Меню

Блок питания на импульсном трансформаторе своими руками

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.

Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера

Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.. Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности

Таким образом, скважность изменяется от 0 до 1.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.. Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь

Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов

Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Импульсный блок питания состоит из следующих элементов:

  • входной выпрямитель;
  • блок конденсаторов;
  • схема управления;
  • выходные ключи;
  • импульсный трансформатор;
  • вторичные (выходные) стабилизаторы и фильтры.

За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.

Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.

На ШИМ — контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.

Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.

Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.

Часто производители бытовой техники вообще не предусматривают ремонт, выполняя корпус устройства неразборным или заливая печатную плату вместе с элементами специальным компаундом.

Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.

Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.

Импульсный источник питания

Еще один пример использования конфигурируемых логических ячеек совместно со встроенными компараторами.
Таймер TMR периодически устанавливает RS-триггер и открывает силовой транзистор. Ток начинает течь через индуктивность, напряжение на резисторе R1 линейно увеличивается. При достижении напряжения на R1 порогового значения срабатывает компаратор COMP1 и сбрасывает триггер, транзистор закрывается. Ток через индуктивность не может прерваться мгновенно, поэтому ток начинает течь через диод D1 и заряжает выходной конденсатор. По срабатыванию таймера триггер снова устанавливается и процесс повторяется.

Рис.17a. Простейший импульсный источник питания.

На рисунке приведена схема повышающего источника, но для других топологий (см. рис. 17b) работа схемы будет аналогичной, поэтому выходной каскад далее рисовать не буду.

схема описание
повышающий
понижающий
Sepic

Рис.17b. Различные топологии импульсных источников питания

Приведенная на рис. 17a схема выполняет функцию преобразования энергии и работает по пиковому значению тока в индуктивности. Можно ввести еще контур регулирования выходного напряжения. Наиболее просто сделать гистерезисное управление: когда напряжение на выходе ниже нормы – происходит накачка источника, когда напряжение выше – выдача управляющих импульсов на силовой транзистор блокируется.

Рис.17c. ИИП с гистерезисным управлением

Включение силового транзистора будет генерировать помеху, которая может приводить к преждевременному срабатыванию компаратора COMP1. Для избавления от этого можно включить RC-фильтр в цепь между R1 и компаратором, а можно добавить рассматриваемый ранее блок бланкирования (формирование импульса по фронту, см. рис 8а, или рис. 14а), который после включения транзистора будет блокировать сброс триггера на короткий интервал времени.

Рис.17d. Помеха при коммутации силового ключа

Рис.17e. ИИП с гистерезисным управлением и бланкированием помехи переключения.

Элементы U1 и U2 можно привести к реализации на элементах ИЛИ и отнести к входу CLC1, тогда вся логическая часть схемы реализуется на трех ячейках CLC (обычно в микроконтроллерах Microchip имеется 4 ячейки).
Все что на схеме изображено левее силового ключа – находится внутри микроконтроллера, связи периферийных модулей так же осуществляются внутри кристалла микроконтроллера. Напряжения порогов Ref и Ref1 могут задаваться встроенными источниками опорного напряжения или ЦАП. Таким образом, импульсный источник питания с регулируемым выходным напряжением можно реализовать на периферийных модулях микроконтроллера. После первоначального конфигурирования схема будет работать полностью аппаратно без необходимости участия ядра в поддержании функции преобразователя. Ядро может заниматься интерфейсными задачами, индикации контроля и др.

Вообще, для построения импульсных источников питания в новых семействах PIC16F17xx микроконтроллеров Microchip есть дополнительные аналоговые (операционные усилители) и специализированные периферийные модули: модули пилообразной компенсации (Slope Compensation) и программируемый рамп-генератор (Programmable Ramp Generator, PRG), операционные усилители, модуль формирования комплементарных выходных сигналов (COG), HLT таймера. Но об этих частях ПНЯ постараемся рассказать в следующий раз.

Периферия независимая от ядра интересна сама по себе, но наибольшую пользу может принести возможность синтеза функциональных блоков, т.е. совместное использование нескольких периферийных модулей для решения конкретных задач. В этом случае тактовая частота, быстродействие и разрядность ядра уходят на второй план – аппаратная часть выполняет специализированные функции, а ядро занимается программной поддержкой работы изделия.

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ

Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

  • все виды компьютерной техники;
  • телевизионная и звуковоспроизводящая аппаратура;
  • пылесосы, стиральные машины, кухонная техника;
  • источники бесперебойного электроснабжения различного назначения;
  • системы видеонаблюдения, комплексы охранной сигнализации.

Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

  *  *  *

2014-2020 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

В данной статье описан способ изготовления мощного сетевого БП для питания усилителя мощности низкой частоты. Блок питания — основная проблема, с которой приходится сталкиваться после сборки мощных усилителей. Мною было собрано огромное количество блоков питания и хочу поделиться конструкцией наиболее простого и стабильного сетевого ИБП.

Тип блока питания, как уже заметили — импульсный. Такое решение резким образом уменьшает вес и размеры конструкции, но работает не хуже обыкновенного сетевого трансформатора, к которому мы привыкли. Схема собрана на мощном драйвере IR2153. Если микросхема в DIP корпусе, то диод нужно ставить обязательно. На счет диода — обратите внимание, он не обычный, а ультрабыстрый, поскольку рабочая частота генератора составляет десятки килогерц и обычные выпрямительные диоды тут не подойдут.

