Меню

Безтрансформаторное питание 24в своими руками схемы

Безтрансформаторное питание 24в своими руками схемы

   Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания

Принципиальная схема бестрансформаторного блока питания

   Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

высоковольтные металлопленочные конденсаторы

   Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

78l05

   Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

выпрямительный диод 1N4007 как выглядит

   Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Резистор на 5W

   Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

стабилитрон 2С524А

   Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

 бестрансформаторный БП с регулировкой выходного напряжения

   Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

Плата к схеме бестрансформаторного блока питания

   Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЯ СХЕМ

   На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ

Видео работы схемы бестрансформаторного БП

   Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

   Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

   Форум по ИП

   Форум по обсуждению материала БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ


SMD ПРЕДОХРАНИТЕЛИ

Безтрансформаторное питание 24в своими руками схемыПриводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

Loading…

Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.

Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.

Различают следующие разновидности бестрансформаторных блоков питания:

  • с балластным резистором во входной цепи;
  • с балластным конденсатором во входной цепи;
  • с импульсным неизолированным AC/DC-преобразователем.

Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).

Схемы бестрансформаторного сетевого питания

Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.

Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.

На Рис. 6.3, а…м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а…г — с микросхемами импульсных AC/DC-преобразователей.

Схемы бестрансформаторного сетевого питания

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):

а) диоды VD1…VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;

б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;

в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004… 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор C3 устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;

Схемы бестрансформаторного сетевого питания

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):

д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1…3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;

е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;

з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8…+5 В в каждом канале;

Схемы бестрансформаторного сетевого питания

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):

и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9…+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1…3 Вт;

к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;

л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;

м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1…CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.

Схемы бестрансформаторного сетевого питания

Схемы бестрансформаторного сетевого питания

Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:

а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;

б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;

в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;

т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Информация о материале

Создано: 02 ноября 2012

бестрансформаторный блок питания своими руками

безтрансформаторный бп

Это достаточно простая схема бестрансформаторного блока питания. Устройство выполнена на доступных элементах и в предварительной наладке не нуждается. В качестве диодного выпрямителя использован готовый мост серии КЦ405В(Г), также можно использовать любые диоды с напряжением не менее 250 вольт.

Электросхема показана на рисунке:

Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.

После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой.

Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех. Устройство работает очень стабильно, но имеет всего один недостаток — малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи.

Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже:

Схемы бестрансформаторного питания: с балластным резистором, с балластным конденсатором, с импульсным преобразователем

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“.

 Сегодня мы рассмотрим несколько схем, предназначенных для питания радиолюбительских устройств без использования сетевого трансформаторабестрансформаторные источники питания.
   Сразу отмечу, что такие источники питания представляют определенную опасность для человека – неосторожное обращение и неминуемое поражение электрическим током. Такие схемы стоит применять только если обеспечивается их надежная изоляция и не требуется постоянное присутствие человека.
  Кроме того, использовать такие источники питания целесообразно только при небольших токах нагрузки.
    Сегодня мы рассмотрим два типа таких схем:
с балластным резистором
с балластным конденсатором
Есть еще третий вариант – с импульсным AC/DC преобразователем, но они более сложны, и требуют применения специализированных микросхем.
Балластные резисторы и конденсаторы гасят излишек сетевого напряжения. Поэтому, резисторы должны быть большой мощности, а конденсаторы – должны быть пленочными (к примеру К73-17) и рабочим напряжением не менее 630 вольт.
Все схемы несложные, и особых пояснений не требуют.

Первая схема:

Бестрансформаторный источник питания с балластным резистором_1

Диоды VD1-VD4 должны выдерживать обратное напряжение не ниже 400 вольт.
Резисторы R1, R2 – балластные для стабилитрона.
R3 – выбирается с учетом, чтобы выходное напряжение не изменялось при любом токе нагрузки.
С1, R3, С2 – фильтр сглаживающий пульсации.

Вторая схема:

Бестрансформаторный источник питания с балластным резистором _2

Аналогично первой схеме, но параллельно включенные резисторы заменяются включенными последовательно.
RC фильтр заменен LC фильтром.
Максимально допустимый ток через дроссель должен быть с запасом больше, чем ток нагрузки.

Третья схема:
Бестрансформаторный источник питания с балластным резистором_3Классическая схема источника питания с балластным конденсатором С1.
Резистор R1 – обязательный в подобных схемах, ограничивает начальный ток заряда конденсатора С2.
Резистор R2 разряжает конденсатор С1 при выключении от сети.
Сборку диодов VD1.1 и VD1.2 можно заменить на 1N4004…1N4007.
Конденсатор С2 сглаживает сетевые пульсации, С3 – устраняет ВЧ-помехи.
Выходное напряжение зависит от параметров стабилитрона и тока нагрузки.

Четвертая схема:
Бестрансформаторный источник питания с балластным конденсатором_4Стабилитроны VD3 и VD4 – выполняют предварительное ограничение напряжения и должны быть повышенной мощности (1-3 ватта).

Пятая схема:
Бестрансформаторный источник питания с балластным конденсатором_5Двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией включения.
Резистор R3 определяет ток в нагрузке.
Выходное напряжение зависит от параметров стабилитрона и тока нагрузки.

Шестая схема:
Бестрансформаторный источник питания с балластным конденсатором_6Двухполярный источник питания
Для полной симметрии схемы необходим одинаковый ток нагрузки по цепям +5 вольт и -5 вольт.

Седьмая схема:
Бестрансформаторный источник питания с балластным конденсатором_7Разделение выходного напряжения на две отдельные ветви для исключения взаимных помех.
Подойдет для питания микроконтроллера или управления тиристором.
Стабилитрон VD1 ограничивает напряжение на уровне 5,6 вольт, диоды VD2 и VD3 снижают его до +4,8 … +5 вольт.

Восьмая схема:
Бестрансформаторный источник питания с балластным конденсатором_8Получение двух напряжений от источника питания.
Суммарный ток нагрузки состоит из токов двух каналов.
При значительных колебаниях тока нагрузки стабилизатор следует выбирать повышенной мощности.

Девятая схема:

Бестрансформаторный источник питания с балластным конденсатором_9Вместо одного, применяются два балластных конденсатора, что позволяет выбирать их с меньшим рабочим напряжением.

Ну а напоследок, все-таки приведу одну схему импульсного бестрансформаторного преобразователя напряжения:

Бестрансформаторный импульсный преобразователь напряжения_10Типовая схема включения импульсного AC/DC преобразователя напряжения на специализированной микросхеме фирмы ROHM.



Опубликовал admin | Дата 26 сентября, 2012

Схема бестрансформаторного источника питания приведена на рисунке 1.


Бестрансформаторный блок питания с гасящим конденсатором схема, shema3

Выходное напряжение схемы двенадцать вольт, в принципе, его можно менять, устанавливая вместо VD3, стабилитроны с другим напряжением стабилизации. Схема обеспечивает выходной ток до 120ма. В качестве диодного моста можно применить КЦ402, КЦ405 с буквами А,Б,В,Г или импортными, имеющими меньшие размеры. Параллельно конденсаторам С1 и С2 можно подключить еще один такой же, тогда отдаваемый в нагрузку ток возрастет до 180ма. Короче, каждая микрофарада гасящего конденсатора обеспечивает ток в низковольтной цепи примерно 60ма.

Не забудьте, что все элементы схемы находятся под напряжением первичной сети.

Просмотров:54 933

Трансформаторный блок питания имеет значительные габариты и массу, которые определяются размерами и весом силового трансформатора. Эта проблема решается применением импульсного источника питания, но он имеет сложную схемотехнику, затрудняющую его создание и ремонт. В некоторых случаях можно использовать бестрансформаторные источники питания – при всех присущих им недостатках, они закрывают некоторые ниши электроснабжения потребителей.

Принцип работы бестрансформаторного питания

В трансформаторных и импульсных (которые, по своей сути, также являются трансформаторными) источниках питания снижение питающего уровня происходит за счет трансформации первичного напряжения во вторичные обмотки. Можно подойти по-другому – погасить избыточное напряжение резистором (балластным сопротивлением). Его сопротивление надо подобрать так, чтобы на нагрузке был требуемый уровень, а все остальное упало на балластном элементе. Такой бестрансформаторный блок питания, по сути, является делителем напряжения.

Схема бестрансформаторного источника питания

Принцип работы бестрансформаторного блока питания.

Балластное сопротивление подключается последовательно с нагрузкой, через него течет полный нагрузочный ток. Излишек напряжения падает на гасящем элементе. Так, чтобы получить на потребителе 12 вольт, надо подобрать номинал резистора так, чтобы на нем падало 220-12=208 вольт. При токе нагрузки в 1 ампер сопротивление должно быть R=U/I =208/1=208 Ом. Из 10% ряда (E12) номиналов можно выбрать сопротивление 200 Ом или 220 Ом. Если надо подобрать точнее, можно выбрать из нескольких элементов тот, чье фактическое сопротивление (с учетом 10% отклонения) будет как можно ближе к расчетным 208 Ом.

Какие плюсы и минусы у таких схем

Эта схема содержит два главных плюса:

  • отсутствие громоздкого и сложного в изготовлении намоточного элемента (трансформатора);
  • пониженная масса и габариты.

Второе достоинство резко снижается с ростом тока нагрузки. Так, для рассмотренного выше примера для выходного уровня 12 в при токе 1 А на резисторе будет рассеиваться 208 Ватт. Элемент для работы при таком токе имеет габариты, сравнимые с размерами трансформатора и требует условий для теплообмена с окружающей средой.

Схема бестрансформаторного источника питания

Резистор мощностью 200 Ватт.

На этом плюсы заканчиваются, начинаются минусы. Один из главных – высокая опасность поражения электрическим током. Несмотря на то, что на нагрузке падает всего 12 вольт, каждый элемент цепи находится под полным сетевым напряжением 220 вольт относительно земли. Случайное прикосновение к токоведущим элементам одновременно с прикосновением к земле может привести к печальным последствиям.

Второй недостаток бестрансформаторных схем – ярко выраженная зависимость напряжения на нагрузке от потребляемого тока. Так, для рассмотренной схемы, при изменяющихся токах и резисторе в 208 Ом на нагрузке будет падать напряжение, указанное в таблице.

Ток нагрузки, А 0,25 0,5 0,75 0,95 1 1,05
Напряжение на балласте, В 52 104 156 198 208 218,4
На нагрузке, В 168 116 64 22 12 1,6

При изменении тока на 5% в любую из сторон напряжение на потребителе меняется в разы. Это резко сокращает область применения источников питания с балластом и не позволяет, например, использовать такой прибор в качестве лабораторного блока питания. Эта проблема может быть частично решена применением стабилизаторов на выходе БП (линейных или импульсных), но возможность такого решения также ограничена, особенно для линейных регуляторов. Они сверху лимитируются максимальной мощностью рассеяния на регулирующем элементе, а снизу – необходимостью минимально допустимого падения напряжения на нем же.

Импульсный стабилизатор (не путать с импульсным БП!) не рассеивает (в теории) мощность на ключевом элементе, поэтому по превышению напряжения теоретически лимита нет. Падение напряжения на ключе ему также не нужно, поэтому для него диапазон питающих напряжений может быть шире.

Еще одним недостатком бестрансформаторного БП является низкий КПД. На балласте бесполезно рассеивается часть мощности, к тому же от резистора надо отводить тепло. Проблема теплоотвода отпадает, если вместо резистора применить гасящий конденсатор, который обладает реактивным сопротивлением, зависящим от частоты (тепло на нем не выделяется).

Применять конденсатор в качестве одного из плеч делителя можно только в цепях переменного тока.

Для расчета балласта, надо воспользоваться формулой X=1/(2*π*f*C), где:

  • X – реактивное сопротивление конденсатора, Ом;
  • π – число «пи», округленно равное 3,14;
  • f – частота, для бытовой сети равна 50 Гц;
  • С – емкость в фарадах.

Отсюда С=1/(2*π*f*X)=1/(314*X), для получения результата в микрофарадах надо умножить на 1000000 (106), в итоге приведенная формула примет вид С=3184/X. X выбирается по формуле X=U/I. Для приведенного выше примера X равно все тем же 208 Ом, а емкость равна 15,3 мкФ (зависимость здесь обратная – с ростом тока надо увеличивать емкость, уменьшая сопротивление). Проблема в том, что подобрать конденсатор с такой точностью сложно. Ряд доступных емкостей имеет больший шаг, а уменьшение точности ведет к тому же эффекту, что и изменение тока. Так, применение конденсатора на 15 мкФ вместо 15,3 приведет к увеличению сопротивления до 212 Ом и к изменению напряжения на нагрузке до 11,7 вольта. В большинстве случаев это некритично, но зависимость параметров питания от характеристик конденсатора прослеживается явно. Подобрать емкость с заданной точностью весьма проблематично. Также надо учитывать, что конденсатор должен быть с запасом рассчитан на полное амплитудное напряжение сети, которое равно не 220, а 310 вольт.

Рекомендуем: Самодельный блок питания с регулировкой напряжения и тока

Примеры схем бестрансформаторных источников питания

Обычно для питания низковольтных потребителей требуется постоянное напряжение, поэтому в качестве нагрузки используется выпрямитель, сглаживающий фильтр и собственно потребитель. Схема может выглядеть так.

Схема бестрансформаторного источника питания

БП с гасящим резистором.

При расчете надо принять во внимание, что диоды и конденсатор активной мощности практически не потребляют, поэтому на ток они не влияют. Но надо учитывать, что на каждом диоде падает напряжение – для кремниевых вентилей около 0,6 вольт. Ток в каждом полупериоде идет через нагрузку и два диода, поэтому надо предусмотреть запас в 1,2..1,5 вольт, чтобы на нагрузке получить требуемый уровень.

Главный недостаток такой схемы уже назван – зависимость выходного напряжения от нагрузки даже при стабильном входном. Поэтому такая схемотехника применяется только при неизменном потребляемом токе. Для улучшения характеристик можно дополнить эту схему стабилизатором напряжения (линейным или импульсным), соблюдая ограничения для такого построения.

Схема бестрансформаторного источника питания

БП с гасящим резистором и линейным стабилизатором.

Для маломощных потребителей, потребляющих токи до 500 мА, можно построить источник питания на параметрическом стабилизаторе со стабилитроном. Расчет такого стабилизатора выходит за рамки обзора, для этого можно воспользоваться онлайн-калькуляторами.

Схема бестрансформаторного источника питания

БП с гасящим резистором и стабилитроном.

Если применять вместо резистора конденсатор, лучше добавить еще пару элементов:

  • резистор R1 сопротивлением в несколько Ом ограничит начальный бросок тока на зарядку конденсатора в момент включения БП;
  • резистор R2 в несколько сотен килоом разрядит конденсатор после выключения, что снизит вероятность поражения электрическим током при ремонте.

Схема бестрансформаторного источника питания

Включение гасящего конденсатора.

В целом с точки зрения безопасности вариант с гасящим конденсатором хуже. При выходе из строя у резистора обычно сгорает проводящий слой, и цепь размыкается. У конденсатора часто пробивается диэлектрик, при этом он замыкается накоротко, полное напряжение сети прикладывается к нагрузке.

Читайте также

Импульсный блок питания – подборка схем для самостоятельного изготовления

Еще лучше с точки зрения стабильности выходного напряжения применить полностью емкостный делитель. Изменение нагрузки в этом случае вызывает меньшее изменение тока через оба конденсатора, что влечет меньшее изменение параметров питания.

Схема бестрансформаторного источника питания

БП с емкостным делителем.

Практическая схема, построенная по такому принципу, приведена на рисунке. Ее выходной уровень – 5 вольт.

Схема бестрансформаторного источника питания

Практическая схема блока питания с емкостным делителем.

При выборе конденсатора 10 мкФ на 350 вольт надо иметь в виду, что в теории на нем тепло не рассеивается. На практике все зависит от качества диэлектрика, примененного в элементе. Поэтому конденсатор надо предварительно проверить – включить его под сетевое напряжение и выдержать около часа. Если элемент почти не нагрелся, его можно применить в данной схеме. В противном случае лучше найти другой.

Несмотря на все недостатки, бестрансформаторные блоки питания вполне применимы для питания потребителей с неизменными или малоизменяющимися параметры. Но надо помнить о повышенных мерах безопасности, чтобы избежать неприятностей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *