схема балансира.
Фактически это мощный стабилитрон, кстати, весьма точный, нагруженный
на низкоомную нагрузку, роль которой здесь выполняют диоды D2…D5.
Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если
оно поднимается выше порога, открывает мощный транзистор T1, пропуская
через себя весь ток от ЗУ.
Рис.2. Простая схема балансира.
Аналогично работает и вторая схема (Рис.2.), но в ней всё тепло выделяется в транзисторе Т1, который греется как «чайник» — радиатор видно на картинке ниже.
На Рис.3 видно, что балансир состоит из 3-х каналов, каждый из которых выполнен по схеме Рис.2.
Конечно, промышленность уже давно освоила подобные схемы, которые выпускаются в виде законченной микросхемы. Их выпускают многие компании. Как пример, воспользуюсь материалами статьи о методах балансировки, опубликованной на сайте «РадиоЛоцман» http://www.rlocman.ru/shem/schematics.html?di=59991 , которые буду частично изменять или убирать, чтобы не раздувать статью.
Цитата:
» Пассивный метод балансировки.
Наиболее простое решение — выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивает защиту батарейных блоков с 5-10 последовательно включенными батареями. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 4. Сравнивая напряжение банки с пороговым, микросхема, при необходимости, включает режим балансировки для каждой из банок.
Рис.4. Микросхема BQ77PL900, и второй аналог, где лучше видно внутреннее устройство (взят отсюда
http://qrx.narod.ru/bp/bat_v.htm ).
На Рис. 5 показан принцип её действия. Если напряжение какой-либо батареи превышает заданный порог, включаются полевые транзисторы и подключают параллельно ячейке аккумулятора нагрузочный резистор, через который ток идет в обход ячейки и уже не заряжает её. Остальные ячейки при этом продолжают заряжаться.
При падении напряжения, полевик закрывается и зарядка может продолжаться. Таким образом, в конце зарядки на всех ячейках будет присутствовать одинаковое напряжение.
При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего сопротивления батарей (см. Рис. 6.). Дело в том, что на этом сопротивлении падает часть напряжения когда через аккумулятор протекает ток, что вносит дополнительную погрешность в разброс напряжений при заряде.
Микросхема защиты батарей не может определить, чем вызван разбаланс — разной ёмкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся заряженными на 100%.
В микросхеме BQ2084 используется улучшенная версия балансировки, также основанная на изменении напряжения, но, чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика.
Рис. 5. Пассивный метод, основанный на балансировке по напряжению.
Рис. 6. Пассивный метод балансировки по напряжению.
Микросхемы семейства BQ20Zхх, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении состояния заряда батарей (СЗБ) и ёмкости батареи.
В этой технологии для каждой батареи вычисляется заряд Qneed, необходимый для полной её зарядки, после чего находится разница?Q между Qneed всех батарей. Затем микросхема включает силовые ключи, которые разряжают все ячейки до уровня наименее заряженной, до тех пор, пока заряды не уравняются
Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время, как при при зарядке, так и при разрядке аккумулятора.
Однако, как уже говорилось выше, при разряде этот метод использовать глупо, т.к. энергии всегда не хватает.
Основное преимущество этой технологии — более точная балансировка батарей (см. рис. 7) по сравнению с другими пассивными методами.
Рис. 7. Пассивная балансировка, основанная на СЗБ и ёмкости.
Активная балансировка
По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной ячейки к менее заряженной, вместо резисторов используются индуктивности и ёмкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии.
PowerPump использует n-канальный p-канальный полевой транзисторы и дроссель, который расположен между парой батарей. Схема показана на Рис.8. Полевики и дроссель составляют собой понижающий/повышающий преобразователь.
Например, если BQ78PL114 определяет, что верхняя ячейка заряжена больше, чем нижняя, то на выводе PS3 формируется сигнал открывающий транзистор Q1 с частотой около 200 кГц и скважностью около 30%.
При закрытом Q2 получается стандартная схема понижающего импульсного стабилизатора, при этом внутренний диод Q2 замыкает ток индуктивности во время закрытого состояния ключа Q1.
При перекачке же из нижней ячейки в верхнюю, когда открывается только ключ Q2 получаем также типовую схему, но уже повышающего импульсного стабилизатора.
Ключи Q1 и Q2, естественно, одновременно никогда открываться не должны.
Рис. 8. Балансировка по технологии PowerPump.
Потери энергии при этом невелики и почти вся энергия перетекает из сильно заряженной в малозаряженную банку. Микросхема BQ78PL114 реализует три алгоритма балансировки:
— по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше, но при этом потерь почти нет;
— по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
— по состоянию заряда батареи (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20Zxx при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. Рис. 9.)
Рис. 9. Активная балансировка по алгоритму выравнивания состояния заряда батареи
.
Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с рассеиванием энергии. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее 5%) можно достичь уже за один или два цикла.
Кроме того, технология PowerPump имеет и другие преимущества: балансировка может происходить при любом режиме работы — заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию.
» (Конец частичного цитирования.)
Продолжим описание активных способов перекачки заряда из одной ячейки в другую следующей схемой, которую нашел в Интернете на сайте «HamRadio» http://qrx.narod.ru/bp/bat_v.htm .
В качестве схемы перекачки заряда использован не индуктивный, а ёмкостной накопитель. Например, широко известны, так называемые, преобразователи напряжения на коммутируемых конденсаторах. Одна из массовых — это микросхема ICL7660 (MAX1044 или отечественный аналог КР1168ЕП1).
В основном микросхема используется для получения отрицательного напряжения, равного напряжению её питания. Однако, если отрицательное напряжение на её выходе окажется по каким-то причинам больше по величине, чем положительное напряжение питания, то микросхема начнёт качать заряд «в обратную сторону», забирая из минуса, и отдавая в плюс, т.е. она всё время пытается уравнять эти два напряжения.
Это свойство и использовано для балансировки двух аккумуляторных ячеек. Схема такого балансира приведена на Рис.10.
Рис.10. Схема балансира с ёмкостной перекачкой заряда.
Микросхема с высокой частотой подключает конденсатор С1 либо к верхнему аккумулятору G1, либо к нижнему G2. Соответственно С1 будет заряжаться от более заряженного и разряжаться в более разряженный, каждый раз перенося какую-то порцию заряда.
Со временем напряжения на аккумуляторах станут одинаковыми.
Энергия в схеме практически не рассеивается, КПД схему может достигать до 95…98% в зависимости от напряжения на аккумуляторах и выходного тока, который зависит от частоты переключения и ёмкости С1.
При этом собственно потребление микросхемы составляет всего несколько десятков микроампер, т.е. находится ниже уровня саморазряда многих аккумуляторов, и поэтому микросхему можно даже не отключать от аккумулятора и она будет постоянно неспешно выполнять работу по выравниванию напряжения на ячейках.
Реально ток перекачки может достигать 30…40мА, но КПД при этом снижается. Обычно десяток мА. Также напряжение питания может быть от 1.5 до 10В, а это значит, что микросхема может балансировать как обычные Ni-Mh пальчики, так и литиевые аккумуляторы.
Практическое замечание: на Рис.10. показана схема которая балансирует аккумуляторы с напряжением меньше 3В, поэтому её шестая ножка (LV) подключена к выходу 3. Для балансировки литиевых аккумуляторов с более высоким напряжением, вывод 6 нужно оставить свободным, никуда не подключать.
Также, этим методом возможно балансировать не только два, но и большее количество аккумуляторов. На Рис.11. показано, как это сделать.
Рис.11. Каскадирование микросхем перекачки заряда.
Ну, и напоследок, ещё одно схемное решение, реализующее ёмкостную передачу заряда от одного аккумулятора к другому.
Если в ICL7660 представляла собой мультиплексор, который мог подключать конденсатор С1 только к двум источникам, то взяв мультиплексор с большим числом каналов переключения, (3, 4, 8) можно одной микросхемой уравнивать напряжения уже на трех, четырех или восьми банках. Причем, банки могут быть соединены как угодно, как последовательно, так и параллельно. Главное, чтобы напряжение питания микросхемы было выше максимального напряжения на банках.
Схема так называемого «обратимого преобразователя напряжения», описанного в журнале «Радио» 1989, № 8, показана на Рис.12.
Рис.12. Обратимый преобразователь напряжения в качестве балансира на мультиплексоре 561КП1..
К выравнивающему устройству может быть подключено до четырех элементов. Конденсатор С2 поочередно подключается к различным элементам, обеспечивая перекачку энергии этих элементов и выравнивание напряжения на них
Число элементов в батарее может быть уменьшено. В этом случае вместо исключенных элементов достаточно подключить конденсатор емкостью 10..20мкФ.
Ток балансировки такого источника весьма мал до 2 мА. Но так как он работает постоянно, не отключаясь от аккумуляторов, то свою задачу — уравнивание зарядов ячеек, он выполняет.
В заключение хочу заметить, что современная элементная база позволяет выполнять балансировку ячеек составного аккумулятора практически без потерь и уже достаточно проста, чтобы перестать быть чем-то «крутым» и недоступным.
И поэтому радиолюбителю, конструирующему устройства на аккумуляторах, полагаю, стоит задуматься о переходе на активные методы перекачки энергии между банками в батарее, пусть хотя бы «по старинке», ориентируясь на равенство напряжений между аккумуляторными ячейками, а не зарядов в них.
Все статьи на сайте разрешены к копированию, но с обязательным указанием ссылки на нас .
Конечно же раздельный заряд. Но это только для моего конкретного случая.
Часто приходится работать в поле без сети, шуруповерт всегда под рукой. Аккумуляторы уже старенькие, напрашивалось улучшение. Вытряхнул сдохшие NiCd из шуруповертных картриджей и запихал в оба корпуса LiPo, каждую на 5 банок. Ляпота, но заряжать надо так же в поле или в машине и заряжать желательно с балансировкой, потому как все 5 банок в каждом акке ведут себя по-своему, сказывается кетай. Балансировку при зарядке можно делать по-разному, способов — тьма тьмущая. Наиболее простой — торможение перезаряженных банок нагрузкой, перегон в тепло. Так и делает настольный IMAX B6, а мне не нравится что заряжает он всю батарею долго при включенной балансировке.
Прикинул и подумал, что проще всего схемотехнически будет заряжать каждую банку в батарее по отдельности. Как-то гугля способы балансировки наткнулся на схожую мысль:
«Bloody cheaters… When I was thinking about this, I was going to build bunch of DCDC»s where voltage of each contact is individually controlled => each cell might be charged with individual charge plan. Apparently, this is just too complex.
«
А мне это показалась менее сложным: лепим DC-DC с 5 выходами и на каждый цепляем микросхему-зарядник, коих для Li-Ion легион! И греться, подумалось, должно меньше: тормозить же банки не надо! (Ага, щаз, зарядные микрухи греются как сволочи!)
Вот такая вот схемка нарисовалась:
Схема несложная, случилась проблема только с выбором транзистора. Я широким жестом воткнул сначала IRLS3034, у которого ёмкость затвора оказалась не по зубам драйверу LM3478, пришлось поставить что-то менее понтовое. На каждый канал — по STC4054G, вариант дешевый и удовлетворяющий поставленной задаче. Вот и плата в сборе, развелась в один слой:
Производитель зарядной микросхемы STC4054G рекомендует дорожки на плате делать максимально толстыми и по возможности использовать полигоны на обоих сторонах платы для теплоотведения. Я раздолбай не послушался, а зря: микрухи греются как надо, даже при выставленном токе заряда в 400 мА на банку.
И с другого ракурса:
Заряжает и греется, зараза:
Ну раз греется — надо охлаждать. Подобрал удобный корпус из алюминия, засверлил крышку под разъемы, крепеж и светодиоды. Круглые отверстия — круглой фрезой, прямоугольные — прямоугольной)
Собран и готов к отплытию:
Была идея покрасить в черный цвет, но уже лень. Да и баловство это — ёжику этому написано жить в машине под ногами поближе к прикуривателю.
В следующий раз еще подумаю про балансировку. Уж очень нравится идея трансформатора-робингуда, который у богатых банок берет и бедным банкам в аккумуляторе отдаёт. Вроде как и КПД выше и тепла меньше. Но опять же, богатые аккумуляторы доятся туда-сюда, пока бедные не зальются; такое ведь не сильно хорошо?
UPD:
По параметрам трансформатора и номиналам. Трансформатор мотался на не очень хорошем сердечнике, то что было под рукой, 2 х МП140-1, КП19х11х4.8. Первичка 21 виток 0,35 проводом, вторички одновременно 11 витков проводом 0,51. Частотозадающие R1C1 — на ~100 кГц, 4,7кОм/0,1 мкФ. Делитель в обратной связи R2R3 — 21кОм/8,2кОм. R4 — 75 кОм, шунт R5R6 — по 0,1 Ом (в итоге 0,05 Ом). VD1 — SMBJ15, VD2 — SM4005. VD4 какой-то шоттки от 1 А, С5 — 330 мкФ х 25В, VD8 — стабилитрон 5V1, C10 — 0,1 мкФ. R7 — 470 Ом, R12 — 2 кОм, что примерно дает 400 мА.
Сейчас на рынке полно зарядных устройств. Автоматы и нет, с измерением емкости и без него. Большинство зарядных устройств универсальны и могут заряжать элементы любой химии. Литий-ион и литий-полимер все чаще применяют в разных устройствах.
Не так давно я переделывал аккумулятор шуруповерта на литий-ионные элементы формата 18650. Заряжаю его умным зарядным устройством Turnigy. Но данное зарядное есть не у каждого.
Понадобится для сборки
Принял решение, собрать простое зарядное устройство с балансиром для литий-иона. Зарядное устройство имеет 3 одинаковых независимых канала. Им можно заряжать от одного элемента до трех. Если нужно, можно добавлять любое количество каналов. У меня же их три, то есть 3S или 11.1 вольт.
Корпусом для балансирующего зарядного устройства является корпус от сгоревшего роутера D-link. Если есть возможность, берите корпус побольше, очень тесно получается в нем работать.
Одним из главным компонентном, являются блоки питания каждого канала. Их роль выполняю платы зарядных устройств планшетов, с выходом 5 Вольт и током от 1 Ампера (или можно купить на Али Экспресс — .
Контроллерами заряда служат платы из Китая — . На каждый канал, свой контроллер. У меня платы без защиты, но она в данном случае не нужна. Можно применять платы контроллеров вместе с разъемами, у меня на двух они отсутствуют, сняты для других проектов. Цена на данные модули копеечная. Если занимаетесь доработкой устройств на литий-ионе и литий-полимере, то данные контроллеры незаменимы.
Изготовление балансировочного зарядного устройства
Платы контроллеров заряда нужно припаять к выходам плат зарядок. Можно и отдельно. Я припаял на толстые жилы от силового кабеля, так конструкция более жесткая.
На платах контроллеров заряда имеются светодиоды, которые индицируют заряд и окончание заряда. Их нужно выпаять. Вместо них будут обычные светодиоды, разного цвета. Они будут прикреплены к окошкам, где раньше моргали светодиоды роутера.
К светодиодам припаял провода от старого шлейфа жесткого диска компьютера. Если есть светодиоды с общим анодом(плюсом), то лучше применить их. У меня таких не оказалось, применил что есть.
На место старых светодиодов, припаиваем шлейфы со светодиодами. На фото у меня зеленый светодиод на 3 мм. Пришлось заменить, оказались паленые, не проверил перед распайкой.
Для задней панели нужно вырезать накладку. В ней проделываем пропилы под выключатель питания и выходной разъем на 4 пина. Разъем снял со старого жесткого диска. Можно применить любой, на нужное количество пинов, с током 1-2 Ампера.
Выключатель снял со старого блока питания компьютера. Накладку прикручиваем на два винта, для жесткости.
Выходной разъем приклеиваем на эпоксидный клей или соду с супер клеем. Я для быстроты приклеил и одним и другим.
Плата зарядок с контроллерами, приклеил на термо клей. Но перед фиксацией припаял сетевые проводочки.
Один из сетевых проводочков, припаиваем к выключателю. Второй, непосредственно к второму проводу сетевого шнура.
Теперь приклеиваем светодиоды. Я клеил термо клеем, можно и содой с супер клеем.
Распаиваем выходные перемычки.
Плюс первого контроллера на первую ножку выходного разъема. Минус его на вторую ножку и соединяем с плюсом второго контроллера. И так далее.
Корпус скручиваем и откладываем в сторону.
Сделаем провод под данной зарядное устройство.
Применил два отрезка проводов от компьютерного блока питания. Спаял в порядке с первого контакта одного разъема к контакту второго.
Подключаем зарядное устройство к аккумулятору шуруповерта (). Красный светодиод индицирует о идущем процессе заряда. По окончанию заряда, загорается зеленый светодиод. Соответственно загораются значки на корпусе: Wi-Fi, второй и четвертый компьютеры.
Вот такое зарядное устройство у нас получилось. Затраты минимальны, а польза большая.
Данным устройством можно заряжать сборки на литий-полимерах, те которые применяют моделисты в своем транспорте. Главное сделать правильный провод зарядки.
Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.
Какими бывают литиевые аккумуляторы
В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:
- с катодом из кобальтата лития;
- с катодом на основе литированного фосфата железа;
- на основе никель-кобальт-алюминия;
- на основе никель-кобальт-марганца.
У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.
Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.
Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):
| Обозначение | Типоразмер | Схожий типоразмер |
|---|---|---|
| XXYY0 , где XX — указание диаметра в мм, YY — значение длины в мм, 0 — отражает исполнение в виде цилиндра | 10180 | 2/5 AAA |
| 10220 | 1/2 AAA (Ø соответствует ААА, но на половину длины) | |
| 10280 | ||
| 10430 | ААА | |
| 10440 | ААА | |
| 14250 | 1/2 AA | |
| 14270 | Ø АА, длина CR2 | |
| 14430 | Ø 14 мм (как у АА), но длина меньше | |
| 14500 | АА | |
| 14670 | ||
| 15266, 15270 | CR2 | |
| 16340 | CR123 | |
| 17500 | 150S/300S | |
| 17670 | 2xCR123 (или 168S/600S) | |
| 18350 | ||
| 18490 | ||
| 18500 | 2xCR123 (или 150A/300P) | |
| 18650 | 2xCR123 (или 168A/600P) | |
| 18700 | ||
| 22650 | ||
| 25500 | ||
| 26500 | С | |
| 26650 | ||
| 32650 | ||
| 33600 | D | |
| 42120 |
Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.
Как правильно заряжать литий-ионные аккумуляторы
Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.
Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .
Итак, рассмотрим оба этапа заряда подробнее.
1. На первом этапе
должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С — это емкость аккумулятора).
Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.
Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.
Важно:
если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.
В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном — чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.
2. Второй этап заряда
— это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.
По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.
За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.
Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда — т.н. предзаряд.
Предварительный этап заряда (предзаряд)
— этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.
На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.
Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.
Еще одна польза предзаряда — это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).
Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.
Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:
Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.
Резюмирую вышесказанное, обозначим основные тезисы:
1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?
Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.
Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный — 3400 мА.
2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?
Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:
T = С / I зар.
Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.
3. Как правильно зарядить литий-полимерный аккумулятор?
Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.
Что такое плата защиты?
Плата защиты (или PCB — power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.
В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:
В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.
Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:
Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.
Плата увеличивает длину аккумулятора на 2-3 мм.
Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.
Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.
На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе («Protected»).
Не стоит путать PCB-плату с PCM-модулем (PCM — power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда — ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата — это и есть то, что мы называем контроллером заряда.
Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).
Схемы зарядок li-ion аккумуляторов
Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.
LM317
Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:
Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 — не менее 1 Ватт.
Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.
Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).
LM317 бывает в разных корпусах:
Назначение выводов (цоколевка):
Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два — отечественного производства).
Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет — 11 руб/шт .
Печатная плата и схема в сборе приведены ниже:
Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.
Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.
MAX1555 или MAX1551
MAX1551/MAX1555 — специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).
Единственное отличие этих микросхем — МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 — сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.
Подробное описание этих микросхем от производителя — .
Максимальное входное напряжение от DC-адаптера — 7 В, при питании от USB — 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.
Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА — это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.
При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.
В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.
Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.
Микросхема имеет 5 выводов. Вот типовая схема включения:
Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.
Вариант зарядки от USB можно собрать, например, на такой .
Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().
LP2951
Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.
Величина напряжения заряда составляет 4,08 — 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.
Ток заряда составляет 150 — 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).
Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.
Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.
Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).
MCP73831
Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.
Типовая схема включения взята из :
Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.
Зарядка в сборе выглядит так:
Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.
Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:
LTC4054 (STC4054)
Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.
Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):
Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.
I=1000/R
. Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.
Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод «через выводы» — делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено «земляной» фольги, тем лучше.
Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).
Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.
LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая — нет (нужно отдельно раскачивать).
Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.
TP4056
Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).
Схема подключения требует самый минимум навесных элементов:
Схема реализует классический процесс заряда — сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:
- Контроль напряжения подключенного аккумулятора (это происходит постоянно).
- Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
- Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
- При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
- При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
- После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.
Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog
. Допустимый максимум — 1000 мА.
Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:
Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.
Напряжение питания схемы должно лежать в пределах 4.5…8 вольт. Чем ближе к 4.5В — тем лучше (так чип меньше греется).
Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.
Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.
Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна — с защитой или без, и с каким разъемом).
Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).
LTC1734
Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).
Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).
Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.
Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод «4» (Prog) имеет две функции — установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.
Компаратор LT1716 в данном случае можно заменить дешевым LM358.
TL431 + транзистор
Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное — это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).
Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).
Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.
Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов — сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток — плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).
MCP73812
Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip — MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес — всего один резистор!
Кстати, микросхема выполнена в удобном для пайки корпусе — SOT23-5.
Единственный минус — сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).
В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 — очень неплохой вариант.
NCP1835
Предлагается полностью интегрированное решение — NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).
Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.
Из неоспоримых преимуществ хотелось бы отметить следующее:
- Минимальное количество деталей обвеса.
- Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
- Определение окончания зарядки.
- Программируемый зарядный ток — до 1000 мА.
- Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
- Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).
Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.
Более подробное описание находится в .
Можно ли заряжать литий-ионный аккумулятор без контроллера?
Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.
Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.
Самое простейшее зарядное устройство для любого литиевого аккумулятора — это резистор, включенный последовательно с аккумулятором:
Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.
Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.
Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:
U r = 5 — 2.8 = 2.2 Вольта
Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.
Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.
Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:
R = U / I = 2.2 / 1 = 2.2 Ом
Мощность рассеивания резистора:
P r = I 2 R = 1*1*2.2 = 2.2 Вт
В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:
I зар = (U ип — 4.2) / R = (5 — 4.2) / 2.2 = 0.3 А
Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).
Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение — электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.
Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .
Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).
Зарядка при помощи лабораторного блока питания
Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.
Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.
Как видите, лабораторный БП — практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.
Как заряжать литиевые батарейки?
И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос — НИКАК.
Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.
Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 — это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.
О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.
Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео
Есть два варианта соединения аккумуляторов, последовательное и параллельное.
При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.
Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.
В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.
Особенности зарядки аккумуляторов китайскими модулями
Стандартный покупной зарядно-защитный модуль за 20 рублей
для литиевого аккумулятора (ссылка на Aliexpress
)
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости
до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер
, это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.
Важно!
Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).
Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно!
Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress
), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.
Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ
соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ
соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно!
Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.
Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока
. Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.
Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию
, ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.
Индикатор заряженности аккумулятора
Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.
Чем измерять емкость аккумуляторов?
Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.
Зачем вообще нужны балансиры для 12-ти вольтовые АКБ? Когда у вас система на 12 вольт, то все АКБ сколько бы их небыло в параллельном соединении, и у них всегда одинаковое напряжение. Но когда мы переходим на 24 или 48 вольт, то появляется проблема с разным напряжением на последовательно соединённых аккумуляторах. Из-за этого при заряде некоторые акб уходят в перезаряд и начинают «закипать», а другие недозаряжаются, и в итоге вся цепочка АКБ быстро теряет ёмкость и в общем приходит в негодность.
И даже полностью одинаковые АКБ со временем всё равно разбегаются по напряжению, по-этому не спасёт от проблемы даже купленные АКБ из одной партии. Для решения этой проблемы давно применяются различные балансировочные устройства, это или отдельные балансиры на каждый АКБ, или блоки на 24 и 48 вольт. Балансиры позволяют значительно продлить срок службы АКБ.
Я сам в скором будущем буду переходить на 24 вольта, так-как токи в системе стали уже большими и мне тоже понадобятся балансиры. В поисках я нашёл несколько вариантов различных по возможностям, цене и принципу работы, и ниже я сделаю обзор на эти балансировочные устройства.
VICTRON BATTERY BALANCER аккумуляторный балансир
Первым мне попались вот такие балансиры (фото ниже). Это судя по описанию активные балансиры с током балансировки 0.7А. Активные это значит что энергия с более заряженного АКБ переливается в менее заряженный, а не просто сжигается на сопротивлении. Но до конца я в этом не уверен так как описания на разных сайтах разнятся. Этот балансир для двух АКБ, то-есть на 24 вольта, с добавлением АКБ количество балансиров нужно увеличивать. На 48 вольт нужно уже три таких балансира.
Этот балансир не имеет возможности настройки под различные типы свинцовых аккумуляторов. Есть индикация работы, и реле тревоги, оно замыкается если на акб различие по напряжению превышает 0.2 вольта. Цена на этот балансир просто убила, на момент написания статьи цена на сайте была 6220 рублей
. На 48 вольт их надо три штуки и в общем нужно отдать 18660 рублей плюс доставка.
Схема подключения этих балансиров к АКБ. Светодиодные индикаторы и реле сигнализации:
Зеленый: включен, когда напряжение АКБ более 27,3 В
Оранжевый: включен при отклонении более 0,1 В
Красный: тревога (отклонение более 0, 2 В)
Реле сигнализации: нормально открытый контакт замыкается, когда включается красный светодиод. Контакт остается замкнутым до уменьшения отклонения до 0,14 В, или до снижения напряжения АКБ до 26,6 В. Сброс реле сигнализации осуществляется при помощи кнопки, подключенной к двум терминалам.

Из минусов слишком высокая цена, слабый ток балансировки всего 0,7А, и нет возможности настройки под свой тип АКБ. Есть более лучшие аналоги по приемлемой цене.
Устройство выравнивания заряда ЭЛНИ 2/12 на 2АКБ 12В
Нашёл так-же ещё вот такой балансир. Это уже явно активный балансир, явно превосходящий первый по току балансировки, у этого ток 5А в сравнении 0.7А у первого. Цена правда тоже не маленькая — 3600-3900 руб
на разных сайтах.
Этот балансир постоянно отслеживает напряжение соединённых последовательно акб, и выравнивает напряжение переливая энергию между АКБ. И это он делает не только во время заряда, когда АКБ уже почти зарядились, а постоянно если есть дисбаланс. И ток балансировки здесь может достигать 5А, это значит что балансир может справляться даже с большим дисбалансом по ёмкости.

На этом на наших сайтах я не нашёл ничего оригинального, что бы не имелось на алиэкспресс. Есть конечно много балансиров, но все они куплены в китае и продаются у нас втридорого. Так зачем переплачивать если можно самим купить на алиэкспресс то что предлагают наши перекупщики.
Активный балансир для 12в АКБ
На алиэкспресс я нашёл вот такой балансир. Это активный балансир с максимальным током балансировки 10А. Он отслеживает напряжение на последовательно соединённых АКБ и выравнивает напряжение переливая энергию между АКБ с точностью 10mV. Каждый балансир ставится на свой аккумулятор, и балансиры соединяются между собой. Посмотреть описание и купить можно здесь Балансир 12V
. Цена на момент написания статьи 1700 рублей, и это не дорого за такой мощный активный балансир.

Производитель этих балансиров выпускает несколько различных типов балансиров. В продаже есть балансиры на 2 вольта для отдельных свинцово-кислотных «банок». Также балансиры для литий-ионных АКБ на 3,6 и 4,2 вольта. И балансиры для аккумуляторов на 6 и 12 вольт. Все балвнсиры можно посмотреть здесь — Каталог балансиров 2/3.6/3.8/4.2/6/12 вольт
Балансир аккумуляторый на 24 вольта (12*2)
Так-же нашёл я ещё один популярный по заказам и дешовый балансир для аккмуляторов. Это балансир для двух АКБ по 12 вольт, можно ставить несколько если система на 48 вольт и выше. Ток балансировки до 5А что довольно неплохо. Единственное я так и не понял активный он или пассивный, но судя по размерам и отсутствию радиатора это активный балансир. Цена этого балансира 1760 рублей, посмотреть можно здесь — Двойной Балансир для 12в АКБ

Цена очень привлекательная, и ток балансировки очень приличный 5А, по-этому справится даже с болшой разницей по ёмкости и напряжению между АКБ в системе.
Балансир для (12×4) 48 вольт АКБ
Вот ещё один отличный активный балансир для аккумуляторов, он сделан в виде блока на 48 вольт, то-есть для четырёх последовательно соединённых АКБ. Ток балансировки до 10 ампер, и это просто отлично, позволит ликвидировать даже большой дисбаланс. Посмотреть полное описание и купить его моно по этой сылке на алиэкспресс — Балансир для 48в АКБ (12×4)
, цена 3960 рублей.

Пока это всё что мне удалось найти, хотя конечно не всё, но это основное. Есть контроллеры для солнечных батарей со встроенными балансирами, но это очень дорого пока. Есть зарядные устройства с балансировкой, но здесь они неуместны. Есть всякие электронные схемы, которые можно заставить работать как балансиры, есть варианты самостоятельного изготовления балансиров.
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Выходом из данной ситуации может быть применение популярного . Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.
Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).
Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.
Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.
Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.
Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.
Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.
Плата защиты литиевого аккумулятора
Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.
Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена, как обязательный элемент во всех аккумуляторов для бытовых приборов.
РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.
Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.
Схемы плат защиты литиевого аккумулятора
Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.
Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.
LM
317
Простое зарядное устройство, стабилизатор тока.
Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.
ТР4056
Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.
Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.
Этапы контроля:
- постоянно, напряжение на аккумуляторе;
- предзарядка, если на клеммах меньше 2,9В;
- максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
- при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
- При токе 0,1С зарядка отключается.
Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.
NCP
1835
Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.
Особенности:
- малое количество элементов;
- заряжает сильно разряженные аккумуляторы током около 30 мА;
- детектирует незаряжаемые батарейки, подает сигнал;
- можно задать время заряда от 6 до 748 минут.
Видео
Посмотрите на видео полный обзор платы заряда ТП4056
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Силиконовый коврик для пайки
Размер 55 х 38 см, вес 800 гр….
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Выходом из данной ситуации может быть применение популярного регулируемого стабилитрона TL431. Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.
Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).
На резисторах R1 и R2 собран делитель напряжения. Их сопротивление таково, что при достижении напряжения заряда на аккумуляторе 4,2В на управляющем входе TL431 должно появиться 2,5 вольта. При достижении напряжении на управляющем выводе TL431 2,5 вольт, регулируемый стабилитрон начнет проводить ток, открыв тем самым транзистор. Транзистор зашунтирует цепь питания, и напряжение не будет подниматься более 4,2 вольт.
Так как через транзистор будет протекать большой ток, то следует выбрать мощный транзистор, у которого мощность рассеивания не ниже:
P = U*I,
где U — напряжение заряда, I – ток заряда.
Например, при токе заряда 0,5А транзистор должен иметь рассеиваемую мощность не менее 4,2В*0,5А = 2,1Вт. Так же желательно установить его на теплоотвод.
Ниже приведен список сопротивлений резисторов R1 и R2 на разное напряжение заряда:
R1 + R2 => U
22к + 33к => 4,166 В
15к + 22к => 4,204 В
47к + 68к => 4,227 В
27к + 39к => 4,230 В
39K + 56к => 4,241 В
33к + 47к => 4,255 В
Резистор R3 – нагрузочное сопротивление базы транзистора. Его сопротивление может быть 470Ом…1кОм.
Источник
Платы балансировки литиевого аккумулятора: назначение и схема плат защиты li ion аккумуляторов
При последовательном подключении батарей наблюдается разброс параметров изделий, что не позволяет поддерживать требуемое выходное напряжение. Проблема возникает из-за неравномерной зарядки элементов. Для устранения дефекта используется плата балансировки литиевых аккумуляторов, обеспечивающая равномерный заряд изделий и предотвращающая перезаряд элементов аккумуляторной банки.

Балансировочная плата для литиевых аккумуляторов
При соединении нескольких источников постоянного тока в общую банку по последовательной методике обеспечивается суммирование напряжений. При этом емкость аккумулятора будет определяться элементом с минимальным значением параметра.
Для зарядки устройства используется две методики – последовательная и параллельная. При первом способе осуществляется подача питания от единого источника, напряжение соответствует значению параметра на полностью заряженном аккумуляторе.
Параллельный метод предусматривает независимую зарядку каждого изделия, входящего в аккумуляторную банку. В конструкцию зарядного блока входят не связанные между собой источники питания. Для контроля параметров электрического тока применяются индивидуальные устройства. Зарядные блоки подобной конструкции встречаются редко, для восполнения емкости литиевых аккумуляторов применяется последовательная схема зарядки.
При совместной зарядке необходимо не допустить повышения напряжения на клеммах элементов, составляющих аккумуляторную банку, выше допустимого предела (зависит от модели батареи).
Из-за различных характеристик элементов пороговое значение достигается в разное время.
Пользователь вынужден прекратить зарядку после фиксации допустимого напряжения на первом источнике, при этом остальные компоненты АКБ остаются недозаряженными, что негативно влияет на конечную емкость батареи.
При эксплуатации элемента питания происходит неравномерное снижение напряжения на выводах элементов. Разрядка прекращается в момент фиксации минимально допустимого порога на секции, не получившей необходимого заряда.
Для исключения возможности возникновения ситуации в цепь питания батареи вводится балансировочный блок, который контролирует параметры на каждой секции. При достижении запрограммированного значения происходит параллельная коммутация балластного резистора, отсекающего подачу питания на клеммы секции.
Балластное сопротивление отключает питание в случае превышения силы тока, идущего через резистор, над параметром в цепи питания секции аккумулятора. Остальные компоненты аккумуляторной банки продолжают заряжаться.
По мере фиксации максимального напряжения происходит последовательное отключение цепей питания. После подключения всех имеющихся балластных сопротивлений зарядка прекращается. Напряжение всех секций будет равняться значению параметра, на который отрегулирован балансир.
Плата защиты литиевого аккумулятора
Защитные платы для Li-ion или Li-pol аккумуляторов дополнительно защищают изделия от взрыва или воспламенения, происходящего из-за избытка газов при перезарядке. Следует учитывать, что регулярная эксплуатация недозаряженных элементов приводит к деградации катода и анода, что сокращает срок службы изделия.
Часть аккумуляторных банок оснащается платой защиты в заводских условиях. Для самодельных устройств и некоторых аккумуляторов потребуется монтаж дополнительного узла фабричного изготовления или собранного своими руками.

В конструкции всех литий-ионных или литий-полимерных банок предусмотрена защитная плата PCB или PCM. Устройство обеспечивает разрыв цепи при возникновении аварийной ситуации (например, короткого замыкания).
Защитный блок не оснащен регуляторами напряжения или силы тока, допускается разрядка элементов до 2,5 В и ниже (зависит от качества контроллера), что негативно влияет на рабочие характеристики аккумуляторов. Плата балансировки MBS устанавливается вместо защитного устройства, узел обеспечивает защиту от замыканий и равномерную зарядку элементов.
Схемы плат защиты литиевого аккумулятора
На рынке представлены следующие балансировочные платы фабричного изготовления:
- Устройство на базе стабилизатора LM317 обеспечивает подачу на батареи напряжения 4,2 В.
В конструкции предусмотрены регулировочные сопротивления, в процессе зарядки работает контрольный светодиод красного цвета. Для подключения устройства используется внешний блок питания, коммутация к портам USB не предусмотрена конструкцией. - Китайские производители массово выпускают балансировочные платы на основе стабилизатора ТР4056, которые дополнительно оснащены защитой от переполюсовки аккумуляторов. Устройство предназначено для подключения к портам USB, предусмотрен регулятор параметров зарядки.
Оборудование контролирует процесс зарядки в автоматическом режиме, при достижении заданной емкости производится плавное снижение силы зарядного тока. В конструкции предусмотрен штекер для установки дополнительного температурного сенсора. - Устройство на основе чипа NCP1835 отличается уменьшенными габаритами и универсальностью, допускается коммутация аккумуляторов с различными параметрами. Балансир обеспечивает зарядку сильно разряженных элементов путем подачи тока малой силы, предусмотрена защита от установки батареек (со звуковой индикацией). В конструкции модуля предусмотрен регулятор времени зарядки.
- Узел на базе контроллера зарядки S8254AA, оснащенный дополнительной балансировкой для аккумуляторов 18650. Оборудование поддерживает защиту от переразрядки и перезарядки, имеется контроль над коротким замыканием.
Платы на основе контроллера S8254AA не оснащаются лампами, отображающими статус зарядки. Поставщики выпускают аналогичный блок без балансира, изделие отличается применением гетинакса красного цвета. Детали с балансиром изготовлены на основе гетинакса темно-синего цвета.
Базовая схема балансира самодельного типа включает в себя стабилитрон TL431A (с повышенной точностью управления) и транзистор BD140 (относится к типу изделий с прямой проводимостью).
В цепь включаются сопротивления, которые допускается заменить диодами 1N4007. При использовании диодов учитывается нагрев элементов при работе, при изготовлении монтажной платы принимают во внимание необходимость охлаждения узлов.
Для регулировки требуется подать постоянное напряжение 5 В на входы устройства. В цепи предусмотрен резистор, изменяя значение сопротивления, необходимо добиться напряжения 4,2 В на колодках, предназначенных для установки литий-ионных аккумуляторов.
Для подачи питания в рабочем режиме используется трансформатор, напряжение равно суммарному значению подключенных аккумуляторов. На каждый элемент подается запас напряжения в пределах 0,15 В. Например, для зарядки 3 элементов требуется подвести напряжение 3*4,2+3*0,15=13,05 В.
Устройство обеспечивает зарядку батарей до момента достижения напряжения 4,2 В. После фиксации параметра включается стабилитрон, который активирует подачу питания через транзистор к балластным резисторам, имеющим сопротивление 4 Ом. В цепи предусматриваются контрольные светодиоды, которые включаются при подаче питания в балластную цепь.
Упрощенный блок на основе стабилитрона TL431A строится с использованием полупроводникового транзистора, удовлетворяющего параметрам зарядки. Поскольку элемент при работе нагревается, то необходимо предусмотреть охлаждение. В основе выбора типа радиатора лежит расчет по мощности.
Например, при напряжении 4,2 В и силе тока 0,5 А расчетная мощность составит 2,1 Вт. При увеличении параметров зарядки мощность возрастает, что вызывает сложности с теплоотводом. В конструкции используется 2 сопротивления, регулирующих пороговое значение напряжения.
После подбора сопротивлений и транзистора изготавливается требуемое количество балансировочных блоков, которые ставятся на аккумуляторы во время зарядки.
Небольшие габариты устройств позволяют закрепить узлы на общей пластине. При монтаже нескольких балансиров требуется обеспечить изоляцию корпусов транзисторов (из-за подачи отрицательного питания от батареи).
Аккумуляторы и батареи
Информационный сайт о накопителях энергии
Платы балансировки литиевого аккумулятора
Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Балансировочная плата для литиевых аккумуляторов
Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.
Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.
Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.
Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.

Плата защиты литиевого аккумулятора
Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.
Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена , как обязательный элемент во всех аккумуляторов для бытовых приборов.
РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.
Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.

Схемы плат защиты литиевого аккумулятора
Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.
Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.
LM317

Простое зарядное устройство, стабилизатор тока.
Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.
ТР4056
Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.

Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.
- постоянно, напряжение на аккумуляторе;
- предзарядка, если на клеммах меньше 2,9В;
- максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
- при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
- При токе 0,1С зарядка отключается.

Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.
NCP1835
Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.

- малое количество элементов;
- заряжает сильно разряженные аккумуляторы током около 30 мА;
- детектирует незаряжаемые батарейки, подает сигнал;
- можно задать время заряда от 6 до 748 минут.
Видео
Посмотрите на видео полный обзор платы заряда ТП4056
Балансир для зарядки литиевых аккумуляторов
Скорей всего я бы не стал писать эту статью, если бы не одно обстоятельство. Несколько дней назад удалось придумать, как сделать очень хороший балансир на микросхеме TL431. Те, кто понимают, о чём речь, наверняка скажут – эка невидаль, да этих балансиров на TL431 – пруд пруди. Не спорю – эти микросхемы для этих целей используются очень давно. Но, из-за свойственных им недостатков, целесообразность их применения всегда вызывала много вопросов. Нет ни малейшего желания приводить примеры уже существующих схем этих балансиров, и подробно рассматривать их недостатки. Наверное, будет лучше, если я уделю больше времени, тому, что удалось сделать мне. Не покидают опасения, что что-то подобное уже было сделано до меня. Но проводить глобальные исследования, нет, ни желания, ни времени, и если вдруг выяснится, что подобный балансир уже существует, то мне останется, лишь попросить прощения за свою неосведомлённость.
Прежде, чем описывать собственно балансир, необходимо вкратце пояснить его назначение.
Суть вот в чём – литиевые аккумуляторы, чаще всего, используются в виде последовательного соединённых отдельных секций. Это необходимо, чтобы получить необходимое выходное напряжение. Количество составляющих аккумулятор секций, колеблется в очень широких пределах – от нескольких единиц, до нескольких десятков. Есть два основных способа зарядки таких аккумуляторов. Последовательный способ, когда зарядка осуществляется от одного источника питания, с напряжением, равным полному напряжению аккумулятора. И параллельный способ, когда осуществляется независимая зарядка каждой секции от специального зарядного устройства, состоящего из большого количества гальванически не связанных друг с другом источников напряжения, и индивидуальных, для каждой секции, устройств контроля.
Наибольшее распространение, ввиду большей простоты, получил последовательный способ зарядки. Балансир, о котором идёт речь в статье, не используется в параллельных системах зарядки, поэтому параллельные системы зарядки в рамках данной статьи рассматриваться не будут.
При последовательном способе зарядки, одно из главных требований, которое необходимо обеспечить, следующее – напряжение ни на одной секции заряжаемого литиевого аккумулятора, при зарядке, не должно превысить определённой величины (величина этого порога зависит от типа литиевого элемента). Обеспечить выполнение этого требования, при последовательной зарядке, не приняв специальных мер, невозможно…Причина очевидна – отдельные секции аккумулятора не идентичны, поэтому достижение максимально допустимого напряжения на каждой из секций при зарядке, происходит в разное время. Складывается ситуация, когда мы обязаны зарядку прекратить, так как напряжение на части секций уже достигло максимально допустимого порога. В то же время, часть секций остаются недозаряженными. Это плохо главным образом потому, что в итоге снижается общая ёмкость аккумулятора, так нам придётся прекратить разряд аккумулятора в тот момент, когда напряжение на самой «слабой» (недозаряженной) секции, достигнет своего минимально допустимого порога.
Чтобы не допустить повышение напряжения при зарядке, выше определённого порога, и служит балансир. Его задача достаточно проста – следить за напряжением на отдельной секции, и, как только напряжение на ней при зарядке достигнет определенной величины, дать команду на включение силового ключа, который подключит параллельно заряжаемой секции балластный резистор. При этом, если остаточный ток зарядки (а он, ближе к концу зарядки, уже достаточно мал, из-за малой разницы потенциалов между напряжением на заряжаемом аккумуляторе и напряжением на выходе зарядного устройства) будет меньше (или равен) тока протекающего через балластный резистор, то повышение напряжения на заряжаемой секции – прекратиться. При этом зарядка остальных секций, напряжение на которых ещё не достигло максимально допустимых значений – продолжиться. Закончится процесс заряда тем, что сработают балансиры всех секций аккумулятора. Напряжение на всех секциях будет одинаковым, и равным тому порогу, на которые настроены балансиры. Ток зарядки будет равен нулю, так как напряжение на аккумуляторе и напряжение на выходе зарядного устройства будут равны (нет разности потенциалов – нет тока зарядки). Будет протекать лишь ток через балластные резисторы. Его величина определяется величиной последовательно соединённых балластных резисторов и напряжением на выходе зарядного устройства.
Саму функцию контроля напряжения, легко смог бы выполнить любой компаратор, снабжённый опорным напряжением…Но компаратора у нас нет (точнее – он есть, но использовать его нам не удобно и не выгодно). У нас есть TL431. Но компаратор из неё, честно сказать – никакой. Сравнивать напряжение с опорным она умеет очень хорошо, но вот выдать чёткую, однозначную команду на силовой ключ, она не может. Вместо этого, при подходе к порогу, она плавно начинает загонять силовой ключ в активный (полуоткрытый) режим, ключ начинает сильно греться, и, в итоге, мы имеем не балансир, а полное дерьмо.
Вот именно эту проблему, которая не позволяла полноценно использовать TL431, удалось решить на днях. Ларчик просто открывался (но открывать его пришлось более двух лет) – надо было превратить TL431, в триггер Шмитта. Что и было сделано. Получился идеальный балансир — точный, термостабильный, достаточно простой, с чёткой командой на силовой ключ. И хотя этот балансир на TL431 немного сложнее сделанного ранее балансира на микросхеме KIA70XX, но зато и TL431, найти гораздо легче, и работает она точнее.
Ниже — две принципиальные схемы балансиров, рассчитанные для контроля порогов LiFePO4 и Li-ion аккумуляторов.

Превратить TL431 в триггер Шмитта, удалось добавив в схему p-n-p транзистор Т1 и резистор R5. Работает это так — делителем R3,R4 определяется порог контролируемого напряжения. В момент, когда напряжение на управляющем электроде достигает 2,5 Вольта, TL431 – открывается, открывается при этом и транзистор Т1. При этом потенциал коллектора повышается, и часть этого напряжения через резистор R5 поступает в цепь управляющего электрода TL431. При этом TL431 лавинообразно входит в насыщение. Схема приобретает ярко выраженный гистерезис – включение происходит при 3,6 Вольт, а выключение — при 3,55 Вольт. При этом в затворе силового ключа формируется управляющий импульс с очень крутыми фронтами, и попадание силового ключа в активный режим – исключено. В реальной схеме, при токе через балансировочный резистор равном 0,365 Ампер, падение напряжения на переходе сток-исток силового ключа составляет всего 5-6 мВ. При этом сам ключ, всегда остаётся холодным. Что, собственно, и требовалось. Эту схему можно легко настроить для контроля любого напряжения (делителем R3,R4). Величина максимального тока балансировки определяется резистором R7 и напряжением на секции аккумулятора.
Коротко про точность. В реально собранном балансире на пять секций для аккумулятора LiFePO4, напряжения при балансировке уложились в диапазон 3,6-3.7 Вольт (максимально допустимое напряжение для LiFePO4 составляет 3,75 Вольт). Резисторы при сборке использовались обычные (не прецизионные). На мой взгляд – очень хороший результат. Считаю, что добиваться большей точности при балансировке, никакого особого практического смысла – нет. Но для многих – это скорее вопрос религии, нежели физики. И они вправе, и имеют возможность добиваться большей точности.
Рисунок ниже – плата отдельного балансира, и, для примера, плата балансира на шесть секций. Очевидно, что клонируя плату отдельного балансира, можно легко сделать плату балансира на любое количество секций и любых пропорций.

Вот таким зарядно-балансировочным устройством я теперь пользуюсь. Я использую блок питания, описанный в статье про инвертор с адаптивным ограничением тока. Но можно использовать и любой другой стабилизированный блок питания, доработав его шунтом.

Балансир выполнен в виде отдельной платы. Он подключается к балансировочному разъему аккумулятора во время зарядки.
Пара слов про комплектующие. TL431 и p-n-p биполярный транзистор (подойдёт практически любой) в корпусах SOT23, можно найти на материнских платах компьютеров. Там же, можно найти и силовые ключи с «цифровыми» уровнями. Я использовал CHM61A3PAPT (или можно — FDD8447L) в корпусах TO-252A — подходят идеально, хотя характеристики очень избыточны (на токи до 1А , можно найти и что-нибудь по-проще).
В современных устройствах контроля за литиевыми батареями, описанные выше функции возложены на микроконтроллер.Но это гораздо более сложные для повторения устройства, и их применение оправдано далеко не всегда. Думаю — совсем не плохо, когда есть выбор.
Так выглядит балансир «живьём». За качество изготовления, вновь прошу прощения — из-за экономии времени, вновь рисовал плату обычным перманентным фломастером.
Балансировочное зарядное устройство для Li-ion, Li-pol

При переделке шуруповерта на литий-ион, я его заряжаю через переходной провод с помощью Turnigy.
Переделка простая, но вот зарядное доступно не каждому.
Решил сделать простое и надежное балансировочное зарядное устройство. Большинство деталей найдется у любого мастера, а ряд деталей доступен для заказа из Китая, ну или можно купить в магазине радиотоваров.
Инструменты и материалы:
— корпус для устройства;
— платы зарядок для планшета;
— контроллера для литий-иона;
— разъем со штырями;
— разъем с гнездами;
— выключатель;
— провода, паяльник, клеевой пистолет.
Монтировать зарядное устройство буду в корпусе сгоревшего роутера. В процессе монтажа схемы, понял, что выбрал маленький корпус. Процесс сборки немного усложнился, но я с поставленной задачей справился, но об этом дальше. Плата роутера может еще для чего сгодится.

Для каждого канала, я применю платы от зарядок. Количество плат, можно применить и большего количества или меньшего. У меня три канала и зарядок тоже три.

Следить за процессом заряда будут контроллеры заряда для литий-иона. Применить можно и с BMS, но он в данном случае не нужен. У меня одна плата новая, а две со спаянными разъемами(куда то применял их). Разъем абсолютно не мешает работе и процессу сборки.

На заднюю панель роутера, нужно вырезать полоску пластика. У меня стеклотекстолит толщиной полтора миллиметра. В полоске вырезаем окошки под выключатель питания и разъем балансировки.
Разъем я применил от старого жесткого диска, на 4 контакта. Выключатель снял со сгоревшего блока ATX. Так же просверлил отверстия под винты. для крепления планки. Позже просверлю отверстие под сетевой шнур. Разъем приклеил на соду с супер клеем.

Контроллеры заряда будут установлены в корпусе и индикации не будет видно. Для этого я взял разноцветные светодиоды. Красный отображает процесс заряда, а зеленый его окончание.

Чтоб подпаять светодиоды к плате, я применил отрезки шлейфа IDE.

Платы контроллеров нужно соединить с платами зарядок. Я соединил их луженым проводом на 0.5 мм. Получилось довольно жестко.

Шлейфы со светодиодами припаял вместо штатных светодиодов контроллеров. Сразу бросается в глаза, что зеленый светодиод уменьшился в размере. Я допустил ошибку и не проверил светодиоды, они оказались сгоревшими. Припаял какие попались под руку.

Платы приклеил на термо клей. Держатся отлично, пробовал кидая на пол)) Перед приклеиванием подпаял сетевые провода.

Просверлил отверстие под сетевой шнур. Распаял один из проводов на выключатель. Второй сетевой соединил вместе с оставшимися проводами от плат зарядок.

Светодиоды приклеил на места, где раньше были установлены светодиоды платы роутера. Клеил на термо клей.

Выходные провода контроллеров соединил последовательно. Плюс припаял на первый контакт. На второй контакт, припаял соединение проводов минуса первого и плюса второго контроллеров. Далее распаиваем остальные провода по порядку.

Одеваем крышку и прикручиваем. Откладываем в сторону зарядное устройство и распаиваем зарядный провод.

Провода применил со сгоревшего блока питания. Распаял соответственно доработанного аккумулятора шуруповерта. По схеме провода распаиваются по порядку от первого к четвертому. Места спайки изолирую термоусадкой.

Подключаем переходной провод к аккумулятору и к зарядному устройству. В процессе зарядки горят красные светодиоды. Когда загорятся зеленый, аккумулятор считается заряженным.
Данное зарядное устройство можно применить для заряда аккумуляторов, где установлены 3 элемента, то есть 3S. Квадрокоптеры, фонари, катера. Я же планирую переделать еще некоторые устройства, где будут три элемента последовательно.

Видео о сборке зарядного устройства:
Балансировочное зарядное устройство для Li-ion, Li-pol

При переделке шуруповерта на литий-ион, я его заряжаю через переходной провод с помощью Turnigy.
Переделка простая, но вот зарядное доступно не каждому.
Решил сделать простое и надежное балансировочное зарядное устройство. Большинство деталей найдется у любого мастера, а ряд деталей доступен для заказа из Китая, ну или можно купить в магазине радиотоваров.
Инструменты и материалы:
— корпус для устройства;
— платы зарядок для планшета;
— контроллера для литий-иона;
— разъем со штырями;
— разъем с гнездами;
— выключатель;
— провода, паяльник, клеевой пистолет.
Монтировать зарядное устройство буду в корпусе сгоревшего роутера. В процессе монтажа схемы, понял, что выбрал маленький корпус. Процесс сборки немного усложнился, но я с поставленной задачей справился, но об этом дальше. Плата роутера может еще для чего сгодится.

Для каждого канала, я применю платы от зарядок. Количество плат, можно применить и большего количества или меньшего. У меня три канала и зарядок тоже три.

Следить за процессом заряда будут контроллеры заряда для литий-иона. Применить можно и с BMS, но он в данном случае не нужен. У меня одна плата новая, а две со спаянными разъемами(куда то применял их). Разъем абсолютно не мешает работе и процессу сборки.

На заднюю панель роутера, нужно вырезать полоску пластика. У меня стеклотекстолит толщиной полтора миллиметра. В полоске вырезаем окошки под выключатель питания и разъем балансировки.
Разъем я применил от старого жесткого диска, на 4 контакта. Выключатель снял со сгоревшего блока ATX. Так же просверлил отверстия под винты. для крепления планки. Позже просверлю отверстие под сетевой шнур. Разъем приклеил на соду с супер клеем.

Контроллеры заряда будут установлены в корпусе и индикации не будет видно. Для этого я взял разноцветные светодиоды. Красный отображает процесс заряда, а зеленый его окончание.

Чтоб подпаять светодиоды к плате, я применил отрезки шлейфа IDE.

Платы контроллеров нужно соединить с платами зарядок. Я соединил их луженым проводом на 0.5 мм. Получилось довольно жестко.

Шлейфы со светодиодами припаял вместо штатных светодиодов контроллеров. Сразу бросается в глаза, что зеленый светодиод уменьшился в размере. Я допустил ошибку и не проверил светодиоды, они оказались сгоревшими. Припаял какие попались под руку.

Платы приклеил на термо клей. Держатся отлично, пробовал кидая на пол)) Перед приклеиванием подпаял сетевые провода.

Просверлил отверстие под сетевой шнур. Распаял один из проводов на выключатель. Второй сетевой соединил вместе с оставшимися проводами от плат зарядок.

Светодиоды приклеил на места, где раньше были установлены светодиоды платы роутера. Клеил на термо клей.

Выходные провода контроллеров соединил последовательно. Плюс припаял на первый контакт. На второй контакт, припаял соединение проводов минуса первого и плюса второго контроллеров. Далее распаиваем остальные провода по порядку.

Одеваем крышку и прикручиваем. Откладываем в сторону зарядное устройство и распаиваем зарядный провод.

Провода применил со сгоревшего блока питания. Распаял соответственно доработанного аккумулятора шуруповерта. По схеме провода распаиваются по порядку от первого к четвертому. Места спайки изолирую термоусадкой.

Подключаем переходной провод к аккумулятору и к зарядному устройству. В процессе зарядки горят красные светодиоды. Когда загорятся зеленый, аккумулятор считается заряженным.
Данное зарядное устройство можно применить для заряда аккумуляторов, где установлены 3 элемента, то есть 3S. Квадрокоптеры, фонари, катера. Я же планирую переделать еще некоторые устройства, где будут три элемента последовательно.

Видео о сборке зарядного устройства:
Балансир для li-ion аккумуляторов своими руками. Схема и описание
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Выходом из данной ситуации может быть применение популярного регулируемого стабилитрона TL431. Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.
Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).

На резисторах R1 и R2 собран делитель напряжения. Их сопротивление таково, что при достижении напряжения заряда на аккумуляторе 4,2В на управляющем входе TL431 должно появиться 2,5 вольта. При достижении напряжении на управляющем выводе TL431 2,5 вольт, регулируемый стабилитрон начнет проводить ток, открыв тем самым транзистор. Транзистор зашунтирует цепь питания, и напряжение не будет подниматься более 4,2 вольт.
Так как через транзистор будет протекать большой ток, то следует выбрать мощный транзистор, у которого мощность рассеивания не ниже:
где U — напряжение заряда, I – ток заряда.
Например, при токе заряда 0,5А транзистор должен иметь рассеиваемую мощность не менее 4,2В*0,5А = 2,1Вт. Так же желательно установить его на теплоотвод.
Ниже приведен список сопротивлений резисторов R1 и R2 на разное напряжение заряда:
22к + 33к => 4,166 В
15к + 22к => 4,204 В
47к + 68к => 4,227 В
27к + 39к => 4,230 В
39K + 56к => 4,241 В
33к + 47к => 4,255 В
Резистор R3 – нагрузочное сопротивление базы транзистора. Его сопротивление может быть 470Ом…1кОм.







































































































