В моем случае вся схема была собрана на «рассыпухе», поскольку собирал только для проверки работоспособности. Мной схема практически не настраивалась и сразу заработала как швейцарские часы.

Трансформатор — желательно взять готовый, от компьютерного блока питания (подойдет буквально любой, я взял трансформатор с косичкой от блока питания АТХ 350 ватт). На выходе трансформатора можно использовать выпрямитель из диодов ШОТТКИ (тоже можно найти в компьютерных блоках питания), или любые быстрые и ультрабыстрые диоды с током 10 Ампер и более, также можно ставить наши КД213А.

Схему подключайте в сеть через лампу накаливания 220 Вольт 100 ватт, в моем случае все тесты делал инвертором 12-220 с защитой от КЗ и перегруза и только после точной настройки решился подключить в сеть 220 Вольт.

Как должна работать собранная схема?

  • Ключи холодные, без выходной нагрузки (у меня даже с выходной нагрузкой 50 ватт ключи оставались ледяными) .
  • Микросхема не должна перегреваться в ходе работы.
  • На каждом конденсаторе должно быть напряжение порядка 150 Вольт, хотя номинал этого напряжение может откланяться на 10-15 Вольт.
  • Схема должна работать бесшумно.
  • Резистор питания микросхемы (47к) должен чуть перегреваться во время работы, возможен также ничтожный перегрев резистора снаббера (100 Ом).

Основные проблемы, которые возникают после сборки

Проблема 1. Собрали схему, при подключении контрольная лампочка, которая подключена на выход трансформатора мигает, а сама схема издает непонятные звуки.

Решение. Скорее всего не хватает напряжения для питания микросхемы, попробуйте снизить сопротивление резистора 47к до 45, если не поможет, то до 40 и так (с шагом 2-3кОм ) до тех пор, пока схема не заработает нормально.

Проблема 2. Собрали схему, при подаче питания ничего не греется и не взрывается, но напряжение и ток на выходе трансформатора мизерные (почти ровны нулю)

Решение. Замените конденсатор 400Вольт 1мкФ на дроссель 2мГн.

Проблема 3. Один из электролитов сильно греется.

Решение. Скорее всего он нерабочий, замените на новый и заодно проверьте диодный выпрямитель, может именно из-за нерабочего выпрямителя на конденсатор поступает переменка.

Импульсный блок питания на ir2153 можно использовать для питания мощных, высококачественных усилителей, или же использовать в качестве зарядного устройства для мощных свинцовых аккумуляторов, можно и в качестве блока питания — все на ваше усмотрение.

Мощность блока может доходить до 400 ватт, для этого нужно будет использовать трансформатор от АТХ на 450 ватт и заменить электролитические конденсаторы на 470мкФ — и все!

В целом, импульсный блок питания своими руками можно собрать всего за 10-12 $ и то если брать все компоненты из радиомагазина, но у каждого радиолюбителя найдется больше половины радиодеталей, использованных в схеме.

Простой импульсный блок питания своими руками

дешевый ибп своими руками Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.

На следующий день поехал хоз-маг и купил пару подопытных. Один такой стоит 40 грн.

Тот что сверху  BUKO.
Снизу копия Ташибры, только имя сменилось.
Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.
Но доработка обоих блоков идентична!
Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение.
И если вы случайно закоротите выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск!


Рассмотрим схему:

Все блоки от 50 до 150 ватт идентичны, отличаются только только мощностью деталей.
В чем состоит доработка?
1) Необходимо добавить электролит после сетевого диодного моста. Чем больше — тем лучше. Я поставил 100 мкф на 400 вольт.
2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запуститься.
3) Перемотать трансформатор (при необходимости).
4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор.

В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!
Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем — лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светиться. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!
Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.
На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт.
30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.
Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.
То есть таким образом мы можем намотать катушку на необходимое напряжение!
Частота блока питания с ОС по напряжению 30 кгц.
Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!
Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи.

Запомните — при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!Ну и теперь пару фотографий готового БП для УНЧ.

Красным обозначено место закорачивания ОС по току.Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил у коробку из аккумулятора. И сзади поставил кнопку для выключения.

Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы!

Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!!

Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.

Тиристорный регулятор

Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.

Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.

Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.

Транзисторное управление

Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.

Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.

ШИМ-регулятор

Самым современным способом является применение ШИМ-контроллера (широтно-импульсная модуляция). В качестве силовых элементов полевые или биполярные транзисторы с изолированным затвором (IGBT).

Для части приборов возможна настройка средней точки, вернее регуляция ее напряжения. Для настройки усилителей используются две методики: установление равновесия между транзисторами и установление в состояние покоя.

Сигнализатор для оборудования силового типа измеряет коэффициент снижения тока при ее заземлении, то есть сколько ушло тока в землю посредством использования изоляционных методик. Средняя точка и фильтр отвечают за подачу регулировщиком сигнала. Данные фиксируются вольмеров, который измеряет уровень уменьшения напряжения, который наблюдается на вторичной обмотке, изоляционных материалах и других конструктивных деталях механизма.

Если наблюдается перекос, то проводится регулировка до знания, приемлемого для класса прибора и срока службы. Просмотреть информацию и значение можно в таблицах и инструкциях по эксплуатации (в последних данные есть не всегда).

Активно используется технология получения нулевого вывода. Это значит, что от средней точки тс делается мост. Получается два идентичных по значению напряжения, одинаковых по направлению, но различных по фазе. При помощи проявления фазового сдвига удается выяснить неполадки при работы двухтактных каскадного типа усилителей средней мощности.

Средняя точка не выводится, если это не требуется системой. Потециометром дополнительно дается баланс системе. Удлинители используются, если не согласованы выходы преобразователей. Заземление частично не требуется, если речь идет о маломощных вариантах оборудования ил трансформаторах, выпрямителях со средними мощностными характеристиками.

У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

Блок питания на импульсном трансформаторе своими руками

Блок питания на импульсном трансформаторе своими руками

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз

Для бытовой сети это 308В.

Блок питания на импульсном трансформаторе своими руками

Принцип работы импульсных трансформаторов   заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

при этом:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Um x tu=S x W1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Теперь, уяснив некоторые моменты, о которых нужно знать, приступаем к перемотке трансформатора. Далее будет описан пример перемотки в «живом формате рассказа», если бы я под диктофон записывал в хронологическом порядке все свои действия для Вас :). Итак, кнопка «Запись» включена, пленка кассеты с характерным шуршанием наматывает пленку с одной катушки на другую. Вечер, на столе горит настольная лампа, а в воздухе витает запах канифоли …

Друг попросил собрать двуполярный источник питания для питания синтезатора «Юность-21». Необходимо было получить на выходе стабильные +/- 10 вольт. В своих радиолюбительских запасах специфического трансформатора не нашлось. Решено было самостоятельно изготовить под необходимые параметры. За основу переделки был взят трансформатор броневого типа с Ш-образным магнитопроводом, ранее работавший в блоке питания одноканального усилителя. По предварительным подсчетам общая нагрузка на трансформатор в усилителе составляла 3А, что соответствовало с запасом для нагрузки проектируемого блока питания.

Взяв во внимание габаритную мощность трансформатора и толщину проволоки вторичной обмотки, прикинул, что  первичная обмотка должна быть намотана проволокой подходящего диаметра (замеры микрометром после смотки вторичной обмотки это подтвердило). Измерение тока холостого хода так же подтвердило пригодность выбранного трансформатора (не нужно было доматывать первичку)

Оставалось лишь  разобраться с вторичной обмоткой.

Для двуполярного блока питания необходимо иметь две симметричные обмотки рассчитанные на 1 Ампер нагрузки (на трансформаторе под переделку они уже имеется). Подключаем трансформатор в сеть 220В и замеряем напряжения на отводах обмоток. Полученные значения записываем на черновик для последующих расчетов. Далее разбираем трансформатор для его перемотки.

Откручиваем шпильки и убираем кронштейны трансформатора. Перед нами  Ш-образный магнитопровод броневого типа. Он состоит из Ш-образных пластин и I-образных пластинок, которые между собой чередуются и перекладываются определенным образом.

Для облегчения процесса разбора аккуратно счищаем лак/краску

Удаление лакокрасочного покрытия (если это необходимо) производят крайне осторожно, чтобы не повредить поверхность пластин и не оставить заусенец, которые могут замкнуть между собой пластины магнитопровода. По возможности обходимся без этих манипуляций

Вначале необходимо удалить I-образные пластинки. Аккуратно подцепляем ножом или плоской тонкой отверткой подцепляем и вытягиваем их все. После этого поочередно вынимаем из каркаса катушки трансформатора Ш-образные пластинки.

После того, как катушку трансформатора отделили от магнитопровода, приступаем к дальнейшим действиям. Перед нами сейчас стоит задача подсчитать количество витков во вторичных обмотках. Первичную обмотку не трогаем.

Две вторичные обмотки по итогам измерения имеют одинаковые напряжения и симметричны  друг другу (зеркально отображают количество витков). Узнаем количество витков одной обмотки – будем знать, сколько их у другой. После подсчета не придется сматывать полностью все витки, мы лишь подсчитаем, сколько необходимо смотать проволоки для того, чтобы получить нужное напряжение.

Усевшись за стол в спокойной обстановке перед собой располагаем листок бумаги, ручку (карандаш) и катушку трансформатора. Начинаем разматывать проволоку и считаем сматываемые витки. После каждых десяти сматываемых витков на листке бумаге помечаем отметкой, например, вертикальную черточку, что будет соответствовать 10-ти виткам. Так же будем поступать при намотке проволоки на катушку. Это нужно для того, чтобы не запутаться и не сбиться со счета. Так же можно использовать простой калькулятор, приплюсовывая значения витков.

Несколько советов:

-Перед работой проследите, чтобы вокруг Вас не было острых поверхностей предметов мебели, по которым может тереться или зацепиться сматываемая проволока (не повредите эмалевую изоляцию обмоточных проводов!);

-Сматывайте проволоку на отдельную катушку. Так она будет уложена ровно без повреждений, что позволит использовать её повторно;

-Так же важно аккуратно сматывать проволоку, чтобы избежать в процессе образовывающихся петель и заломов – так мы сохраним проволоку относительно ровной и не повредим эмалевое покрытие медной проволоки при её выгибании

По занимаемому месту в линии электропередачи, металлические опоры делят на

  • промежуточные,
  • угловые,
  • концевые,
  • опоры ответвлений.

Часто опоры на которых оказывается повышенные нагрузки в линии — это угловые, концевые и опоры ответвлений, их называют анкерные опоры. Читаешь анкерная, понимай усиленная.

Блок питания на импульсном трансформаторе своими руками

Расчёт по нагрузке выпускаемых опор достаточно сложный и, как следствие, маркировка опор по их назначению тоже немного путанная. Например, многогранные опоры из металла для ВЛИ 0,38 кВ разработанные РОСЭП по своему ТУ, могут быть следующих типов:

  • Промежуточная (П1М);
  • Угловая промежуточная (УП1М);
  • Концевая анкерная (К1М);
  • Угловая анкерная (УА1М);
  • Ответвительная анкерная (АО1М);
  • Переходная промежуточная (ПП1М);
  • Переходная анкерная (ПА1М);
  • Переходная угловая анкерная (ПУА1М);
  • Переходная ответвительная анкерная (ПОА);
  • Переходная анкерная ответвительная (ПАО).

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Блок питания на импульсном трансформаторе своими рукамиТрансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Блок питания на импульсном трансформаторе своими руками

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Блок питания на импульсном трансформаторе своими руками
Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче

Здесь важно, чтобы количество обмоток уместилось

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока

Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц

Блок питания на импульсном трансформаторе своими рукамиОбозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Пониженное или слабое появление нагрузки электросети для частного дома это не редкость. Так же очень часто не хватает мощности для дачи. Этот факт доставляет много неудобств, не говоря о том, что человек не может воспользоваться помощью стиральной машины. Что делать в такой ситуации, куда позвонить, пожаловаться, а самое главное как самостоятельно проверить качество электросети? Недостаточное напряжение в сети является крайне неприятной ситуацией, но с ней сталкиваются практически все. Если освещение плохое и лампочка обозначает только свое присутствие, то это далеко не большая проблема. Хуже будет, когда стирка не возможна, кипячение воды нереально, никак не приготовить еду на электрической печке или работа холодильника проходит с перебоями. Такое часто случается при напряжении в сети меньше чем 180 вольт. Если все работает при таком напряжении, то это не очень хорошо влияет на приборы и процесс работы проходит более длительное время.

Выделим несколько основных причин низкого напряжения:

  • Сечение кабеля , который входит в дом неправильное;
  • Подключение выключателя выполнено не правильным образом;
  • Трансформатор подстанции перезагружается или частично вышел из строя;
  • Сечение магистральной линии маленькое;
  • Перекошенные фазы.

Это были перечислены самые распространенные причины. Если вы поняли что причина низкого напряжения в вашем доме такая как в 1м, 2м или 6м пункте, то исправление причины можно выполнить самостоятельно. Если вам подходят остальные 3 причины или одна из них, то вам стоит обратиться в обслуживающие станции.

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Первое что необходимо выяснить – это кто виноват в низком напряжении. В многоэтажных домах это сделать очень легко, а именно пройтись к соседям и узнать, нет ли у них такой проблемы. В собственных домах необходимо опрашивать тех людей, которые питаются электроэнергией от той линии, что и вы. А именно просмотрим на линию электропередач, запоминаем, от каких линий подходит электричество к вашему дому, от этих проводов будет подходить линия и к тем, кто запитан на вашей линии.

Блок питания на импульсном трансформаторе своими руками

Можно также отключить от сети все приборы и измерить напряжение. Если напряжение нормальное, а после включения пару приборов падает, то причина низкого напряжения в доме.

Если после включение напряжение падает, то причины могут быть такие:

  1. Сечение провода на вводе в дом не достаточное. Не достаточная толщина провода может быть причиной маленького напряжения сети, особенно при большой нагрузке.
  2. Контакт на вводе в дом подгорел и дает дополнительное сопротивление. От такого сопротивления падает напряжение, и упасть оно может достаточно высоко.
  3. Разветвление от линии к дому выполнено не качественным образом. Если контакт на смотке плохой, то повышается сопротивление, от этого падает напряжение в сети.

При маленьком сечение тепло равномерно распространяется по всей длине проводки. А вот если контакты плохие, то это повлечет за собой очень неприятные последствия. Место, где контакты плохие будет очень нагреваться и может перегореть проводка, а может возникнуть и пожар.

Отвечает за электрические падения или, наоборот, за высокое напряжение электросетевая компания. Именно в электросетевую или энергосбытовую компанию вам придется писать заявления, образец которых вы сможете найти на сайте, о факте падения напряжения. Пишется такое письмо не долго и как правило отвечает компания достаточно быстро, претензия рассматривается и определяется вольтаж уже на месте при помощи электриков, они определяют где напряжение просаживается, а так же осматривают нехватающие участки.

Изначально специалисты отключают свет, определяют, где находится просадка и принимают решение, что необходимо сделать в данной ситуации, кому поднять малое напряжение или снизить повышенное. Подключение, которое делается с помощью сварки, не всегда создается ситуация, которая оплачивается заявщиком, почему специалисты не всегда с охотой берутся за то чтобы повысить показатель.

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Блок питания на импульсном трансформаторе своими руками

No tags for this post.

Как за час сделать импульсный блок питания из сгоревшей лампочки?

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. https://oldoctober.com/

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.


Самые интересные ролики на Youtube

Близкие темы.

Как намотать импульсный трансформатор для сетевого блока питания?

Самодельный импульсный преобразователь напряжения из 1,5 в 9 Вольт для мультиметра.

Как разобрать энергосберегающую лампу (КЛЛ)?

Энергосберегающие лампы “Vitoone” — технические данные и схема.

Схема и техническая информация по энергосберегающим лампам Osram.

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.
  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.https://oldoctober.com/

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Вернуться наверх к меню

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Вернуться наверх к меню

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. :) Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. :)

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Вернуться наверх к меню

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Вернуться наверх к меню

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.


Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.

2. Схема со средней (нулевой) точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема со средней (нулевой) точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы со средней (нулевой) точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. :)

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Вернуться наверх к меню

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

Любая ссылка, представленная на сайте, проходит проверку на предмет трэшевости, но при этом может не иметь никакого отношения к теме сайта. Хотя, и статьи, размещённые на сайте, тоже часто этим страдают. 🙂
В каталоге сайта https://msk.led-sib.ru/ вы можете найти светотехнику для вашего проекта. Ну вот и всё, главное красиво и ненавязчиво закончить мысль. Всем удачи!

Собираем импульсный блок питания своими руками: пошаговая инструкция и схемы

Изготовление импульсного трансформатора своими руками

Нередко радиолюбителям для электроснабжения схем и устройств от сети приходится сооружать импульсный блок питания своими руками.

Пошаговая инструкция позволит понять, как работают импульсные БП, которые предпочтительны в использовании, компактны, но сложнее устроены, чем обычные трансформаторные.

Устройство

Как и в обычном БП, в импульсном основными узлами являются трансформатор и выпрямитель.

Принцип работы блока питания

Функция устройства состоит в двух действиях:

В импульсном БП помимо упомянутых узлов присутствует еще т.н. инвертор: схема, преобразующая постоянный ток в переменный с частотой, намного превышающей сетевую — десятки кГц.

Особенности работы

Причина усложнения схемы состоит в следующем: чем выше частота переменного тока, тем меньший требуется трансформатора и тем ниже в нем потери. Вот почему импульсные БП намного меньше своих обычных собратьев.

Схема

Импульсный БП состоит из следующих функциональных блоков:

  • фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
  • выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
  • инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
  • импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
  • выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.

Дроссель переменного тока

Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно.

Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков.

Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».

Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.

Существует два способа генерации высокочастотного переменного тока:

  1. однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
  2. двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
    1. двухполупериодная. Самый простой вариант;
    2. двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
    3. прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).

2-тактные БП отличаются схемой силового каскада, есть три модификации:

  1. полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
  2. мостовая: более экономична, но сложна в наладке;
  3. пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.

Стабилизации выходного напряжения добиваются следующими способами:

  • применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
  • применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.

Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.

При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.

Пошаговая инструкция

Процесс изготовления импульсного БП выглядит так:

  • выполняют расчет изделия в онлайн-калькуляторе (публикуются на многих сайтах) или специальной программе. В зависимости от желаемых характеристик БП, ПО подберет параметры всех элементов: конденсаторов, транзисторов, дросселей и пр.;
  • закупают все радиодетали;
  • в пластине текстолита в соответствии со схемой и размерами элементов высверливают отверстия. Далеко не всегда удается добиться желаемых характеристик с первого раза, ввиду чего схему приходится дополнять компенсаторами и прочими элементами. Необходимо оставить для них место на плате;
  • на схеме выбирают точки входа, помеченные символами «АС», припаивают предохранитель и далее один за другим все элементы согласно схеме;
  • выполняют проверку.

Важно найти подходящую схему и правильно рассчитать параметры элементов.

Ибп на микросхеме

Выпускается множество микросхем с функцией ШИМ-контроллера. Далее рассматривается несколько схем с использованием самых популярных из них.

TL494

Поскольку встроенные ключи данной микросхемы не обладают мощностью, достаточной для непосредственного управления силовыми транзисторами инвертора (T3 и T4), вводится промежуточное звено из трансформатора TR1 (управляющего) и транзисторов T1, T2.

Схема на микросхеме TL494

Если в наличии есть старый БП от компьютера, управляющий трансформатор можно взять оттуда. Состав обмоток оставляют без изменений. В качестве силовых рекомендуется использовать биполярные транзисторы MJT13009 — схема окажется более надежной. При использовании транзисторов MJE13007, рассчитанных на меньший ток, схема будет рабочей, но слишком чувствительной к перегрузкам.

Дроссели L5, L6 также извлекаются из поломанного компьютерного БП. Первый перематывают, поскольку в оригинальном исполнении он рассчитан на несколько уровней напряжения.

На желтый магнитопровод (другие не подойдут) в виде кольца наматывают около 50 витков медного провода диаметром 1,5 мм.

Силовые транзисторы T3, T4 и диод D15 в процессе работы сильно греются, потому устанавливаются на радиаторы.

IR2153

Из всех микросхем эта стоит дешевле всего, потому многие предпочитают собирать БП на ней. Здесь драйвер подключен не к шине +310 В, а через резистор к сети. При таком подключении снижена выделяемая на резисторе мощность.

Схема на микросхеме IR2153

В схеме предусмотрены:

  1. ограничение пускового тока (мягкий старт или софт-старт). Компонент запитан от сети через гасящий конденсатор С2;
  2. защита от короткого замыкания и перегрузки. Сопротивление R11 используется как датчик тока. Ток срабатывания защиты регулируется подстроечным сопротивлением R10.

О срабатывании защиты сообщает светодиод HL1. Напряжение на выходе — до 70 В, с двоякой полярностью. Число витков на первичной обмотке импульсного трансформатора — 50, на каждой из 4-х вторичных — 23. Выбор сечения проводов в обмотках и типа сердечника зависит от желаемой мощности.

UC3842

Еще одна недорогая микросхема, при этом весьма надежная и потому очень популярная. При включении ток, заряжающий конденсатор С2, ограничивается терморезистором R1.

Схема на микросхеме UC3842

Сопротивление последнего в этот момент составляет 4,7 Ом, затем по мере разогрева оно снижается на порядок, после чего данный элемент из схемы как бы «выключается». Стабилизация выходного напряжения — за счет обратной связи (петля «вторичная обмотка трансформатора Т1 – диод VD6 – конденсатор С8 – резистор R6 – диод VD5»).

Напряжение петли задается резистивным делителем R2 – R3. Цепочка «R4 – C5» — таймер для внутреннего генератора импульсов UC3842. ШИМ-контроллер и прочие микросхемы устанавливаются на пластинчатые радиаторы с площадью не менее 5 кв. см.

Проверка

Проверяют самодельный импульсный БП так:

  • подсоединяют выводы от микросхемы к лампе мощностью 40 Вт;
  • подключают устройство к сети. Лампа при этом слабо мигнет;
  • проверяют мультиметром соответствие выходного напряжения желаемому;
  • проверяют мультиметром импульс на затворах ключей;
  • замеряют напряжение постоянного тока на сглаживающих конденсаторах. В норме оно в 1,5 – 2 раза превышает переменное напряжение на диодном мосту.

При верном значении всех величин включают БП с полной нагрузкой.

по теме

Как сделать простой импульсный блок питания своими руками:

Существует множество вариантов импульсных блоков питания. Представленные схемы достаточно надежны, выдают стабильное напряжение и одновременно доступны для изготовления любителем. Важно помнить об опасности работ с электричеством и не стесняться консультироваться со специалистами в сомнительных случаях.

Импульсный трансформатор

Изготовление импульсного трансформатора своими руками

Импульсный трансформатор – трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Рассмотрим особенности конструктивного устройства этой техники, область применения, выпускаемые разновидности и другие характеристики, связанные с данным оборудованием.

Конструкция и принцип работы

Импульсный трансформатор, по аналогии с другими идентичными устройствами, состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • сердечника.

При подаче на входную катушку однополярных импульсов “е(t)” временной интервал между которыми довольно короткий, он вызывает возрастание индуктивности во время интервала tи, после чего наблюдается ее спад в интервале (Т-tи). Благодаря разнице в количестве витков на катушках входа и выхода и импульсному характеру подачи тока, получается добиться высокого коэффициента трансформации с сокращением габаритных размеров устройства.

Одновременно решаются задачи измерения уровня и полярности токового импульса или характеристик по напряжению, согласования значения сопротивления аппарата, создающего сигналы, с потребляющим оборудованием, создание схем обратной связи и пр.,

Подключение импульсного трансформатора

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.

Виды трансформаторов

Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Разновидности

В зависимости от конструктивных особенностей различают следующие разновидности импульсных трансформаторов:

  • стержневые;
  • броневые;
  • тороидальные, с намоткой провода на изолированный сердечник, не предполагающие применения катушек;
  • бронестержневые.

Виды магнитопроводов

Поперечное сечение сердечника в большинстве устройств выполняется в форме круга или прямоугольника, по аналогии с силовыми аппаратами.

Также читайте:  Однофазный масляный трансформатор — ОМП

Основные характеристики устройств нанесены на корпус, поэтому из условного обозначения можно почерпнуть информацию об главных параметрах оборудования.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Преимущества и недостатки

Использование импульсных трансформаторов объясняется следующими преимуществами:

  • высокими показателями выходной мощности;
  • небольшой массой и габаритными размерами;
  • высокой эффективностью, благодаря снижению энергетических потерь;
  • меньшей ценой при сопоставимых характеристиках;
  • высокой надёжностью по причине наличия схем защиты.

Разобранный импульсный трансформатор

Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.

Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.

Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.

Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.

Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.

Порядок проверки исправности

Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.

Также читайте:  Что такое силовой трансформатор

Аналоговый мультиметр настраивается следующим образом:

  • выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
  • провода вставляются в контакты прибора и соприкасаются друг с другом;
  • специальной подстройкой стрелка выставляется на ноль;

Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.

Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.

Проверка с помощью осцилографа:

Неисправность прибора может объясняться следующими проблемами:

  • повреждённым сердечником;
  • подгоревшими соединениями;
  • нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
  • разрывом провода.

Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах.

Процедура намотки

Если провод входной или выходной катушки не пригоден для дальнейшей эксплуатации, трансформатор можно перемотать. Для этого подбирается провод с двойной или тройной изоляцией, который необходимо намотать на сердечник.

Операция выполняется в следующем порядке:

  • наматывается провод первичной катушки, после предварительного припаивания входного контакта. Витки наматываются равномерно и плотно;
  • выходной конец провода припаивается в положенном месте;
  • наносится изоляция в несколько слоёв;
  • наматывается вторичная обмотка, с припаиванием входного и выходного концов.

Чтобы устройство работало нормально, провод наматывается равномерно, исключив узлы и перекручивания. Количество витков устанавливают, исходя из проведённого расчёта по характеристикам устройства.

Что такое импульсный трансформатор и как его рассчитать?

Изготовление импульсного трансформатора своими руками

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто  устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию.

Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью.

Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы.

Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке.

Эта особенность является основой принципов функционирования подобного оборудования.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками.

Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Изготовление импульсного трансформатора своими руками — Справочник металлиста

Изготовление импульсного трансформатора своими руками

На сегодняшний период времени увеличивающие или уменьшающие трансформаторы применяются для изменения напряжения. Данное устройство является машиной с высоким уровнем КПД и используется в большинстве сферах техники. Нередко людей интересует, как создать каркас и другие части трансформатора собственноручно.

Чтобы выполнить подобную задачу не обойтись без специальных умений. Помимо этого важно быть в курсе всего технологического процесса.

Создаём трансформатор

При необходимости сделать данный прибор, важно ответить на ряд вопросов, в том числе:

  • Какое непосредственно напряжение должен он пропускать?
  • На какой именно частоте планируется запустить в работу устройство?
  • Для каких целей требуется аппарат: для снижения или увеличения тока?

Какую мощь будет иметь?

Как только вы сможете ответить на каждый из перечисленных вопросов, приобретайте требуемые материалы. Необходимые материалы вы можете без сложностей купить в специализированных магазинах. Вам потребуются провода, изоляция ленточного типа высшего качества, сердечник.

Трансформатор собственноручно требует намотку. В этих целях  следует создать станок, изготовление которого осуществляется из доски длиною сорок сантиметров и шириною десять сантиметров. На доску необходимо прикрепить несколько брусков, посредством шурупов.

Расстояние, имеющееся между брусками не должно быть менее чем тридцать сантиметров. Затем следует просверлить отверстия восемь миллиметров диаметром. В созданные отверстия нужно вставить специальные пруты для катушки аппарата.

С одной из сторон следует создать резьбу. Закрутив обустроенную шайбу, вы получите его ручку. Габариты станка для намотки можно выбрать на собственное усмотрение. Прежде всего, правильный выбор напрямую зависит от габарита сердечника. При кольцевидной его форме намотка создаётся вручную.

Согласно схеме трансформаторного устройства, аппарат может быть оснащён разнообразным числом витков. Требуемое их количество рассчитывается, ориентируясь на мощность. К примеру, при необходимости создания прибора до 220 вольт, мощность должна достигать не менее 150 ватт.

Форма магнитного провода должна быть о-образной. Можно обустроить его из бу телевизора. При этом сечение определяется посредством определённой формулы.

Обустройство катушечного корпуса

Корпус делают из качественной картонной бумаги. Внутренняя его сторона слега больше в сравнении со стержневой частью сердечника. При применении о-образного сердечника потребуется несколько катушек. При сердечнике ш-образном достаточно использовать всего одну катушку.

Применяя сердечник круглой формы, его следует обмотать, применяя изоляцию. Затем можно осуществлять проводную намотку. Как только вы завершите с обмоткой первичной, её следует закрыть несколькими изоляционными слоями. После этого нужно накрутить очередной слой. Концы имеющихся обмоток выводятся на наружную сторону.

При применении магнитного провода корпус трансформатора собирается пошагово:

  • Осуществляется выкраивание определённого размера гильзы с требуемыми отворотами.
  • Создаются картонные щёчки.
  • Основная часть катушки сворачивается в специальную коробочку.
  • На гильзы надеваются щёчки.

Создание обмоток для увеличивающего трансформатора

Следует надеть катушку на брусок из натурального массива. В нём необходимо просверлить специальное отверстие для прутка намоточного.

К одному из серьёзных этапов относится подключение тока. Деталь вставляется внутрь станка и можно производить обмотку:

  • Сверху катушки наматывается лакоткань в несколько слоёв.
  • Конец имеющегося провода закрепляется на обустроенной щёчке, после чего можно приступать к вращению ручку.
  • Витки укладываются максимально плотно.
  • После обмотки следует обрезать провод для последующего закрепления сверху щёчки возле первого.
  • На имеющиеся выводы необходимо закрепить трубку изоляционную.

Сборка трансформатора увеличивающего

При необходимости узнать, как создать собственноручно трансформатор, воспользуйтесь инструкцией. Для сборки повышающего устройства важно разобрать полностью сердечник. При применении отдельно размещённых пластин, важно определиться с пакетной толщиной, рассчитать листы.

В случае если в процессе включения аппарата будет издаваться шум, то необходимо закрепить имеющийся крепёж максимально плотно. Затем следует проверить прибор на работоспособность. В этих целях он подключается к сети, после чего должно высветиться напряжение, составляющее 12В.

Немаловажно знать, что в процессе включения аппарата, важно оставить его в работающем состоянии на пару часов. При этом трансформатор должен не перегреваться.

Инструменты

Чтобы изготовить трансформатор собственноручно, следует взять инструменты, а также определённые материалы:

  • Лакоткань.
  • Сердечник, для которого вполне подходит телевизор бывший в использовании.
  • Плотная картонная бумага.
  • Доски, а также бруски из природной древесины.
  • Прут из стали.
  • Пила, специальный клей.

Сделать собственными руками трансформатор, как на фото, совершенно не проблематично. Если требуется изготовление трансформатора, предназначенного для лампочек галогенных, то вполне можно использовать тоже перечисленные выше инструменты.

Не забывайте, что очень важно придерживаться технологического процесса намотки. При точном соблюдении важных правил, аппарат прослужит вам ни одно десятилетие. Данных материалов, а также инструментов вам будет вполне достаточно для собственноручного создания качественного и практичного в применении трансформатора.

На основе подобной самоделки можно сформировать трансформатор для подзарядки машинного аккумулятора, либо создать повышающий прибор для источника питания лабораторного, выжигатель по древесине, либо другое устройство, которое удовлетворит нужды мастера по дому.

Фото трансформаторов своими руками

Импульсный трансформатор: принцип работы, расчет

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) – важный элемент, устанавливаемый практически во всех современных блоках питания.

Различные модели импульсных трансформаторов

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом;Конструкция стержневого импульсного трансформатора
  • броневом;Конструкция импульсного трансформатора в броневом исполнении
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник);Конструкция тороидального импульсного трансформатора
  • бронестержневом;Конструктивные особенности бронестержневого импульсного трансформатора

На рисунках обозначены:

  • A – магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В – катушка из изолирующего материала
  • С – провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Изготовление импульсного трансформатора своими руками — Металлы, оборудование, инструкции

Изготовление импульсного трансформатора своими руками

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) – важный элемент, устанавливаемый практически во всех современных блоках питания.

Различные модели импульсных трансформаторов

Расчет импульсного трансформатора

Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений.  В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.

Схема преобразователя

В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой:  Р=1,3 х Рн.

Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:

Необходимые для вычисления параметры:

  • Sc – отображает площадь сечения тороидального сердечника;
  • S0 – площадь его окна (как наитии это  и предыдущее значение показано на рисунке);

Основные параметры тороидального сердечника

  • Вмакс – максимальный пик индукции, она зависит от того, какая используется марка ферромагитного материала (справочная величина берется из источников, описывающих характеристики марок ферритов);
  • f – параметр, характеризующий частоту, с которой преобразуется напряжение.

Следующий этап сводится к определению количества витков в первичной обмотке Тр2:

(полученный результат округляется в большую сторону)

Величина UI определяется выражением:

UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ– уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).

Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:

Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.

Диаметр используемого в обмотке провода вычисляется по формуле:

Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:

Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.

Как сделать импульсный блок питания своими руками?

Если нет желания устанавливать громоздкий трансформатор или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

Для работы понадобятся следующие материалы и детали:

  1. PTC термистор любого типа.
  2. Пара конденсаторов, которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
  3. Диодная сборка типа «вертикалка».
  4. Драйвера типа IR2152, IR2153, IR2153D.
  5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
  6. Трансформатор можно взять из старых компьютерных системных блоков.
  7. Диоды, устанавливаемые на выходе, рекомендуется брать из семейства HER.

Кроме этого, понадобятся следующие инструменты:

  1. Паяльник и расходные материалы.
  2. Отвертка и плоскогубцы.
  3. Пинцет.

Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

Интересуют сахалин грузоперевозка? Заходите на caravankhv.ru.

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Структурная схема импульсного источника питания

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное напряжение, имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

[attention type=yellow]Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.[/attention]

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Сетевой выпрямитель с фильтром

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Сетевой выпрямитель с фильтром

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

[attention type=red]Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.[/attention]

Нулевая, или двухполупериодная схема со средней точкой, хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

[attention type=green]Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения UBM.[/attention]

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

средний ток диода выпрямителя

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной UBM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Емкости фильтров для различных мощностей

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Высокочастотный преобразователь

Однотактная схема. При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

[blockquote_gray]как подключить электросчетчикЧтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной схемы подключения электросчетчика обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно здесь.[/blockquote_gray]

Двухтактная схема со средней точкой трансформатора (пушпульная). Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема. По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема. По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

[attention type=green]Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) IКМАХ и максимальному напряжению коллектор-эмиттер UКЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.[/attention]

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади сечения проводов обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Параметры импульсных трансформаторов и ключей ВЧ-преобразователя

Параметры импульсных трансформаторов и ключей ВЧ-преобразователя

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (UКЭМАХ>=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

[attention type=red]Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.[/attention]

Выполнение приведенных рекомендаций дает возможность в кратчайшие сроки и с минимумом проблем и затрат собрать силовую часть высокочастотного импульсного преобразователя для бытовых нужд.

Видео о изготовлении простейшего импульсного питающего устройства

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *