Меню

Блок питания двухполярный 35 вольт своими руками

Собираем простой двухполярный лабораторный блок питания для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители!Приветствую вас на сайте “Радиолюбитель

На этом занятии Школы начинающего радиолюбителя мы начнем создавать лабораторию радиолюбителя. Для более-менее качественного исполнения задуманной конструкции радиолюбителю необходим минимальный набор приборов для настройки и проверки работоспособности собираемой им схемы. Кроме мультиметра (тестера) необходимо иметь: лабораторный блок питания (для проверки работоспособности и настройки схемы, и чтобы для каждой схемы, прежде чем наладить ее, не собирать отдельный источник питания); генератор импульсов (прямоугольных, пилообразных, синусоидальных – для настройки схемы); частотомер (для измерения частотных характеристик собираемой схемы или ее настройки). Это основные приборы.

Начнем мы с лабораторного блока питания. Очень часто в публикуемых электрических схемах требуется двухполярный источник питания (к примеру: +9 вольт, общий провод, -9 вольт), поэтому мы будем сразу создавать двухполярный лабораторный блок питания. За основу возьмем схему простого в исполнении двухполярного источника питания опубликованного на сайте в разделе “Источники питания“:

На всякий случай еще раз привожу схему блока питания:

Двухполярный-лабораторный-блок-питания.jpg

Схема проста в изготовлении, не требует дефицитных деталей  и позволяет получать на выходе ± 1,5…37 вольт при выходном токе до 1,5 ампер. Основа конструкции – микросхемные стабилизаторы напряжения типа КРЕН – КР142ЕН12А (регулируемый стабилизатор положительного напряжения) и КР142ЕН18А (регулируемый стабилизатор отрицательного напряжения). Рассмотри схему более подробнее, чем она описана в статье.

Для того, чтобы схема выдавала заявленные максимальные 37 вольт на вход стабилизаторов надо подавать напряжение на 2-3 вольта больше, т.е. около 40 вольт. Поэтому силовой понижающий трансформатор должен выдавать на своих двух вторичных обмотках около 40 вольт. Но надо учитывать, что при  использовании в схеме выпрямителя по мостовой схеме (как у нас) выпрямленное (постоянное) напряжение на сглаживающем конденсаторе (С1 и С5) примерно получается в 1,4 раза больше чем переменное напряжение на обмотках трансформатора, и это надо учитывать при выборе трансформатора. Вообще, при выборе деталей надо исходить из двух основных принципов: 1) деталь должна быть как можно дешевле и 2) лучше использовать то что “бог послал”. В данном случае нам нужен трансформатор обеспечивающий на двух вторичных обмотках примерно 25…30 вольт и номинальную силу тока 1,5 ампера, то есть мощность его должна быть около 40 ватт. Новый трансформатор, выдающий такие характеристики довольно-таки дорог, поэтому надо исходить из того, что имеется в данный момент у радиолюбителя. Мне, например, “бог послал” трансформатор ТП-115 К12, кторый выдает переменное напряжение ±18 вольт при максимальном токе нагрузке 0,7 ампер. Вы можете использовать любой другой подходящий трансформатор, даже с одной вторичной обмоткой (получится блок питания с регулируемым положительным напряжением) а в дальнейшем уже заменить его на более подходящий. И еще немного о деталях. Радиолюбитель должен стремиться к тому, чтобы себестоимость его конструкции была как можно меньше, а для этого надо не только покупать новые детали, но и смело использовать детали бывшие в употреблении. Поэтому, мой вам совет, проходя мимо “помойки” и заметив что там валяется какая-либо плата с деталями, выброшенный старый телевизор или что-то другое, не стесняйтесь, подойдите, посмотрите и если эта штука в нормальном состоянии заберите ее домой на детали. Посещайте “блошиные рынки”, радиомастерские, на всем этом вы сможете сэкономить круглую сумму. Если только покупать детали в магазинах, то можно разориться. Цены в магазинах сейчас дикие, очень кусачие и часто вызывающие недоумение. К примеру, к блоку питания нам потребуются измерительные головки (аналоговые или цифровые) визуально отображающие напряжения (и токи на выходе), так вот, в моем “любимом магазине” стрелочный индикатор с пределом измерения 30 вольт стоит 520 рублей а цифровой (с выводом результата на дисплей) около 600 рублей, при том, что на рынке можно купить цифровой мультиметр приличного качества за 300 рублей! Но, продолжим.

С выхода вторичных обмоток трансформатора переменное напряжение подается на выпрямители собранные по мостовой схеме. В схеме можно использовать выпрямительные диоды или диодные сборки какие есть под рукой. Единственное они должны соответствовать требованиям: рабочее напряжение не ниже 50 вольт и ток нагрузки не менее 1,5 ампера (лучше больше, с запасом). С выпрямителей пульсирующее постоянное напряжение подается на сглаживающие конденсаторы С1 и С5. Задача этих конденсаторов как можно больше снизить пульсацию постоянного напряжения. Если у вас нет конденсаторов таких номиналов,  можно использовать другие, большего номинала или меньшего (соединив несколько конденсаторов параллельно). Конденсаторы С2 и С6 нужны, если длина проводников от сглаживающих конденсаторов до стабилизаторов более 15 сантиметров, если менее, то их можно не ставить. Резистор R1 и  светодиод HL1 нужны для световой сигнализации включенного блока питания. Далее постоянное напряжение поступает на микросхемные стабилизаторы напряжения. Вы наверное заметили, что у них несколько странное обозначение выводов, связано это с тем, что первоначальном варианте планировалось выпускать их в многовыводном корпусе, но потом от этой затеи отказались а нумерацию оставили старой. С помощью делителя напряжения на резисторах R2, R3  и R4, R5, где R2 и R4 переменные регулируется напряжение на выходе стабилизаторов. Для нормальной работы стабилизаторов и обеспечения их температурного режима, рекомендуется установить их на радиаторы. Радиаторы также можно применить из тех что имеются в наличии, и даже сделать самодельные из алюминиевых уголков. Но при этом надо учитывать, что чем меньше радиатор тем меньше должен быть ток нагрузки. Оптимально радиаторы должны иметь площадь не менее 100 см?.

Ниже приведена фотография используемых радиоэлементов, согласно схеме (у вас может отличаться):

Набор-деталей-для-изготовления-блока-питания.jpg

Вот такой, в принципе, у вас должен получиться набор радиодеталей для сборки двухполярного лабораторного источника питания. Как видно на фотографии на резисторах нанесена цветовая маркировка и чтобы проверить их номинал можно использовать программу, представленную в статье “Резисторы“,  или воспользоваться мультиметром:

Проверка-сопротивления-резистора.jpg

Как видим мультиметр показывает сопротивление проверяемого резистора около 240 Ом.

Если на “мелких” конденсаторах трудно различить маркировку или она совсем затерлась, емкость также можно проверить мультиметором:

Как видим емкость проверяемого конденсатора – 0,1 мкФ.

А вот так выглядят микросхемные стабилизаторы:

Извиняюсь за качество фотографии, в дальнейшем это дело будет поправлено. Маркировка выводов (для ЕН12 и ЕН18 она отличается) слева на право: для ЕН12 – 1 (регулирование), 2 (выход), 3 (вход); для ЕН18 – 1 (регулирование), 2 (вход), 3 (выход).

А вот так маркируются электролитические конденсаторы:

Напоминаю, что у импортных маркируется минусовой вывод (как на фотографии), а у родных маркируется положительный вывод знаком “+”.

Теперь делаем перерыв на несколько дней, в течении которых вы должны собрать необходимые радиодетали, материал для изготовления печатных плат. (Для рисования дорожек в мы будем использовать цапонлак (и обычный шприц), или другой имеющийся у вас в наличии и быстросохнущий).

Страницы: 1 23

Вчера я написал статью о лабораторном блоке питания  и буквально через пару часов мне написал письмо один из посетителей мастерской. Ему очень понравился представленный блок питания, но эта схема очень сложна как для новичка.  Человек попросил ему помочь с непростой для него задачей. Не нужны ему защиты и регулировка тока, все что нужно, это двухполярный блок питания с возможностью регулировки напряжений одновременно на обоих плечах. Вариант собрать регулируемый блок питания на LM317 и LM337 не представляется возможным из-за отсутствия компонентов, зато есть полно транзисторов.Человеку вполне могу помочь с этим простым для меня делом и я принялся за раздумья. В голове промелькнула советская схема регулируемого блока питания на транзисторах.

Данную схему немного доработал на современную элементарную базу, а так же добавил в нее отрицательное плече

Похожие материалы:

Распродажа на АлиЭкспресс. Успей купить дешевле!

Понижающий Dc-Dc преобразователь XL4016

Характеристики:

Ток(макс) 5А(8А)

Вх. напряжение 4-40V

Вых. напряжение 1.25-36V

Макс. мощность 200 Вт КПД: 94%

Размер: 61*41*27 мм

Цена: 251руб.

Недавно столкнулся со следующей проблемой, собрал два усилителя НЧ на TDA7294, следующим этапом была сборка импульсного блока двухполярного питания, но как-то не терпелось проверить работоспособность усилителей. Естественно трансформатора с двумя вторичными обмотками на нужное напряжение у меня не оказалось, да и вообще не было у меня трансформатора с двумя вторичными обмотками.

Устройство, преобразующее двухполярное питание из однополярного, имеет следующую схему:

Dvuhpolyarka-300x183.jpg

Схема была найдена в интернете, но в ней нет ничего сложного и объяснять работу данного устройства я не буду.

Компоненты для сборки:

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
VDS1,VDS2 Выпрямительный диодный мост Любой на нужное напряжение и ток 2 Распространенные KBU-610, KBU-810
C1,C5 Электролит 4700 мкФ 50В 2
C2,C6 Конденсатор неполярный 100 нФ 2 Пленка или керамика
C3,C4 Электролит 470 мкФ 100В 2

Скачать список компонентов в файле PDF

Описываемый в этой статье преобразователь двухполярного питания из однополярного не работает с постоянным током на входе преобразователя. Работает только с переменным током. Суть устройства такова, что из одной вторичной обмотки можно сделать  двухполярное питание.

DSC06746-300x225.jpg

 DSC06797-300x222.jpg

Диодные мосты выбирайте любые, какие есть, главное, чтобы по напряжению и току подходили. У меня лежали с давней распайки мосты RBA-401, током 4 Ампера, напряжением 95 Вольт. Для питания одной TDA7294 (+-30В) этого достаточно. Распространенные мосты KBU-610, KBU-810 и другие.

DSC06753-300x225.jpg

Если вы захотите использовать данное устройство на напряжение больше 45 Вольт, то следует заменить конденсаторы C1,C5 на более высоковольтные. У меня не было электролитов ёмкостью 4700 мкФ, но были 2200 мкФ, их я и поставил 4 штуки.

Неполярные конденсаторы C2,C6 я поставил полипропиленовые, с разборки компьютерных блоков питания.

Трансформатор я использовал кольцевой, с одной вторичной обмоткой, напряжением 29 Вольт, мощностью 50 Вт. После выпрямления получил +-41 Вольт на конденсаторах.

При проверке я запитал TDA7294, выжал из не примерно 35 Вт, при этом просадка напряжения составила +-25 Вольт. Большая просадка напряжения произошла из-за слабого трансформатора. На плате преобразователя, все элементы кроме мостов были холодные, мосты теплые.

Сделаю вывод, что данный преобразователь двухполярного питания из однополярного, работает стабильно, и может использоваться для запитывания усилителей НЧ.

Минус данного устройства заключается в использовании на его входе только переменного тока.

Список компонентов в файле PDF СКАЧАТЬ

Печатная плата СКАЧАТЬ

Используемые источники:

  • http://radio-stv.ru/nachinayushhim-radiolyubitelyam/dvuhpolyarnyiy-laboratornyiy-blok-pitaniya
  • https://rustaste.ru/dvukhpolyarnyjj-blok-pitaniya-s-regulirovkojj-napryazheniya.html
  • https://audio-cxem.ru/shemyi/istochniki-pitaniya/dvuhpolyarnoe-pitanie-iz-odnopolyarnogo.html

Лабораторный блок питания своими руками 0-30В 0-5А

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.

Лабораторный блок питания своими руками 0-30В 0-5А

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301

. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате
lay
.

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

На выходе мы получим регулируемое стабилизированное напряжение от
1,2 В
. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В)  откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно!

Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.


Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом


Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7,

резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП)

. Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431

, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.

Как и обещали, плату блока можно скачать тут:

Ну и демонстрация работы лабораторного блока питания:

Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью — так станет интереснее!

Работы наших читателей

Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.

Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех — китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.

Прекрасную работу прислал нам Роберт Ганеев  из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания

автор DDREDD.

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял  транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)

Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).

В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.

Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.

Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.

Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.

Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.

Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.

Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь [email protected] с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.

В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.

Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.

Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.

Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).

Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Архив для статьи

vprl.ru

Двухполярное питание из однополярного | AUDIO-CXEM.RU

Недавно столкнулся со следующей проблемой, собрал два усилителя НЧ на TDA7294, следующим этапом была сборка импульсного блока двухполярного питания, но как-то не терпелось проверить работоспособность усилителей. Естественно трансформатора с двумя вторичными обмотками на нужное напряжение у меня не оказалось, да и вообще не было у меня трансформатора с двумя вторичными обмотками.

Покопавшись в своем барахле, нашел два не очень мощных трансформатора, каждый имел одну вторичную обмотку, но на разное напряжение. Далее я принял решение собрать плату, которая будет из одной вторичной обмотки делать двухполярное питание.

Устройство, преобразующее двухполярное питание из однополярного, имеет следующую схему:

Схема была найдена в интернете, но в ней нет ничего сложного и объяснять работу данного устройства я не буду.

Компоненты для сборки:

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
VDS1,VDS2 Выпрямительный диодный мост Любой на нужное напряжение и ток 2 Распространенные KBU-610, KBU-810
C1,C5 Электролит 4700 мкФ 50В 2
C2,C6 Конденсатор неполярный 100 нФ 2 Пленка или керамика
C3,C4 Электролит 470 мкФ 100В 2

Скачать список компонентов в файле PDF

Описываемый в этой статье преобразователь двухполярного питания из однополярного не работает с постоянным током на входе преобразователя. Работает только с переменным током. Суть устройства такова, что из одной вторичной обмотки можно сделать  двухполярное питание.

 

Диодные мосты выбирайте любые, какие есть, главное, чтобы по напряжению и току подходили. У меня лежали с давней распайки мосты RBA-401, током 4 Ампера, напряжением 95 Вольт. Для питания одной TDA7294 (+-30В) этого достаточно. Распространенные мосты KBU-610, KBU-810 и другие.

Если вы захотите использовать данное устройство на напряжение больше 45 Вольт, то следует заменить конденсаторы C1,C5 на более высоковольтные. У меня не было электролитов ёмкостью 4700 мкФ, но были 2200 мкФ, их я и поставил 4 штуки.

Неполярные конденсаторы C2,C6 я поставил полипропиленовые, с разборки компьютерных блоков питания.

Трансформатор я использовал кольцевой, с одной вторичной обмоткой, напряжением 29 Вольт, мощностью 50 Вт. После выпрямления получил +-41 Вольт на конденсаторах.

При проверке я запитал TDA7294, выжал из не примерно 35 Вт, при этом просадка напряжения составила +-25 Вольт. Большая просадка напряжения произошла из-за слабого трансформатора. На плате преобразователя, все элементы кроме мостов были холодные, мосты теплые.

Сделаю вывод, что данный преобразователь двухполярного питания из однополярного, работает стабильно, и может использоваться для запитывания усилителей НЧ.

Минус данного устройства заключается в использовании на его входе только переменного тока.

Список компонентов в файле PDF СКАЧАТЬ

Печатная плата СКАЧАТЬ

Похожие статьи

audio-cxem.ru

Лабораторный блок питания двухполярный | 2 Схемы

Если нужен приличный блоком питания с регулируемым током и напряжением — редакция сайта «Две Схемы» советует вспомнить старый добрый стабилизатор uA723. Проверен он уже тысячи раз радиолюбителями по всему Миру и показал прекрасные результаты — тогда зачем изобретать велосипед? Схема обеспечивает симметричное двухполярное выходное напряжения в диапазоне до 26 В и токе до 3 А. Превышение максимального значения тока вызывает отключение выходных транзисторов, что можно рассматривать как защиту по току. В каждой мастерской должен быть именно такой двухполярный БП — это полезно например в конструкциях с использованием операционных усилителей, а также для предварительного запуска усилителей мощности с двойным питанием. Преимуществом описываемой здесь конструкции является очень низкая стоимость сборки. В общем данный блок питания станет очень серьезным помощником домашней радиотехнической лаборатории.

Схема блока питания на uA723

Принципиальная схема БП

Прямому регулированию подвергается плечо положительного напряжения, в то время как отрицательная часть следует за положительной благодаря системе построенной на операционном усилителе TL081.

Описание работы

Стабилизатор U1 (uA723) включает в себя температурно компенсированный источник опорного напряжения, усилитель ошибки и выходной транзистор, обеспечивающий ток до 150 мА. Микросхема работает в типовой конфигурации, в которой его внутренний усилитель ошибки сравнивает напряжение с делителя R0 (5,6 k) — R3 (4,7 k) с напряжением, какое наличествует на выходе блока питания. Резисторы R4 (220R), R5 (6,8 k) и потенциометр P1 (50k) обеспечивают регулирование напряжения выхода.

Усилитель ошибки работающие в петле отрицательной обратной связи регулируется с помощью элементов R1 (560R), T1 (BD911) и T2 (BD139) меняя выходное напряжение так, чтобы его доля была равна установленному напряжению через делитель R0 — R3. Изменение положения ползунка P1 приведет к изменению выходного напряжения, поэтому усилитель ошибки, соответственно, изменит выходное напряжение, чтобы эти изменения компенсировать.

Например: перемещение ручки потенциометра в направлении R4 повысит напряжение на его ползунке, что заставит стабилизатор (через усилитель ошибки) снизить выходное напряжения так, чтобы потенциал регулятора снизился до уровня устанавливаемого делителем R0 — R3.

Резистор R2 (0.2 R/5W) вместе с транзистором Т6(BC548) работает в узле ограничения тока. Если ток, потребляемый от источника питания растет — падение напряжения на R2 также возрастает. Открытый транзистор Т6 при снижении напряжения равным примерно 600 мВ вызовет короткое замыкание между эмиттером и базой транзисторов управления и тем самым ограничит ток, протекающий через T1. Ток будет ограничен значением примерно 0.6/R2, что в данном случае дает 3 Ампера. Номинал резистора следует подобрать самостоятельно, учитывая трансформатор и его характеристики. В роли T1 в большинстве случаев потребуется применение нескольких транзисторов соединенных параллельно, чтобы распределить протекающий ток и мощность на несколько элементов.

За регулирование отрицательной половины питания отвечает операционный усилитель U2 (TL081). Его выход управляет транзисторами T3 (BD140) и T4(BD912). Резистор R9 (560R) ограничивает ток базы Т3, выполняя аналогичную роль, как R1 в положительной половине питания. Делитель R6 (100k), R7 (100k) и P2 (10k) подобран таким образом, чтобы в состоянии, установленном на регуляторе P2 был потенциал массы. Увеличение напряжения на выходе положительной части блока питания приведет к увеличению потенциала на ползунке потенциометра P2, одновременно ОУ U1 стремясь уровнять потенциал на обоих своих выходах приведет к снижению отрицательной половины питания с помощью регулировочных элементов T3 и T4. Напряжение на отрицательной половине, соответственно, будет следовать за положительным, если только делитель R6, R7, P2 будет установлен на деление 1:1.
Транзистор T5 (BC557) ограничивает ток в отрицательной половине питания таким же образом, как и T6 в положительной половине. Максимальное значение тока в данном случае это 0.6/R8.

К разъемам IN1 и IN2 подключаются две независимые обмотки трансформатора питания. Напряжение будет одинаково на мостах Br1 (5А) и Br2 (5А) и будет фильтроваться с помощью емкости C1, C2 (4700uF) и C3, C4 (100nF), после чего попадает на транзисторы T1 и T4 (напоминаем, что каждый из них может состоять из нескольких транзисторов, соединенных параллельно). На выходе напряжение фильтруют конденсаторы C6, C7 (470uF) и C9, C10 (100nF). Выходом блока является разъем OUT на котором и будет регулируемое напряжение симметрично относительно массы. Кроме того, на плате можно установить делитель R10-R13, благодаря которому возможно измерение выходного напряжения с помощью микроконтроллера с преобразователем ADC.

На вход схемы необходимо подключить трансформатор с двумя обмотками напряжением 2×24 В и мощности в зависимости от ваших потребностей.

Сборка лабораторного блока питания

Плата печатная ЛБП

Схема паяется на печатной плате (скачать). Монтаж не сложен, элементы на ней находятся далеко друг от друга. Однако необходимо определить значения R3, Р1 и R5. Резистор R3 определяет уровень напряжения на входе усилителя ошибки (pin 5 U1) и его подбор является простым. По расчётам резистор R3 равен 4,7 k, что дает напряжение на усилителе ошибки около 3,2 В. Второй шаг-это подбор значения потенциометра P1 и резистора R5, от которых зависит максимальное выходное напряжение блока питания. Предполагая, что требуемый диапазон регулирования выходного напряжения от 3 В до 26 В легко рассчитаем значение R5 чуть ниже 7к. Принимаем ближайшее значение из стандартного ряда и получаем R5 = 6,8 к.

Готовый лабораторник БП

После сборки мелких элементов на плате, пришло время для установки силовых транзисторов T1 и T4, они должны быть установлены на отдельный радиатор. Если по какой-то причине будет только один радиатор — примените изоляционные прокладки под транзисторы. Если потребление тока от блока питания не будет большим — до 0.5 А, можно поставить только один транзистор. Если таки нагрузки планируются несколько ампер — можно использовать параллельное соединение транзисторов в соответствии со схемой их соединения.

Регулированный блок питания 0-30В

2shemi.ru

РАДИО для ВСЕХ — Лаборат. 2-х полярный БП

Лабораторный двухполярный блок питания с раздельной регулировкой напряжения от 0 до 30В по каждому каналу и уровнем ограничения по току от 0 до 2А с индикацией режима ограничения

ВНИМАНИЕ!!! Входное напряжение постоянного тока от 14 до 35 В. Эксперимент показал, что при Uвх=35В максимальные выходные токи для указанных на схеме транзисторов составляют: при Uвых=3В/Iвых=0,2А; при Uвых=30В/2А поскольку мощность рассеиваемая коллектором 2Вт без радиатора и порядка 8Вт с радиатором. Увеличить выходные токи можно применив транзисторы TIP147/TIP142 или можно уменьшить входное напряжение. Можно применить переключение отводов вторичной обмотки трансформатора, т.е. можно сделать несколько отводов. Но Uвх=35В это максимум! Блок питания отлично работает при Uвх порядка 24В, поэтому я рекомендовал бы использовать его при входных напряжениях не более 24В ;-( (это моё мнение и может не совпадать с авторами схемы)

Печатные платы с маской и маркировкой:

Лабораторный двухполярный стабилизированный блок питания с раздельной регулировкой напряжения в диапазоне от 0 до 30 В и тока в диапазоне от 0 до 2 А с функцией ограничения тока и индикацией режима ограничения по току для каждого канала. Диапазон входных напряжений от 14 до 35 В. Плата выполнена таким образом, что переменные резисторы можно закрепить непосредственно на передней панели блока питания при помощи штатных гаек переменных резисторов, расстояния между переменными резисторами выбраны с учётом удобства эксплуатации. Между переменными резисторами канала 30 мм, а между крайними переменными резисторами каналов 40 мм, что очень удобно, в отличие от предлагаемых на рынке. Возможные места установки монтажных стоек приведены на фотографиях ниже (стойки и радиатор в комплект набора не входят и при необходимости заказываются отдельно). Подключение выполняется через винтовые клеммники.




Стоимость печатной платы с маской и маркировкой: временно закончились

Стоимость набора для сборки блока питания: временно отсутствует в продаже

Краткое описание, комплектация и схема здесь >>>

Стоимость собранной и настроенной платы блока питания без радиатора: временно отсутствует в продаже




Всем кто хочет купить платы, наборы или готовые блоки просьба обращаться сюда >>>

radio-kits.ucoz.ru

cxema.org — Двухполярный лабораторный блок питания

Двухполярный лабораторный блок питания

Напряжение бп 0-30 Вольт. Ток срабатывания защиты 0-10 А.

Сидел я как-то на работе и решил сделать что-нибудь полезное. Порыскав в интернете в поисках стоящих девайсов, наткнулся на довольно простой блок питания и решил взяться за него. 

Автор схемы leokri

Не знаю для чего нужна цепочка VD3,VD2, резистор на 3 кОма и электролит (видимо цепочка мягкого пуска), но с ними у меня блок питания не заработал и они были удалены из схемы. Емкость 20000 мкФ мной была заменена на 10000 мкФ, поскольку на нагрузку в 5 Ампер считаю что этого будет достаточно, да и вряд ли у меня будут такие токи в нагрузке блока питания.

Описания принципа работы схемы: При включении питания происходит заряд емкости конденсатора емкостью 20000 мкФ. Как только конденсатор зарядится, напряжение на выходе начнет расти до той поры, пока не сработает компаратор DA4 операционного усилителя LM324N. Как только напряжение на его 10 ноге превысит напряжение на 9 ножке, компаратор переключится и своим током через светодиод  начнет открывать транзистор VT3. Напряжение на эмиттере транзистора VT1 понизится до заданного значения. Если напряжение на 9 ножке станет больше, чем на 10 компаратор переключится обратно и напряжение на эмиттере VT1 начнет повышаться. Срабатывание компаратора определяется напряжением на 9 ножке, которое выставляется подстроечным резистором на 4,7 к Ома.

 Аналогично работает канал токового регулирования, подстройка которого производится подстроечным резистором на 1 кОм.

Вместо двух силовых транзисторов в канал я сделал один, так как для 5 ампер одного КТ827А вполне будет достаточно.

В качестве линейных стабилизаторов напряжения использованы LM7808 и LM7815. Стабилизатор LM7815 запитывался непосредственно с электролитического конденсатора сразу после выпрямительного моста, а стабилизатор LM7808 запитывался с LM7815.

Операционный усилитель LM324N мне в магазине продали такой, что минимальный ток срабатывания на нем 40 мА, пришлось искать операционный усилитель данного типа с лазерной гравировкой, только после этого все стало регулироваться как положено. А второй операционный усилитель я достал из платы управления UPSа, корпус которого был использован.

В качестве шунта я использовал два керамических резистора на 0,1 Ома на 5Wвключенных параллельно друг другу.

Разработав монтажную плату и удостоверившись в работоспособности платы, собрал вторую такую же, чтобы обеспечить второй канал. Плата разрабатывалась в Visio.

Для визуального получения информации о напряжении и токе на блоке питания было решено сделать ампервольтметр на базе контроллера Atiny13Aи дисплея от сотового телефона Nokia 1200, поскольку у меня валялась целая куча этих телефонов.

Вольтметр+амперметр+ваттметр для блока питания

Также как и в случае с платой блока питания, мной были разработана плата для  ампервольтметров и плата под два дисплея, чтобы все влезало в переднюю панель корпуса UPSа.

автор данного девайса pavel-pervomaysk

A JonnS переделал прошивку под большие символы на дисплее

Силовой трансформатор был задействован от того же UPSa. Трансформатор был разобран и перемотан на напряжение 18 Вольт переменки. После выпрямительного моста и конденсатора у меня получилось 25 Вольт постоянки. Если кто будет повторять, то рекомендую намотать две дополнительные обмотки на напряжение 12 Вольт для питания ампервольтметров. 

Чтобы коллекторы не замыкались друг с другом была поставлена диэлектрическая пластина, в которой выпилено большое отверстие для транзисторов и на которую были закреплены радиаторы.

На одном из радиаторов закреплены также 2 кренки для запитки ампервольтметров.

Конечный результат получился такой. Второй дисплей инвертированный, поэтому видно хуже, но перепрошивать контроллер было уже лень.)))

Сзади были установлены предохранители для каждого канала в отдельности и оставлены все разъемы. С одного из задних разъемов я питаю свою самодельную паяльную станцию. Очень кстати удобно провода не болтаются по всему полу.

Для программирования контроллеров был собран самый простой, как мне кажется, программатор, который был найден на просторах интернета.

Порыскав на заводе в старом хламе, был найден нужный разъем и сделано такое чудо.

Прошивка без проблем была вшита в контроллер программой Uniprof. Вот пожалуй и все!

Все исходники можно скачать тут

{youtube}Mm_f-Qw4964{/youtube}

Автор Роман Соболев

  • < Назад
  • Вперёд >

vip-cxema.org

Переделка компьютерного БП в двухполярный источник питания

В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.

TDA7294

И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.

На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.

Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:

По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.

Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:

Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.

То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.

Земля блока питания останется самой собой и в этом случае, то есть средней точкой.

Остается подобрать только диодный мост.

В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.

Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.

После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.

И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.

В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.

Потом нужно припаять провода к крайним выводам этой сборки.

Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.

Автор: Алексей Алексеевич. Мурманск.


volt-index.ru

No related posts.

Большая часть низковольтных потребителей (радиоэлектронная аппаратура и т.д.) для питания требует напряжения одной полярности. Наряду с этим существуют схемы, для которых необходимо как положительное (относительно общего провода), так и отрицательное напряжение. Источники питания для таких узлов называются двухполярными, они необходимы для запитки схем на операционных усилителях, двухтактных каскадов аудиоусилителей и т.п.

Описание популярных схем двухполярного питания

Проще всего организовать двухполярное питание с помощью резистивного делителя. На вход подается напряжение, равное удвоенному уровню каждого плеча. Общая точка соединения двух резисторов служит общим проводом.

Схема двухполярного блока питания

Организация двухполярного питания с помощью резистивного делителя.

Напряжение плеч распределяется пропорционально сопротивлениям каждого резистора. При R1=R2 выход будет симметричным – U1=U2. Недостатком такого делителя является зависимость распределения напряжений от нагрузки – потребитель шунтирует резисторы, и если шунтирование будет различным, то и выходное напряжение также станет несимметричным. Чтобы уменьшить этот эффект, надо, чтобы Rнагрузки было намного больше резистора соответствующего плеча. Соответственно, при росте мощности потребителя придется уменьшать значение каждого сопротивления делителя, что приведет к росту потребляемой мощности по цепи R1R2, и уже скоро она достигнет неприемлемых величин.

Этот недостаток значительно сглаживается, если вместо резисторов применить конденсаторы. Напряжение распределяется пропорционально емкостям, при С 1=С2 на выходе U1=U2.

Схема двухполярного блока питания

Емкостный делитель.

Емкость зависит от нагрузки, поэтому в этой схеме применяют оксидные (раньше их называли электролитическими) конденсаторы. В теории через цепь С1С2 ток не течет, мощность не потребляется. На практике оксидные конденсаторы имеют заметный ток утечки. Он не настолько велик, чтобы создать проблемы с потребляемой мощностью, но он для каждого конденсатора индивидуален, и создает изначальную несимметрию плеч. Этот эффект усиливает большой допустимый разброс емкостей электролитов. Поэтому параллельно конденсаторам полезно поставить по резистору одинакового номинала (в несколько сотен ом или несколько килоом). На потребление мощности они почти не повлияют, а распределение уровней выровняют.

Делитель из оксидных конденсаторов, обладающих большой емкостью, можно применять только в цепях постоянного тока.

Схема двухполярного блока питания

Практическая схема источника питания с емкостным делителем.

На практике можно использовать подобную схему совместно с понижающим трансформатором и мостовым двухполупериодным выпрямителем. Конденсаторы служат одновременно сглаживающим фильтром и делителем. Выравнивающие делители не обязательны, если у трансформатора есть отвод от середины вторичной обмотки.

Схема двухполярного блока питания

Источник двухполярного питания с трансформатором со средней точкой.

На новый уровень независимость выходного напряжения от нагрузки выводит выполнение источника питания по схеме со стабилизацией. В простом варианте ее можно выполнить на двух транзисторах, на базы которых подана половина питания от резистивного делителя (оба сопротивления должны быть равны).

Схема двухполярного блока питания

Стабилизированный источник двухполюсного питания.

Для верхнего (положительного) плеча можно применить транзистор КТ815 (КТ817). Для нижнего (отрицательного) КТ814 (КТ816) или другие соответствующей структуры.

Схема двухполярного блока питания

Двухполярный делитель напряжения с операционным усилителем.

Еще лучшие параметры имеет схема с применением операционного усилителя. Цепь отрицательной обратной связи на резисторе R3 обеспечивает хороший коэффициент стабилизации. Делитель на R1R2 задает уровень средней точки.

Схема двухполярного блока питания

Двухполярный БП с линейными стабилизаторами в каждом плече.

Несложная и устойчивая схема получается на линейных стабилизаторах серии 78ХХ (79XX для отрицательного плеча). Применен трансформатор со средней точкой, делителем служит цепь С1С3. Микросхемы-стабилизаторы включаются по стандартной схеме, диоды VD1 и VD3 защищают соответствующий канал от напряжения обратной полярности.

Для построения линейного стабилизатора на входе надо иметь запас по напряжению.

По подобной схеме можно построить и лабораторный блок питания, но для него удобнее использовать схему, регулируемую по выходному уровню. Такой источник можно построить на трансформаторе со средним отводом. Если его нет, можно использовать две идентичные вторичные обмотки (домотать или намотать заново) с отдельным выпрямителем для каждого канала или вообще использовать два раздельных трансформатора. Такой источник можно использовать как два отдельных однополярных канала, а соединив перемычкой плюс одного с минусом другого, получить регулируемый двухполярный БП.

Схема двухполярного блока питания

Двухполярный лабораторник с раздельными каналами.

Схема такого двухполярного блока питания содержит два раздельных канала, каждый из которых выполнен на микросхеме LM317. Диоды моста и транзистор должны быть рассчитаны на полный ток канала, трансформатор – на суммарную мощность двух трактов. Лабораторник позволяет в каждом из каналов получить напряжение от 1,25 до 35 вольт (зависит от входного напряжения). При необходимости получить двухполярное напряжение, минусовой вывод одного тракта соединяется с плюсовой клеммой другого, образуя среднюю точку.

Схема двухполярного блока питания

Импульсный двухполярный блок питания.

Если нужен легкий, но мощный БП, придется прибегнуть к довольно сложной импульсной схемотехнике. Такой блок можно собрать на полевых транзисторах и микросхеме IR2153. Источник обеспечивает мощность около 100 ватт, выходное напряжение задается параметрами трансформатора. При указанном на схеме соотношении витков на выходе будет около 35 вольт в каждом плече.

Читайте также: Переделка компьютерного блока питания в лабораторный

Трансформатор наматывается на каркасе от трансформатора импульсного БП компьютера.

Схема двухполярного блока питания

Каркас импульсного трансформатора.

Первичная обмотка содержит 32 витка медного провода в лаковой изоляции диаметром не менее 0,6 мм. Вторичная — 8+8 витков такого же провода. Если увеличить количество витков во вторичке, выходное напряжение увеличится, если уменьшить – наоборот.

Советы по самостоятельному изготовлению двухполярного блока питания

Большую часть элементов блока питания можно установить на печатной плате, даже трансформатор, если это удобнее. Во многих случаях силовые элементы (транзисторы, диоды, линейные интегральные регуляторы напряжения) снабжаются радиаторами для обеспечения нормального температурного режима. Поэтому надо их монтировать либо на теплоотводе, либо при проектировании платы предусмотрительно устанавливать на краю так, чтобы можно было привинтить внешний радиатор.

Схема двухполярного блока питания

При таком расположении элементов одну из микросхем снабдить радиатором не получится.

Плату можно разработать самостоятельно в специальных программах, вроде бесплатной Sprint Layout, либо просто нарисовать на бумаге. Готовое изделие можно заказать через интернет или сделать самостоятельно по одной из домашних технологий:

  • ЛУТ;
  • фоторезист;
  • нарисовать на плате вручную (например, лаком для ногтей).

Схема двухполярного блока питания

Правильное расположение силовых элементов БП.

Травится плата либо в классическом растворе хлорного железа, либо в смеси, состоящей из:

  • 100 мл перекиси водорода;
  • 30 г лимонной кислоты;
  • 2-3 чайных ложки поваренной соли.

Читайте также

Схема бестрансформаторного источника питания

Не всегда удается подобрать нужный сетевой трансформатор, поэтому чаще подбирается подходящий по мощности, вторичная обмотка (или несколько) удаляются. Необходимо намотать вторичку заново – для этого существуют методики расчета. Их можно найти в литературе. В интернете для этого имеются онлайн-калькуляторы.

Схема двухполярного блока питания

Самодельный лабораторник с двумя каналами напряжения и возможностью двухполярного включения.

Если блок питания предполагается использовать для питания конкретного устройства (например, усилителя звуковой частоты), его можно встроить в общий корпус с основным изделием. А можно сделать в отдельном корпусе (лабораторные источники в большинстве случаев делают в виде отдельного блока). Корпус можно подобрать готовый или сделать самостоятельно. Здесь возможности ограничены фантазией и уровнем квалификации мастера.

Источник постоянного напряжения на 12 вольт – полезный прибор для дома, дачи или гаража. Такое устройство несложно сделать самостоятельно. Ниже приведена схема блока питания 12В для сборки своими руками, а также советы по расчету и выбору комплектующих.

Виды блоков питания

На сегодняшний день широкое распространение получили импульсные источники напряжения. Перед традиционными трансформаторными схемами они имеют значительное преимущество в энергоэффективности и в массогабаритных показателях. Считается, что при токах нагрузки более 5 ампер они имеют неоспоримые преференции. Но им присущи и недостатки – например, генерация ВЧ-помех в питающую сеть и в нагрузку. А главное препятствие для домашней сборки – сложность схем и необходимость специальных навыков для изготовления намоточных деталей. Поэтому домашнему мастеру средней квалификации лучше заняться изготовлением блока питания по обычному принципу с сетевым понижающим трансформатором.

Где используется источник напряжения

Область применения такого БП в домашнем хозяйстве широка:

  • питание низковольтных светильников;
  • зарядка аккумуляторных батарей;
  • питание звуковоспроизводящих устройств.

А также многие другие цели, для которых требуется постоянное напряжение 12 вольт.

Схема трансформаторного БП

Как сделать блок питания на 12 вольт своими руками — примеры схем

Принципиальная схема источника питания.

Схема блока питания на 12 вольт, работающего от сети 220 В, состоит из следующих узлов:

  1. Понижающий трансформатор. Состоит из железа, первичной и вторичной (их может быть несколько) обмоток. Не вдаваясь глубоко в принцип действия, надо отметить, что выходное напряжение зависит от соотношения витков первичной (n1) и вторичной (n2) обмоток. Для получения 12 вольт надо, чтобы вторичная обмотка содержала в 220/12=18,3 раза меньше витков, чем первичная.
  2. Выпрямитель. Чаще всего выполняется в виде двухполупериодной схемы (диодного моста). Преобразует переменное напряжение в пульсирующее. Ток за период дважды проходит через нагрузку в одном направлении.

    Как сделать блок питания на 12 вольт своими руками — примеры схем

    Работа двухполупериодного выпрямителя.

  3. Фильтр. Преобразует пульсирующее напряжение в постоянное. Он заряжается в моменты подачи напряжения, и разряжается в паузах. Состоит из оксидного конденсатора большой емкости, параллельно с которым часто включают керамический конденсатор емкостью около 1 мкФ. Для понимания необходимости этого дополнительного элемента надо вспомнить, что оксидный конденсатор устроен в виде полос фольги, свернутых в рулон. Этот рулон имеет паразитную индуктивность, которая заметно ухудшает качество фильтрации высокочастотных помех. Для этого включается дополнительный конденсатор замыкания ВЧ-импульсов.

    Как сделать блок питания на 12 вольт своими руками — примеры схем

    Эквивалентная схема фильтра с оксидным и дополнительным конденсаторами.

  4. Стабилизатор. Может отсутствовать. Схемы простых, но эффективных узлов рассмотрены ниже.

В последующих разделах рассмотрен порядок выбора и расчета каждого элемента источника постоянного напряжения на 12 вольт.

Выбор трансформатора

Для получения подходящего трансформатора возможны два пути. Самостоятельное изготовление понижающего блока и подбор подходящего в заводском исполнении. В любом случае надо иметь в виду:

  • на выходе понижающей обмотки трансформатора при замере напряжения вольтметр покажет эффективное напряжение (в 1,4 раза меньше амплитудного);
  • на фильтрующем конденсаторе без нагрузки постоянное напряжение будет примерно равным амплитудному (говорят, что на конденсаторе напряжение «поднимается» в 1,4 раза);
  • если стабилизатор отсутствует, то под нагрузкой напряжение на емкости просядет в зависимости от тока;
  • для работы стабилизатора нужно определенное превышение входного напряжения над выходным, их соотношение ограничивает КПД блока питания в целом.

Из двух последних пунктов следует вывод, что для нормальной работы БП напряжение трансформатора должно превышать 12 В.

Самостоятельная намотка трансформатора

Полный расчет и изготовление самодельного силового трансформатора сложны, трудоемки, требуют инструментов и навыков. Поэтому будет рассмотрен упрощенный путь – подбор подходящего по железу блока и переделка его на 12 В.

Если есть готовый трансформатор, но нет схемы его подключения, надо вызвонить тестером его обмотки. Обмотка с самым большим сопротивлением скорее всего будет сетевой. Остальные обмотки надо удалить.

Далее надо измерить толщину набора железа b и ширину центральной пластины a и перемножить их. Получится площадь сечения сердечника S=a*b (в кв.см.). Она определяет мощность трансформатора P=Как сделать блок питания на 12 вольт своими руками — примеры схем

. Дальше вычисляется максимальный ток в амперах, который можно снять с обмотки с напряжением 12 вольт: I=P/12.

Определение площади сердечника.

Определение площади сердечника.

Дальше вычисляется число витков на вольт по формуле n=50/S. Для 12 вольт надо намотать 12*n витков с запасом около 20% на потери в меди и на стабилизаторе. А если его нет, то на падение напряжения под нагрузкой. И последним шагом выбирается сечение провода намотки по графику для плотности тока 2-3 ма/кв.мм.

Выбор медного провода.

Выбор медного провода.

Например, имеется трансформатор с первичной обмоткой на 220 В с набором железа толщиной 3,5 см и шириной среднего язычка 2,5 см. Значит, S=2,5*3,5=8,75 и мощность трансформатора  Как сделать блок питания на 12 вольт своими руками — примеры схем

=3 Вт (приблизительно). Тогда максимально возможный ток при 12 вольтах I=P/U=3/12=0,25 А. Для намотки можно выбрать провод диаметром 0,35..0,4 кв.мм. На 1 вольт приходится 50/8,75=5,7 витков, надо намотать 12*5,7=33 витка. С учетом запаса – около 40 витков.

Подбор готового трансформатора

Если есть готовый трансформатор с подходящей по току и напряжению вторичной обмоткой, можно попробовать подобрать готовый. Например, в серии ТПП есть подходящие изделия с напряжением вторичных обмоток, близким к 12 вольтам.

Трансформатор Обозначение выводов вторичной обмотки Напряжение, В Допустимый ток, А
ТПП48 11-12, 13-14, 15-16, 17-18 13,8 0,27
ТПП209 11-12, 13-15 11,5 0,0236
ТПП216 11-12, 13-14, 15-16, 17-18 11,5 0,072

Плюс этого решения – минимальная трудоемкость и надежность заводского исполнения. Минус – трансформатор содержит и другие обмотки, габаритная мощность рассчитана и на их нагрузку. Поэтому в массогабаритных показателях такой трансформатор будет проигрывать.

Выбор диодов и изготовление выпрямителя

Диоды в выпрямитель выбираются по трем параметрам:

  • наибольшее допустимое прямое напряжение;
  • наибольшее обратное напряжение;
  • наибольший рабочий ток.

По первым двум параметрам для работы в 12-вольтовой схеме подойдут 90 процентов доступных полупроводниковых приборов, выбор в основном делается по предельному длительно допустимому току. От этого параметра также зависит исполнение корпуса диода и способ изготовления выпрямителя.

Если ток нагрузки не будет превышать 1 А, можно применить зарубежные и отечественные одноамперные диоды:

  • 1N4001-1N4007;
  • HER101-HER108;
  • КД258 (“капелька”);
  • КД212 и другие.

На меньшие токи (до 0,3 А) рассчитаны приборы КД105 (КД106). Все перечисленные диоды можно монтировать как вертикально, так и горизонтально на печатную или монтажную плату, или просто на штырьки. Радиаторов им не нужно.

Как сделать блок питания на 12 вольт своими руками — примеры схем

Диодный мост из маломощных элементов.

Если нужны большие рабочие токи, то надо применять другие диоды (КД213, КД202, КД203 и т.д.). Эти приборы рассчитаны для эксплуатации на теплоотводящих радиаторах, без них они выдержат не более 10% от максимального паспортного тока. Поэтому надо подобрать готовые теплоотводы или сделать их самостоятельно из меди или алюминия.

Как сделать блок питания на 12 вольт своими руками — примеры схем

Другая конструкция диодного моста.

Также удобно использовать готовые мостовые диодные сборки КЦ405, КВРС или подобные. Их не надо собирать – достаточно подать на соответствующие выводы переменное напряжение и снять постоянное.

Сборка КВРС3510.

Сборка КВРС3510.

Емкость конденсатора

Емкость конденсатора зависит от нагрузки и от пульсаций, которые она допускает. Для точного расчета емкости существуют формулы и онлайн-калькуляторы, которые можно найти в интернете. Для практики можно ориентироваться на цифры:

  • при малых токах нагрузки (десятки миллиампер) емкость должна быть 100..200 мкФ;
  • при токах до 500 мА нужен конденсатор 470..560 мкФ;
  • до 1 А – 1000..1500 мкФ.

Для больших токов емкость увеличивается пропорционально. Общий же подход – чем больше конденсатор, тем лучше. Увеличивать его емкость можно до любых пределов, ограничиваясь лишь габаритами и стоимостью. По напряжению надо брать конденсатор с серьезным запасом. Так, для 12-вольтового выпрямителя лучше взять элемент на 25 вольт, чем на 16.

Эти рассуждения верны для нестабилизированных источников. Для БП со стабилизатором емкости можно уменьшать в разы.

Стабилизация выходного напряжения

Стабилизатор на выходе блока питания нужен не всегда. Так, если предполагается использование БП совместно со звуковоспроизводящей аппаратурой, то на выходе надо иметь стабильное напряжение. А если нагрузкой служит нагревательный элемент – стабилизатор явно излишен. Для питания светодиодной ленты можно обойтись без самого сложного модуля БП, но с другой стороны стабильное напряжение обеспечивает независимость яркости свечения при перепадах в сети и продлевает срок службы LED-светильника.

Если решение об установке стабилизатора принято, то проще всего собрать его на специализированной микросхеме LM7812 (КР142ЕН5А). Схема включения проста и не требует наладки.

Стабилизатор на 7812.

Стабилизатор на 7812.

На вход такого стабилизатора можно подавать напряжение от 15 до 35 вольт. На входе должен быть установлен конденсатор С1 емкостью не менее 0,33 мкФ, на выходе не менее 0,1 мкФ. В качестве С1 обычно выступает конденсатор блока фильтров, если длина соединительных проводов не превышает 7 см. Если такую длину выдержать не удается, то потребуется установка отдельного элемента.

Микросхема 7812 имеет защиту от перегрева и короткого замыкания. Но она не любит переполюсовки на входе и подачи внешнего напряжения на выход – время ее в жизни в таких ситуациях исчисляется секундами.

Важно! Для тока нагрузки свыше 100 мА установка интегрального стабилизатора на теплоотводящий радиатор обязательна!

Увеличение выходного тока стабилизатора

Приведенная схема позволяет нагружать стабилизатор током до 1,5 А. Если этого недостаточно, можно умощнить узел дополнительным транзистором.

Схема с транзистором структуры n-p-n

Как сделать блок питания на 12 вольт своими руками — примеры схем

Внешний транзистор n-p-n.

Эта схема рекомендуется разработчиками и включена в даташит на микросхему. Выходной ток не должен превышать наибольший ток коллектора транзистора, который должен быть обязательно снабжен теплоотводом.

Схема с транзистором p-n-p

Если полупроводниковый триод структуры n-p-n отсутствует, то можно умощнить стабилизатор полупроводниковым триодом p-n-p.

Внешний транзистор p-n-p.

Внешний транзистор p-n-p.

Кремниевый маломощный диод VD увеличивает выходное напряжение 7812 на 0,6 В и компенсирует падение напряжения на эмиттерном переходе транзистора.

Параметрический стабилизатор

Если по какой-либо причине интегральный стабилизатор недоступен, можно выполнить узел на стабилитроне. Надо выбрать стабилитрон с напряжением стабилизации 12 В и рассчитанный на соответствующий ток нагрузки. Наибольший ток для некоторых 12-вольтовых отечественных и импортных стабилитронов указан в таблице.

Тип стабилитрона Д814Г Д815Д КС620А 1N4742A BZV55C12 1N5242B
Ток нагрузки 5 мА 0,5 А 50 мА 25 мА 5 мА 40 мА
Напряжение стабилизации 12 вольт

Как сделать блок питания на 12 вольт своими руками — примеры схем

Схема простого параметрического стабилизатора.

Номинал резистора рассчитывается по формуле:

R= (Uвх min-Uст)/(Iн max+Iст min), где:

  • Uвх min – минимальное входное нестабилизированное напряжение (должно быть не менее 1,4 Uст), вольт;
  • Uст – напряжение стабилизации стабилитрона (справочная величина), вольт;
  • Iн max – наибольший ток нагрузки;
  • Iст min – минимальный ток стабилизации (справочная величина).

Если стабилитрон на нужное напряжение отсутствует, его можно составить из двух последовательно включенных. При этом суммарное напряжение должно быть 12 В (например, Д815А на 5,6 вольта плюс Д815Б на 6,8 вольт дадут 12,4 В).

Важно! Соединять стабилитроны (даже однотипные) параллельно «для увеличения тока стабилизации» нельзя!

Стабилитроны параллельно не соединяют.

Стабилитроны параллельно не соединяют.

Умощнить параметрический стабилизатор можно тем же способом – включением внешнего транзистора.

Как сделать блок питания на 12 вольт своими руками — примеры схем

Схема мощного стабилизатора.

Для мощного транзистора надо предусмотреть радиатор. Напряжение питания в этом случае будет меньше Uст стабилитрона на 0,6 В. При необходимости выходное напряжение можно подкорректировать в большую сторону включением кремниевого диода (или цепочки диодов). Каждый элемент в цепочке будет увеличивать Uвых примерно на 0,6 В.

Как сделать блок питания на 12 вольт своими руками — примеры схем

Схема стабилизатора со стабилитроном и диодом.

Регулирование выходного напряжения

Если напряжение блока питания надо регулировать от нуля, то оптимальной схемой будет параметрический стабилизатор с добавлением переменного резистора.

Как сделать блок питания на 12 вольт своими руками — примеры схем

Плавное регулирование напряжения.

Резистор в 1 кОм, включенный между базой транзистора и общим проводом, защитит триод от выхода из строя при обрыве цепи движка потенциометра. При вращении ручки переменного резистора напряжение на базе транзистора будет меняться от 0 до Uст стабилитрона с отставанием примерно в 0,6 вольт. Надо учитывать, что параметры узла будут хуже из-за использования потенциометра – наличие движущегося контакта (даже хорошего качества) неизбежно снизит стабильность напряжения на базе транзистора.

Читайте также

Как сделать блок питания из энергосберегающей лампы

Добиться регулирования от 0 до 12 вольт схемы с интегральным стабилизатором серии 78XX намного сложнее. Если достаточно диапазона регулирования от 5 до 12 В, можно применить микросхему 7805 и включить ее по схеме с потенциометром. Стабилитрон должен быть на напряжение около 7 вольт (КС168 с диодом или без него, КС175 и т.п.). В нижнем положении движка потенциометра вывод GND соединяется с общим проводом, и на выходе будет 5 вольт. При смещении движка к верхнему выводу напряжение на нем будет расти вплоть до Uст стабилитрона и складываться с напряжением стабилизации микросхемы.

Плавное регулирование

Плавное регулирование от 5 до 12 вольт.

Можно применить микросхему LM317. Она также имеет три вывода и специально разработана для создания регулируемых источников. Но у этого стабилизатора нижний порог напряжения начинается от 1,25 вольт. В интернете много схем на LM317 с регулировкой от нуля, но 90+ процентов этих схем неработоспособны.

схема включения LM317.

Стандартная схема включения LM317.

Читайте также: Самодельный блок питания с регулировкой напряжения и тока 0 до 30В

Компоновка прибора

После того, как все узлы будут подобраны, или будет присутствовать четкое представление о том, какими они будут, можно приступать к компоновке прибора. Также важно понимать, каким будет будущий корпус устройства. Можно подобрать готовый, можно сделать самому при наличии материалов и навыков.

компоновки БП.

Особых правил компоновки узлов внутри корпуса нет. Но желательно расположить узлы так, чтобы они соединялись проводниками последовательно, как на схеме, и по кратчайшему расстоянию. Выходные клеммы лучше расположить на стороне, противоположной сетевому кабелю. Выключатель питания и предохранитель лучше закрепить на задней стенке устройства. Для рационального использования межкорпусного пространства часть узлов можно установить вертикально, но диодный мост лучше закрепить горизонтально. При вертикальном монтаже конвекционные потоки горячего воздуха от нижних диодов будут обтекать верхние элементы и дополнительно их нагревать.

Для тех кто не понял смотрим видео: Простой блок питания своими руками.

Собрать источник питания постоянного тока с фиксированным питанием несложно. Это по силам мастеру средней руки, нужны лишь элементарные познания в электротехнике и минимальные навыки монтажа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *