Меню

Безщеточный двигатель на 12 вольт своими руками

Бесколлекторник своими руками

@@Конструктивные особенности CD-ROM движков очень разные. Поэтому в этой статье даются общие рекомендации по переделке таких двигателей с минимальными затратами в 3 фазные авиамодельные двигатели.

@@Требования к CD-ROM движкам (данные приведены для двигателей, которые реально переделывались):

  • Число зубцов (полюсов) ротора должно быть равным 9
  • Количество устанавливаемых заново магнитов — 12
  • Диаметр ротора: 28.5 мм
  • Высота ротора: 7.8 мм
  • Диаметр оси: 3 мм
  • Длина оси: 6.8 мм
  • Диаметр статора: 24 мм
  • Высота статора: 5.2 мм
  • Вес переделанного двигателя — 21 г
  • Тип намотки — дельта
  • Намотка проводом диаметром — 0,4-0,5 (желательно ПЭТВ)
  • Количество витков — 17-20 на зуб

@@Используемые клеи: «111», фиксаторы резьбы (продаются в автомагазинах).
@@Используемая эпоксидная смола: любая не российская и не 5-минутка.

Подготовительные работы

@@На внутренней стороне ротора приклеено намагниченное пластмассовое кольцо. Аккуратно удалите его. Это можно сделать следующим образом: согнутый и нагретый гвоздь вводится в пластмассу. Даем ему остыть, и осторожно вытягиваем пластмассовое кольцо

@@Статор отсоединяем от пластины, на которой он крепится (вариантов крепления очень много и поэтому я не привожу технологию — в каждом конкретном случае решайте сами как это сделать). Отсоединения статора, аккуратно удаляем с него намотку, Стараемся не повредить заводскую лакировку.

Перемотка

@@Перемотку статора ведут медным проводом, диаметром 0.4mm — 0.5mm. На каждый полюс мотаем от 17 до 20 витков.

@@Чем меньше витков, тем больше обороты, большее количество витков позволяет получить более высокий вращающийся момент. Изоляция провода должна остаться неповрежденной — это критично, иначе ваш двигатель не будет работать.

@@Вы можете выбрать между типом намотки «дельты» и «звезда». С намоткой «звезда» двигатель будет иметь более высокий вращающий момент, меньше оборотов в минуту и будет «есть» меньше. Намотка «дельта» даст «более горячий» двигатель с более высокими оборотами в минуту и большим КПД, но будет иметь больший «аппетит» и будет греться больше. Намотка «звезда» «тяжелее» для работы контроллера.

Проверка качества

@@Проверка качество намотки производится мультиметром. Провод НЕ ДОЛЖЕН быть сломан или с поврежденной изоляцией. Сопротивление обмоток должно быть примерно одинаковым. Провода обмотки не должны быть закорочены между собой или на статор (в случае повреждения изоляции). Если вы не уверены, что нет повреждений или «коротыша» — снимайте намотанный провод и мотайте еще раз. Соедините, закрепите и пропаяйте выводы обмоток. Сопротивление обмоток ~ 0,1-0,14 ом на фазу.

Установка новых магнитов в ротор

@@ОЧЕНЬ ВАЖНО — магниты должны быть установлены с соблюдением полярности — N-S-N-S …, иначе ваш двигатель не будет работать. Хороший способ проверять полярность состоит в том, чтобы разместить 12 магнитов на столе в один ряд, в таком же порядке приклеивать магниты в стакан ротора. Для приклеивания используйте высококачественный клей (не используйте эпоксидную смолу 5-минутку).

@@Добейтесь равномерного размещения магнитов в стакане ротора. Как можно это сделать: устанавливая магниты в стакан, прокладывайте их тонкими кусочками бумаги одинаковой толщины, если один из зазоров получился больше, то увеличьте толщину бумаги. Расстояние между магнитами должно быть одинаковым. Не пожалейте времени, чтобы сделать эту работу. После установки магнитов и их приклейки, заполните промежутки между ними эпоксидной смолой. Будьте осторожны, не перелейте смолы.

Испытание

@@Трения между ротором и магнитами не должно быть. Если движение при проворачивании без значительного усилия и толчков, то можете пробовать запускать собранный двигатель.

@@ВЫ МОЖЕТЕ изменить направление вращения, меняя 2 из этих 3 контактов между двигателем и контроллером.

@@Готовые моторы.

Авторам опубликованных статей предоставляются скидки в нашем магазине

Просмотров: 37171

Дата: Вторник, 08 Октября 2013

Синхронные и асинхронные вентильные двигатели постоянного тока широко применяются в различных сферах промышленного производства. В рамках этой статьи мы подробно рассмотрим их устройство и принцип работы.

Принцип работы

Вентильный бесколлекторный двигатель ВМЭД, ДВУ является одним из видов электрического двигателя, который индуцирует непостоянные магнитные полюса на ферромагнитном роторе. Крутящий момент создается за счет магнитного сопротивления.

Фото – Бесколлекторный вентильный двигатель

Вентильные двигатели бывают трех типов:

  1. Синхронный;
  2. Асинхронный;
  3. Индукторный.

Конструкция вентильно-реактивного двигателя (ВРД) включает в себя две фазные обмотки, установленные вокруг диаметрально противоположных полюсов статора. При подаче питания ротор движется в соответствии с полюсами статора, благодаря чему, сопротивление магнитного поля сводится к минимуму. В основе работы вентильно индукторного двигателя используется тот же принцип.

Фото – Вентильный двигатель

В высокоэффективной переменной скорости привода магнетизм двигателя оптимизирован для работы с реверсом. Информация о положении ротора используется для управления фазы подачи напряжения. Благодаря этому обеспечивается непрерывный крутящий момент и высокая эффективность. Сигналы накладываются на угловую ненасыщенную фазу индуктивности, при этом ее максимальная величина соответствует минимальному сопротивлению полюса. Положительный момент производится только при углах, когда индуктивность градиента также является положительной.

Для защиты электроники от высоких вольт-секунд фазный ток на низких скоростях необходимо ограничивать. Как правило, это достигается за счет гистерезиса тока. Для контроля процесса используются специальные датчики.

Фото – Схема вентильного двигателя

На более высоких скоростях ток ограничен. Чтобы оптимизировать производительность, управляющее напряжение одиночного импульса используют с заранее выровненным углом.

Траектория реактивной энергии наглядно иллюстрирует механизм ее преобразования. Мощностная область представляет собой питание, которое преобразуется в механическую энергию (или она уже была преобразована генератором). При резком отключении питания остаточная или избыточная энергия возвращается к статору. Минимальное влияние магнитного поля на работу двигателя является его основным отличием от аналогичных устройств.

Преимущества вентильного двигателя:

  1. Благодаря небольшому магнитному сопротивлению минимизируются потери энергии;
  2. Высокие показатели безопасности (возможность работы при пиковых нагрузках);
  3. Широкий диапазон скоростей;
  4. Мягкое переключение скоростей.

К числу недостатков автоматизированных вентильных электродвигателей можно причислить:

  1. Высокий уровень шума;
  2. Сложно управление;
  3. Относительно высокая стоимость, по сравнению с аналогичными устройствами.

Видео: из чего состоят вентильные двигатели

Конструкция

Тяговый вентильный двигатель (каталог Интерскол, Lenze, Борец для УЭЦН, ЭЦН) состоит из датчиков, которые указывают на положение ротора машины синхронного типа. Совокупность этих механизмов называется электромеханической частью двигателя. Управляющая часть устройства включает в себя микроконтроллер и силовой мост. Блок управления двигателем относится к логистическому неконструктивному участку системы.

Фото – Вентильный индукторный двигатель

Механическая часть устройства представляет собой синхронный привод, собранный из изолированных стальных листов. Такая конструкция способствует уменьшению вихревых токов, образующихся в обмотке и роторе.

Для нормальной работы прибора используются датчики Холла. Если в вентильном двигателе нет индикаторных приспособлений, сигналы поступают напрямую к магнитной установке. Этими же устройствами контролируется режим реверса. Это необходимо для того, чтобы при погружении двигатель не остановился, а также дает возможность дистанционно контролировать его работу и менять установки. Данная функция необходима при добыче нефти, угля, газа и буровых работах.

Фото – Принцип работы погружного двигателя

Шаговый микропроцессор обрабатывает все данные о положении ротора, согласно настройкам которого, контролируются ШИМ-сигналы. Нужно отметить, что при низком уровне данных сигналов, потребуется их усиление. Для этой цели используются специальные приборы, работающие по принципу микротрансформаторов.

Технические параметры:

Марка, тип Крутящий момент, Нм Длина, мм Максимально допустимая частота, мин-1 Вес, кг
ДМВ 55 0,05; 1 61 420; 1800 0,4
5 ДВМ 55 0,23; 0,47; 0,7; 1,3 218 2000; 3000; 4000; 6000 4,5
5 ДВМ 155 2,3; 3,5; 4,7; 7 342 2000; 3000; 4000; 6000 13
5 ДВМ 165 10; 13; 17; 23 536 1000; 2000; 3000; 4000 67
5 ДВМ 215 23; 35; 47; 70 637 1000; 2000; 3000; 4000 28

Фото – Параметры вентильных двигателей

Расчет двигателей производится по следующим формулам:

Формула равновесия фаз: IRΣ+ EΣ= U

Сумма ЭДС – E1= Emsin(∂+∂0), амплитуда ЭДС – Em= ko1pФw1Ω = (ko1pФN1Ω) / 2

Обозначение угла коммутации двигателя:

Ua = -Uq*sin0

Ub = Uq*cos0

Виды устройства

Вентильные двигатели могут работать от переменного или постоянного тока. Помимо этого, их принято делить на следующие виды:

  1. Однофазное устройство. Это простейшие вентильные двигатели с наименьшим количеством связей между машиной и электроникой. К числу недостатков однофазных устройств следует отнести: пульсации, высокий крутящий момент, а также невозможность запуска на всех угловых положениях. Однофазные двигатели нашли широкое применение в машинах, где требуется высокая скорость.
  2. Двухфазный двигатель. Этот мотор при работе активизирует воздушный зазор либо, при дополнительной настройке, создает асимметрию в полюсах ротора. Это устройство устанавливается в машинах, где критична связь статора с обмоткой. К числу недостатков следует отнести высокий крутящий момент и пульсации, которые могут привести к пагубным последствиям.
  3. Трехфазный двигатель. Этот дисковый двигатель используется для запуска и создания крутящего момента, не используя при этом большого количества фаз. Данный тип двигателей используется в различных отраслях производства, а иногда и в бытовых условиях. Это самая популярная конструкция из всех представленных. Альтернативные 3-фазные машины с четным числом полюсов являются лучшим решением для приборов, где необходимо сочетание высокой мощности и низкой скорости, например, в насосах. Недостатки трехфазных двигателей: высокий крутящий моментом и повышенный уровень шума.
  4. Устройства с четырьмя фазами. У этих двигателей существенно снижен крутящий момент и пульсации, но сфера применения устройств ограничена высокой стоимостью и большой мощностью.

К сожалению, разработать и создать своими руками рабочий погружной или многофазный вентильный двигатель практически невозможно, намного проще купить нужную модель. В разных городах России и Украины цена вентильных двигателей может значительно варьироваться. Нижняя ступень будет около 8000 тысяч рублей, верхняя может достигать 20 000, в зависимости от области действия и производителя

Во многих сферах производства используются вентильные двигатели, в частности, на нефтяных скважинах, буровых установках, приводобежных механизмах, системах охлаждения воздуха на химических предприятиях.

Виды электродвигателей

Существуют следующие типы двигателей постоянного тока:

  • с возбуждением при помощи постоянных магнитов;
  • с последовательным соединением якоря и обмоток возбуждения;
  • с параллельным соединением якоря и обмоток возбуждения;
  • со смешанным соединением якоря и обмоток возбуждения;
  • вентильный двигатель (бесколлекторный двигатель постоянного тока), выполненный при помощи замкнутой системы; в таком типе двигателя используется инвертор (силовой полупроводниковый преобразователь), преобразователь координат и ДПР (датчик положения ротора).

Двигателем переменного тока называют электрический двигатель, питание которого обеспечивает переменный ток. Существуют следующие типы двигателей переменного тока:

  • гистерезисный двигатель;
  • вентильный реактивный двигатель;
  • асинхронный электродвигатель с частотой вращения ротора, отличающейся от частоты вращения создаваемого напряжением магнитного поля;
  • синхронный электродвигатель с частотой вращения ротора, совпадающей с частотой вращения создаваемого напряжением магнитного поля.

Также существует УКД (универсальный коллекторный двигатель) с функцией режима работы как на переменном, так и на постоянном токе.

Ещё один тип двигателей – это шаговый электродвигатель с конечным числом положений ротора. Определённое указанное положение ротора фиксируется при помощи подачи питания на необходимые соответствующие обмотки. При снятии напряжения питания с одной обмотки и его передаче на другие происходит процесс перехода в другое положение.

Двигатель переменного тока при питании посредством промышленной сети обычно не позволяет достичь частоты вращения более трёх тысяч оборотов в минуту. По этой причине при необходимости получить более высокие частоты используется коллекторный двигатель, дополнительными преимуществами которого является лёгкость и компактность при сохранении необходимой мощности.

Иногда также применяют специальный передаточный механизм под названием мультипликатор, который меняет кинематические параметры устройства до требуемых технических показателей. Коллекторные узлы иногда занимают до половины пространства всего двигателя, поэтому электродвигатели переменного тока уменьшают в размере и делают легче в весе путём использования преобразователя частоты, а иногда благодаря наличию сети с повышенной частотой до 400 Гц.

Ресурс любого асинхронного двигателя переменного тока заметно выше коллекторного. Определяется он состоянием изоляции обмоток и подшипников. Синхронный же двигатель при использовании инвертора и датчика положения ротора считается электронным аналогом классического коллекторного двигателя, поддерживающего работу посредством постоянного тока.

Бесколлекторный электродвигатель постоянного тока. Общие сведения и устройство прибора

Бесколлекторный электродвигатель постоянного тока также называют трёхфазным вентильным двигателем. Он представляет собой синхронное устройство, принцип работы которого основывается на самосинхронизированном частотном регулировании, благодаря чему происходит управление вектором (отталкиваясь от положения ротора) магнитного поля статора.

Контроллеры электродвигателей такого типа зачастую питаются благодаря постоянному напряжению, отчего и получили своё название. В англоязычной технической литературе вентильный электродвигатель называют PMSM или BLDC.

Бесколлекторный электродвигатель был создан в первую очередь для оптимизации любого электродвигателя постоянного тока в целом. К исполнительному механизму такого устройства (особенно к высокооборотному микроприводу с точным позиционированием) ставились очень высокие требования.

Это, пожалуй, и обусловило использование таких специфических приборов постоянного тока, бесколлекторные трёхфазные двигатели, также называемые БДПТ. По своей конструкции они практически идентичны синхронным двигателям переменного тока, где вращение магнитного ротора происходит в обычном шихтованном статоре при наличии трёхфазных обмоток, а количество оборотов зависит напряжения и нагрузок статора. Исходя из определённых координат ротора, происходит переключение разных обмоток статора.

Бесколлекторные двигатели постоянного тока могут существовать без каких-либо отдельных датчиков, однако, иногда они присутствуют на роторе, например, датчик Холла. Если устройство работает без дополнительного датчика, то обмотки статора выполняют функцию фиксирующего элемента. Тогда ток возникает благодаря вращению магнита, когда в обмотке статора ротор наводит ЭДС.

Если одна из обмоток будет выключена, то будет измеряться и в дальнейшем обрабатываться тот сигнал, который был наведён, однако, такой принцип работы невозможен без профессора обработки сигналов. А вот для реверса или торможения такого электродвигателя мостовая схема не нужна – достаточно будет подачи в обратной последовательности управляющих импульсов на обмотки статора.

В ВД (вентильном двигателе) индуктор в виде постоянного магнита расположен на роторе, а якорная обмотка – на статоре. Исходя из положения ротора, формируется напряжение питания всех обмоток электродвигателя. При использовании в таких конструкциях коллектора, его функцию будет выполнять в вентильном двигателе полупроводниковый коммутатор.

Основное отличие синхронного и вентильного двигателей заключается в самосинхронизации последнего при помощи ДПР, что обусловливает пропорциональную частоту вращения ротора и поля.

Чаще всего бесколлекторный электродвигатель постоянного тока находит применение в следующих сферах:

  • морозильное или холодильное оборудование (компрессоры);
  • электропривод;
  • системы нагрева воздуха, его кондиционирования или вентиляции.

Статор

Это устройство имеет классическую конструкцию и напоминает такой же прибор асинхронной машины. В состав входит сердечник из медной обмотки (уложенной по периметру в пазы), определяющей количество фаз, и корпус. Обычно синусной и косинусной фаз достаточно для вращения и самозапуска, однако, часто вентильный двигатель создают трёхфазным и даже четырёхфазным.

Электродвигатели с обратной электродвижущей силой по типу укладки витков на обмотке статора делятся на два типа:

  • синусоидальной формы;
  • трапецеидальной формы.

В соответствующих видах двигателя электрический фазный ток меняется также по способу питания синусоидально или трапецеидально.

Ротор

Обычно ротор изготавливают из постоянных магнитов с количеством пар полюсов от двух до восьми, которые, в свою очередь, чередуются от северного к южному или наоборот.

Самыми распространёнными и дешёвыми для изготовления ротора считаются ферритовые магниты, но их недостатком является низкий уровень магнитной индукции, поэтому на замену такому материалу сейчас приходят приборы, созданные из сплавов различных редкоземельных элементов, поскольку могут предоставить высокий уровень магнитной индукции, что, в свою очередь, позволяет уменьшить размер ротора.

ДПР

Датчик положения ротора обеспечивает обратную связь. По принципу работы устройство делится на такие подвиды:

  • индуктивный;
  • фотоэлектрический;
  • датчик с эффектом Холла.

Последний тип получил наибольшую популярность благодаря своим практически абсолютным безынерционным свойствам и способности избавляться по положению ротора от запаздывания в каналах обратной связи.

Система управления

Система управления состоит из силовых ключей, иногда также из тиристоров или силовых транзисторов, включающих изолированный затвор, ведущих к сбору инвертора тока либо инвертора напряжения. Процесс управления этими ключами реализуется чаще всего путём использования микроконтроллера, требующего для управления двигателем огромного количества вычислительных операций.

Работа двигателя заключается в том, что контроллер коммутирует определённое количество обмоток статора таким образом, что вектор магнитных полей ротора и статора ортогональны. При помощи ШИМ (широтно-импульсной модуляции) контроллер совершает управление протекающим через двигатель током и регулирует момент, оказывающий воздействие на ротор. Направление этого действующего момента определяет отметка угла между векторами. При расчётах используются электрические градусы.

Коммутацию следует производить таким образом, чтобы Ф0 (поток возбуждения ротора) поддерживался относительно потока якоря постоянным. При взаимодействии такого возбуждения и потока якоря формируется вращающий момент М, стремящийся развернуть ротор и параллельно обеспечить совпадение возбуждения и потока якоря. Однако во время поворота ротора происходит переключение различных обмоток под воздействием датчика положения ротора, в результате чего поток якоря разворачивается по направлению к следующему шагу.

В такой ситуации результирующий вектор сдвигается и становится неподвижным по отношению к потоку ротора, что, в свою очередь, создаёт необходимый момент на валу электродвигателя.

Управление двигателем

Контроллер бесколлекторного электродвигателя постоянного тока совершает регулирование действующего на ротор момента, меняя величину широтно-импульсной модуляции. Коммутация при этом контролируется и осуществляется посредством электроники, в отличие от обычного щёточного двигателя постоянного тока. Также распространёнными являются системы управления, которые для рабочего процесса реализуют алгоритмы широтно-импульсной модуляции и широтно-импульсного регулирования.

Двигатели на векторном управлении обеспечивают самый широкий из всех известных диапазонов для регулирования собственной скорости. Регулирование этой скорости, как и поддержание потокосцепления на необходимом уровне, происходит благодаря преобразователю частоты.

Особенностью регулирования электропривода, основанного на векторном управлении, является наличие контролируемых координат. Они находятся в неподвижной системе и преобразуются во вращающуюся, выделяя пропорциональное контролируемым параметрам вектора постоянное значение, благодаря чему формируется управляющее воздействие, а затем обратный переход.

Несмотря на все преимущества такой системы, она сопровождается и недостатком в виде сложности управления устройством для регулирования скорости в широком диапазоне.

Преимущества и недостатки

В наше время во многих отраслях промышленности такой тип двигателя пользуется огромным спросом, ведь бесколлекторный электродвигатель постоянного тока объединил в себе едва ли не все самые лучшие качества бесконтактных и других типов двигателей.

Неоспоримыми преимуществами вентильного двигателя являются:

  • широкий диапазон в изменении частоты вращения и лёгкость в его регулировании;
  • энергетические показатели невероятно высоки – КПД составляет более 90%;
  • безопасность при использовании в агрессивной среде или во взрывоопасных местах;
  • перегрузочная способность крайне велика;
  • при работе в режиме перегрузки электродвигателя наблюдается низкий перегрев;
  • отсутствие требующих техобслуживания узлов (в обычном вентильном двигателе);
  • бесконтактность;
  • точность позиционирования;
  • динамика и высокое быстродействие;
  • пусковой момент очень большой;
  • возможность использования в разных режимах (двигательном и генераторном);
  • высокая надёжность;
  • долгий срок службы;
  • отсутствие скользящих контактов;
  • высокий ресурс работы.

Несмотря на весомые положительные моменты, в бесколлекторном электродвигателе постоянного тока также есть несколько недостатков:

  • использование в конструкции ротора дорогостоящих материалов, в частности, постоянных магнитов, приводит к высокой стоимости устройства;
  • ресурс электронных узлов ограничен;
  • коллектор изнашивается достаточно быстро, что ограничивает срок службы устройства;
  • коллекторно-щёточные узлы требуют периодического профилактического обслуживания (в бесколлекторном двигателе постоянного тока);
  • электродвигателю присуща сложная для обывателя система управления.

Исходя из вышеизложенного и неразвитости современной электроники в регионе, многие всё ещё считают целесообразным использование обычного асинхронного двигателя с наличием преобразователя частоты.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Такой тип двигателя обладает превосходными характеристиками, особенно при совершении управления посредством датчиков положения. Если момент сопротивления варьируется или вовсе неизвестен, а также при необходимости достижения более высокого пускового момента используется управление с датчиком. Если же датчик не используется (как правило, в вентиляторах), управление позволяет обойтись без проводной связи.

Особенности управления трёхфазным бесколлекторным двигателем без датчика по положению:

  • расположение ротора определяют при помощи дифференциального АЦП (аналого-цифрового преобразователя);
  • токовую перегрузку определяют также при помощи АЦП (аналого-цифрового преобразователя) либо аналогового компаратора;
  • регулировку скорости выполняют при помощи подсоединённых к нижним драйверам ШИМ-каналов;
  • рекомендуемыми микроконтроллерами считаются AT90PWM3 и ATmega64;
  • поддерживаемыми коммуникационными интерфейсами (интерфейсами связи) являются УАПП, SPI и TWI.

Особенности управления трёхфазным бесколлекторным двигателем с датчиком по положению на примере датчика Холла:

  • регулировку скорости выполняют при помощи подсоединённых к нижним драйверам ШИМ-каналов;
  • выход каждого из датчиков Холла подключают к соответствующей линии ввода-вывода микроконтроллера, настроенной при изменениях состояния на генерацию прерываний;
  • поддерживаемыми коммуникационными интерфейсами (интерфейсами связи) являются УАПП, SPI и TWI;
  • токовую перегрузку определяют при помощи АЦП (аналого-цифрового преобразователя) либо аналогового компаратора.

Бесколлекторный электродвигатель постоянного тока имеет массу преимуществ и станет достойным выбором для использования как специалистом, так и простым обывателем.

  • Пётр Викторочич Кузнецов

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле. В настоящее время существует несколько типов устройств, имеющих различные характеристики. С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере. Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

бесщеточный двигатель

Принцип работы

Увеличение надежности, уменьшение цены и более простое изготовление обеспечивается отсутствием механических коммутационных элементов, обмотки ротора и постоянных магнитов. При этом повышение результативности возможно благодаря уменьшению потерь трения в коллекторной системе. Бесщеточный двигатель может функционировать на переменном либо непрерывном токе. Последний вариант отличается заметным сходством с коллекторными двигателями. Его характерной особенностью является формирование магнитного вращающегося поля и применение импульсного тока. В его основе присутствует электронный коммутатор, из-за чего повышается сложность конструкции.

Вычисление положения

Генерирование импульсов происходит в управляющей системе после сигнала, отражающего положение ротора. От стремительности вращения мотора напрямую зависит степень напряжения и подачи. Датчик в стартере определяет положение ротора и подает электрический сигнал. Вместе с магнитными полюсами, проходящими рядом с датчиком, меняется амплитуда сигнала. Также существуют бездатчиковые методики установления положения, к их числу относятся точки прохождения тока и преобразователи. ШИМ на входящих зажимах обеспечивают сохранение переменного уровня напряжения и управление мощностью.

Для ротора с неизменными магнитами подведение тока необязательно, благодаря чему отсутствуют потери в обмотке ротора. Бесщеточный двигатель для шуруповерта отличается низким уровнем инерции, обеспечиваемым отсутствием обмоток и механизированного коллектора. Таким образом появилась возможность использования на высоких скоростях без искрения и электромагнитного шума. Высокие значения тока и упрощение рассеивания тепла достигаются размещением нагревающих цепей на статоре. Стоит также отметить наличие электронного встроенного блока на некоторых моделях.

двигатель для шуруповерта

Магнитные элементы

Расположение магнитов может быть различным в соответствии с размерами двигателя, к примеру, на полюсах или по всему ротору. Создание качественных магнитов с большей мощностью возможно благодаря использованию неодима в сочетании с бором и железом. Несмотря на высокие показатели эксплуатации, бесщеточный двигатель для шуруповерта с постоянными магнитами обладает некоторыми недостатками, в их числе утрата магнитных характеристик при высоких температурах. Но они отличаются большей эффективностью и отсутствием потерь по сравнению с машинами, в конструкции которых имеются обмотки.

Импульсы инвертора определяют скорость вращения механизма. При неизменной питающей частоте работа двигателя осуществляется с постоянной скоростью в разомкнутой системе. Соответственно, скорость вращения меняется в зависимости от уровня питающей частоты.

бесщеточный двигатель постоянного тока

Характеристики

Вентильный электродвигатель работает в установленных режимах и имеет функционал щеточного аналога, скорость которого зависит от приложенного напряжения. Механизм обладает множеством достоинств:

  • отсутствие изменений при намагничивании и утечке тока;
  • соответствие скорости вращения и самого вращающего момента;
  • скорость не ограничивается центробежной силой, влияющей на коллектор и роторную электрообмотку;
  • нет необходимости в коммутаторе и обмотке возбуждения;
  • используемые магниты отличаются небольшим весом и компактными размерами;
  • высокий момент силы;
  • энергонасыщенность и эффективность.

вентильный электродвигатель

Использование

Бесщеточный двигатель постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт. В более мощной аппаратуре их применение нерационально. Также стоит отметить, что магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям. Индукционные и щеточные варианты лишены таких недостатков. Двигатели активно используются в электрических мотоциклах, автомобильных приводах благодаря отсутствию трения в коллекторе. Среди особенностей нужно выделить равномерность вращающего момента и тока, что обеспечивает снижение акустического шума.

Возникновение бесколлекторных двигателей объясняется необходимостью создания электрической машины с множеством преимуществ. Бесколлекторный двигатель представляет собой устройство без коллектора, функцию которого берет на себя электроника.

БКЭПТ — бесколлекторные электродвигатели постоянного тока, могут быть мощностью, примером, 12, 30 вольт.

Выбор подходящего двигателя

Чтобы подобрать агрегат, необходимо сравнить принцип работы и особенности коллекторных и бесколлекторных двигателей.

Коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Слева направо: коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Коллекторные стоят меньше, но развивают невысокую скорость вращения крутящего момента. Они работают от постоянного тока, имеет небольшой вес и размер, доступный ремонт по замене деталей. Проявление негативного качества выявляется при получении огромного количества оборотов. Щетки контактируют с коллектором, вызывая трение, что может повредить механизм. Работоспособность агрегата снижается.

Щеточки не только требуют ремонта из-за быстрого износа, но и могут привести к перегреву механизма.

Главным преимуществом бесколлекторного двигателя постоянного тока является неимение контактов крутящего момента и переключения. Значит отсутствие источников потерь, как в двигателях с постоянными магнитами. Их функции выполняют транзисторы МОП. Ранее их стоимость была высокой, поэтому они не были доступны. Сегодня цена стала приемлемой, а показатели значительно улучшились. При отсутствии в системе радиатора, мощность ограничивается от 2,5 до 4 ватт, а ток работы от 10 до 30 Ампер. КПД бесколлекторных электродвигателей очень высокий.

Вторым преимуществом выступает настройки механики. Ось устанавливается на широкоподшипники. В структуре нет ломающих и стирающихся элементов.

Единственным минусом является дорогой электронный блок управления.

Шпиндель ЧПУ Porter Cable 690

Шпиндель ЧПУ Porter Cable 690

Рассмотрим, пример механики ЧПУ станка со шпинделем.

Замена коллекторного двигателя на бесколлекторный оградит от поломки шпинделя для ЧПУ. Под шпинделем имеется в видувал, обладающий правыми и левыми оборотами крутящего момента. Шпиндель для ЧПУ обладает большой мощностью. Скорость крутящего момента контролируется регулятором сервотестором, а обороты управляются автоматом контроллером. Стоимость ЧПУ со шпинделем около 4 тысяч рублей.

Принцип работы

Главная особенность механизма — отсутствие коллектора. А постоянные магниты установлены у шпинделя, является ротором. Вокруг него располагаются проволочные обмотки, которые имеют различные магнитные поля. Отличием бесколлекторных моторов 12 вольт является сенсор управления ротором, расположенный на нем же. Сигналы подаются в блок регулятора скорости.

Устройство БКЭПТ

Схему расположения магнитов внутри статора обычно применяют для двухфазных двигателей с небольшим количеством полюсов. Принцип крутящего момента вокруг статора применяют при необходимости получить двухфазный двигатель с небольшими оборотами.

8 магнитов, формирующих 4 полюсаНа роторе расположены четыре полюса. Магниты в форме прямоугольника устанавливаются, чередуя полюсы. Однако не всегда количество полюсов равняется числу магнитов, которых может быть 12, 14. Но количество полюсов должно быть четным.Несколько магнитов могут составлять один полюс.

На картинке изображено 8 магнитов, формирующих 4 полюса. Момент силы зависит от мощности магнитов.

Датчики и их отсутствие

Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода — дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

Датчик Холла

Датчик ХоллаРаспространенное приспособление, изменяющие свои выводы при переключении обмоток.

Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

Сигналы датчика холла в момент вращения

Сигналы датчика холла в момент вращения

Использование датчика положения с микроконтроллером

Микроконтроллеры AVR фирмы Atmel

Микроконтроллеры AVR фирмы Atmel

Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

  • пуск двигателя максимально быстро без использования внешних дополнительных приборов,
  • управление скоростью одним внешним потенциометром.

Электронный блок управления СМА LG 6871ER1007C

Электронный блок управления СМА LG 6871ER1007C

Отдельный вид автоматического управления сма, используется в стиральных машинах.

Отсутствие датчика

Бездатчиковый регуляторДля определения положения ротора необходимо проводить измерение напряжения на незадействованную обмотку. Данный способ применим при вращении двигателя, иначе он не будет действовать.

Бездатчиковые регуляторы хода изготавливаются легче, это объясняет их широкое распространение.

Контроллеры обладают следующими свойствами:

  • значение максимального постоянного тока,
  • значение максимального рабочего напряжения,
  • число максимальных оборотов,
  • сопротивление силовых ключей,
  • импульсная частота.

При подключении контроллера важно делать провода, как можно короче. Из-за возникновения бросков тока на старте. Если провод длинный, то могут возникнуть погрешности определения положения ротора. Поэтому контроллеры продаются с проводом 12 — 16 см.

Контроллеры обладают множеством программных настроек:

  • контроль выключения двигателя,
  • плавное или жёсткое выключение,
  • торможение и плавное выключение,
  • опережение мощности и КПД,
  • мягкий, жесткий, быстрый старт,
  • ограничения тока,
  • режим газа,
  • смена направления.

Контроллер LB11880

Контроллер LB11880

Контроллер LB11880, изображенный на рисунке, содержит драйвер бесколлекторного двигателя мощной нагрузки, то есть можно запустить двигатель напрямую к микросхеме без дополнительных драйверов.

Понятие ШИМ частоты

Когда происходит включение ключей, полная нагрузка подаётся на двигатель. Агрегат достигает максимальных оборотов. Для того чтобы управлять двигателем, нужно обеспечить регулятор питания. Именно это осуществляет широтно-импульсная модуляция (ШИМ).

Устанавливается необходимая частота открытия и закрытия ключей. Напряжение меняется с нулевого на рабочее. Чтобы управлять оборотами, необходимо наложить сигнал ШИМ на сигналы ключей.

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Сигнал ШИМ может быть сформирован аппаратом на несколько выводов. Или создать ШИМ для отдельного ключа программой. Схема становится проще. ШИМ сигнал имеет 4— 80 килогерц.

Увеличение частоты приводит к большему количеству процессов перехода, что даёт выделение тепла. Высота частоты ШИМ повышает количество переходных процессов, от этого происходят потери на ключах. Маленькая частота не даёт нужную плавность управления.

Чтобы уменьшить потери на ключах при переходных процессах, ШИМ сигналы подаются на верхние или на нижние ключи по отдельности. Прямые потери рассчитываются по формуле P=R*I2, где P — мощность потерь, R — сопротивление ключа, I — сила тока.

Меньшее сопротивление минимизируют потери, увеличивает КПД.

Система arduino

Часто для управления бесколлекторными двигателями используется аппаратная вычислительная платформа arduino. В основе находится плата и среда разработки на языке Wiring.

В Плату arduino входит микроконтроллер Atmel AVR и элементная обвязка программирования и взаимодействия со схемами. На плате имеется стабилизатор напряжения. Плата Serial Arduino представляет собой несложную инвертирующую схему для конвертирования сигналов с одного уровня на другой. Программы устанавливаются через USB. В некоторых моделях, например, Arduino Mini, необходима дополнительная плата для программирования.

Язык программирования Arduino используется стандартный Processing. Некоторые модели arduino позволяют управлять несколькими серверами одновременно. Программы обрабатывает процессор, а компилирует AVR.

Проблемы с контроллером могут возникать из-за провалов напряжения и чрезмерной нагрузке.

Крепеж двигателя

Моторама 45/50/58

Моторама 45/50/58

Моторама— механизм крепления двигателя. Применяется в установках двигателей. Моторама представляет собой взаимосвязанные стержни и элементы каркаса. Моторамы бывают плоскими, пространственными по элементам. Моторама одиночного двигателя 30 вольт или нескольких устройств. Силовая схема моторамы состоит из совокупности стержней. Моторама устанавливается в сочетании ферменных и каркасных элементов.

Бесколлекторный электродвигатель постоянного тока незаменимый агрегат, применяемый как в быту, так и в промышленности. Например, ЧПУ станок, медицинское оборудование, автомобильные механизмы.

БКЭПТ выделяются надежностью, высокоточным принципом работы, автоматическим интеллектуальным управлением и регулированием.

Главная » Сделай сам » Мотор из генератора своими руками | Делаем электродвигатель

Многие из нас, видя проезжающие по городу электро- скутеры, велосипеды или самокаты, с завистью оборачиваются вслед. Еще бы, пользоваться любимым транспортным средством прилагая минимум усилий – мечта каждого. Вот только стоят они весьма недешево. Вот тут-то и возникает мысль: а нельзя ли переделать свой велосипед в электрический?
Необходимым элементом для переделки является безщеточный мотор постоянного тока (BLDC), но его цена на рынке достаточно высока. В нашей статье мы расскажем вам, как сделать такой мотор из генератора своими руками. Это значительно уменьшит расходы на переделку велосипеда. Ведь б/у генератор в хорошем состоянии можно недорого купить на любой автомобильной разборке.

Для того, чтобы сделать мотор из генератора, вам понадобятся:

  • старый автомобильный генератор;
  • плоскогубцы, набор ключей и отверток;
  • контроллер регуляторов оборотов;
  • паяльник;
  • провода;
  • две аккумуляторные батареи на 6В;
  • мультиметр;
  • подшипники (при необходимости их замены).

Шаг 1. Разбираем автомобильный генератор

1

Раскручиваем четыре длинных болта, соединяющих генератор.

2

Отсоединяем регулятор напряжения (реле-регулятор в сборе со щетками) и снимаем его.

Мотор из генератора своими руками | Делаем электродвигатель

3

Придерживая шкив, отворачиваем гайку крепления и снимаем его.

4

Снимаем все шайбы, крыльчатку и вынимаем шпонку.

Мотор из генератора своими руками | Делаем электродвигатель

5

Снимаем переднюю крышку, вынимаем ротор с коллектором и подшипники.

Мотор из генератора своими руками | Делаем электродвигатель

Если подшипники износились – замените их на аналогичные.

6

Откручиваем статор от задней крышки и выпрямительного блока и вынимаем его.

7

Отсоединяем и удаляем блок выпрямителей (диодный мост).

Мотор из генератора своими руками | Делаем электродвигатель

8

Зачищаем и соединяем в «треугольник» выводы обмоток статора.

9

Залуживаем их и припаиваем к ним провода.

Мотор из генератора своими руками | Делаем электродвигатель

10

Отсоединяем два контакта реле-регулятора от щеток и так же припаиваем к ним провода.

Мотор из генератора своими руками | Делаем электродвигатель

Шаг 2. Собираем мотор

1

Соединяем провода статора в жгут и вставляем его в заднюю крышку.

Мотор из генератора своими руками | Делаем электродвигатель

2

Ставим на место ротор с коллектором и подшипниками, надеваем переднюю крышку и стягиваем все длинными болтами.

3

Присоединяем на место щеточный блок.

Мотор из генератора своими руками | Делаем электродвигатель

4

Ставим на место шпонку, одеваем крыльчатку, шайбы и шкив и затягиваем все гайкой.

Шаг 3. Проводим испытание

Перед подключением источников питания к мотору обязательно проверьте мультиметром отсутствие межвиткового короткого замыкания, а также пробивания на корпус!

1

Подключаем выводы со щеток мотора к одному аккумулятору, а выводы со статора, через контроллер регуляторов оборотов – к другому.

2

В результате мы из старого автомобильного генератора получили BLDC мотор с возможностью регулировки оборотов.

Мотор из генератора своими руками | Делаем электродвигатель

Если вам понравилась наша статья, поставьте лайк ?

✔️ Подписывайтесь на сайт, чтобы не пропустить ничего интересного!⚡

Больше фотографий и видеоконтента на сайте https://krrot.net

Источник

Иван Миров

  • Об авторе
  • Хотите связаться со мной?

Уже лет 20 работаю своими руками. Пробовал и сантехнику, монтаж конструкций, есть свое маленькое производство. Друзья постоянно спрашиваю как сделать разные вещи. Вот и делюсь я с вами своими идеями в интернете.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *