Меню

Блок питания на лм 317 схемы своими руками

Конечный вариант моего блока питания и схема регулировки напряжения .

Видео Регулируемый блок питания на LM317 своими руками за два вечера (часть 2) канала Создано в Гараже

Показать

Блоки питания являются неотъемлемой часть различной электротехники. У тех, кто занимается электроникой, электрикой возникает необходимость в наличии лабораторного блока питания, имеющий функцию плавной регуляции выходного напряжения. Таким источником тока можно питать различные устройства, нуждающиеся в различном постоянном напряжении. В этой статье предлагаю ознакомиться со схемой достаточно простого регулируемого блока питания, собранного на интегральном стабилизаторе напряжения и тока LM317. Выходное напряжение его можно изменять в пределах от 1,5 до 30 вольт. Максимальный ток на выходе до 1,5 ампера. Этот блок питания имеет встроенную защиту от короткого замыкания, перегрева. Погрешность напряжения на выходе около 0,1%.

Схема простого регулируемого блока питания на стабилизаторе LM317

Итак, к основным функциональным частям относятся силовой понижающий трансформатор TR1, выпрямительный диодный мост VD1 и два фильтрующих  конденсатора C1, C2. Для этого простого регулируемого блока питания подойдет любой трансформатор мощностью около 60 ватт, и выходным напряжением (на вторичной обмотке) 30 вольт. Почему 60 Вт? Выходное максимальное напряжение (30 вольт) перемножим на максимальный выходной ток (1,5 ампер), плюс небольшой запас. Напомню, чтобы найти мощность нужно напряжение умножить на силу тока.

диодный мост для регулируемого блока питания на LM317 со схемойДиодный мост, который из переменного напряжения делает постоянное (но скачкообразное) должен быть рассчитан на силу тока не менее 1,5 ампер. Я в эту схему регулируемого блока питания поставил выпрямительный мост типа S2A. Он рассчитан на обратное напряжение в 50 вольт и силу тока в 2 ампера (взял небольшой запас). Вы же можете поставить любые другие диодные мосты (готовые или спаянные самостоятельно из отдельно взятых диодов), у которых похожие характеристики. Ну и после диодного моста стоят два фильтрующих конденсатора, один из которых электролит с емкостью 2200 мкф (если поставите больше, допустим 5 000 мкф, будет только лучше, но увеличатся габариты блока питания). Эти конденсаторы должны быть рассчитаны на напряжение более 30 вольт. Именно они сглаживают скачкообразные пульсации напряжения после моста.

Теперь переходим к части схемы, которая и осуществляет функции регуляции напряжения, защиты от короткого замыкания и перегрева, состоящей из интегрального стабилизатора LM317, двух резисторов R1, R2 и конденсатора C3. Итак, интегральный стабилизатор тока и напряжения типа LM317 недорого стоит, имеет встроенную защиту от токов КЗ и чрезмерного перегрева, погрешность выходного напряжения около 0,1%. Как видно достаточно хороший компонент. Он выпускается в различных корпусах, таких как TO-220, ISOWATT220, TO-3, D2PAK.

цоколевка и корпуса интегрального стабилизатора LM317, схема блока питания с регуляцией

Именно резисторами R1, R2 задается пределы выходного напряжения. Данный интегральный стабилизатор может выдавать аж до 37 вольт на своем выходе. Конденсатор электролит C3 является еще одним фильтром, который сглаживает пульсации напряжения на выходе простого регулируемого блока питания.

установка радиатора охлаждения транзистора, стабилизатора блока питанияТак как выходной ток может достигать 1,5 ампера, при напряжении в 30 вольт, а стабилизатор имеет относительно малые размеры, то возникает необходимость установки его на охлаждающий радиатор. Без него при возникновении перегрева стабилизатор будет просто отключаться, что будет приводить к периодическому пропаданию выходного напряжения при питании большой нагрузки. Не забудьте между охлаждающим радиатором и интегральным стабилизатором LM317 нанести термопроводящую пасту. Она значительно улучшает отвод тепла от компонента.

Видео по этой теме:

P.S. Данный регулируемый источник питания, который собран на интегральном стабилизаторе, действительно является простым и хорошим решением. По размеру этот блок питания получится небольшой. Он имеет вполне хорошие функции и характеристики. Его сборка не займет много времени и сил. Да и по деньгам он выйдет достаточно дешево, особенно если у вас есть нужные части от сломанной электротехники (понижающий трансформатор, диодный мост, конденсаторы).

Сборка лабораторного блока питанияРано или поздно любой начинающий радиолюбитель сталкивается с необходимостью заиметь простой, надёжный и недорогой регулируемый блок питания для проверки собственных поделок, ну и, конечно же, тестирования новых «пациентов». Вариантов немного – либо купить уже готовый блок с требуемыми характеристиками в магазине или же у более опытного коллеги по ремеслу, либо собрать устройство самостоятельно из подручных материалов. С учётом цен на более-менее качественные ИИП с регулировкой напряжения (в среднем от 15 до 80 у. е.) вывод напрашивается сам собой.

Не хотим покупать, хотим создавать!

Простой регулируемый блок питания с регулировкой напряжения от 0 до 15 ВОдин из самых простых и универсальных вариантов – блок питания на LM 317. Это популярный и недорогой регулируемый линейный стабилизатор напряжения, обычно изготавливаемый в корпусе ТО-220. Узнать, какая ножка за что отвечает, можно из картинки ниже.

Основные характеристики таковы:

  • Входное напряжение до 40 В.
  • Ток на выходе до 2,3 А.
  • Минимальное выходное напряжение – 1,3 В.
  • Максимальное выходное напряжение – Uвх-2 В.
  • Рабочая температура – до 125 градусов Цельсия.
  • Погрешность стабилизации – не более 0,1% от Uвых.

Чуть подробнее остановимся на максимальном токе. Дело в том, что LM 317 – линейный стабилизатор. «Лишнее» напряжение на ней превращается в тепло, а максимальный теплопакет микросхемы с дополнительным радиатором охлаждения составляет 20 Вт, без него – около 2,5 Вт. Зная формулу расчёта мощности, мы можем посчитать, какой ток реально получить при различных условиях. Например, Uвх=20 В, Uвых=5 В – падение напряжения Uпад = 15В.

При теплопакете 20 Вт это означает максимально допустимый ток в 1,33 А (20 Вт/15 В=1,33 А). А без радиатора – всего 0,15А. Так что помимо радиодеталей следует озаботиться поиском радиатора – подойдёт какой-нибудь помассивнее, от старого усилителя мощности, да и к выбору источника питания нужно подойти с умом.

Комплектующие и схема

Деталей нужно совсем немного:

  • 2 резистора: постоянный, номиналом 200 Ом 2 Вт (лучше мощнее) и переменный настроечный 6,8 кОм 0,5 Вт;
  • 2 конденсатора, напряжение в соответствии с требованиями, ёмкость – 1000…2200 мкФ и 100…470 мкФ;
  • диодный мост или диоды, рассчитанные на напряжение от 100В и ток не менее 3..5 А;
  • вольтметр и амперметр (диапазон измерений, соответственно, 0…30 В и 0…2 А) – сойдут аналоговые и цифровые, на ваш вкус.
  • трансформатор с подходящими характеристиками – на выходе не более 25…26 В и ток не менее 1 А – по мощности лучше подобрать с хорошим запасом, чтобы не возникла перегрузка.
  • радиатор с винтовым креплением и термопаста.
  • корпус будущего блока питания, в который влезут все детали, и, что важно, с хорошей вентиляцией.
  • опционально: винтовые зажимы, ручки регулировки, «крокодилы» для выводов, ну и прочая мелочёвка – тумблеры, индикаторы работы, предохранители, которые уберегут блок питания от серьёзных поломок и сделают работу с ним более удобной.

Блок питания своими рукамиНа всякий случай отдельно разъясним, почему напряжение трансформатора не более 25 В. При выпрямлении с использованием фильтрующего конденсатора напряжение на выходе повышается на корень из двух, то есть примерно в 1,44 раза. Таким образом, имея на выходе обмоток 25 В переменного тока, после диодного моста и сглаживающего конденсатора напряжение составит около 35–36 В постоянного тока, что довольно близко к пределу микросхемы. Помните об этом, когда будете выбирать конденсаторы и трансформатор!

Как видите, работы очень мало – распайка деталей может выполняться даже навесным монтажом, без ущерба качеству, при условии аккуратного изолирования всех контактов и живучести блока питания.

После сборки не торопитесь подключать к блоку нагрузку – сначала проверьте напряжение питания на выходе диодного моста, а потом запустите блок на холостом ходу и пальцем проверьте температуру стабилизатора – он должен быть прохладным. После подключите питание от блока к какой-нибудь нагрузке и проверьте показания напряжения на выходе – они не должны меняться.

Немного нюансов

Схема регулируемого двухполярного блока питанияLM 317 имеет множество аналогов как хороших, так и не очень – будьте бдительны, выбирая товар на рынке! Если важна точность регулировки, можно изменить номинал настроечного резистора до 2,4 кОм – диапазон выходных напряжений, конечно, уменьшится, зато случайное касание ручки почти не изменит напряжение на выходе – а иногда это очень важно! Поэкспериментируйте с разными номиналами, чтобы сделать свой блок питания удобным.

Ещё нужно соблюдать температурный режим – оптимальная температура работы LM 317 составляет 50…70 градусов Цельсия, и чем сильнее греется микросхема, тем хуже точность стабилизации напряжения.

Если предполагаются постоянные большие нагрузки, скажем запитывание усилителей мощности или электродвигателей – желательно не только закрепить микросхему на радиаторе, но и увеличить ёмкость сглаживающего конденсатора до 4700 мкФ и выше. При правильно подобранной ёмкости под нагрузкой напряжение не будет проседать.

Когда вы решите обзавестись собственными универсальным источником питания, подумайте, что для вас будет лучше – отдать приличную сумму за готовое решение или же собрать устройство своими руками, используя недорогие комплектующие и потешив собственное самолюбие пусть небольшим, но, все же, достижением.

Стоимость регулируемого блока питания, сделанного своими руками, невелика – от себестоимости самой микросхемы (около 20 рублей) до 700–800 рублей при покупке новых деталей в магазине.

Сегодня, когда практически каждый год появляются новые технологии и электроприборы, очень сложно обойдись без некоторой аппаратуры в домашних условиях. Особенно большая роль в нашей жизни отводится блокам питания. Любой радиолюбитель должен уметь собирать это прибор своими руками.

В сегодняшней статье речь пойдет о том, как сделать такой важный в домашней лаборатории электроприбор, как блок питания lm317. Сфера применения такого оборудования огромна, поэтому знания о том, как его можно собрать своими руками будут актуальными и полезными в быту.

Особенности устройства

Блок питания представляет собой важный атрибут любой радиолюбительской домашней мастерской. Принцип работы блока питания заключается в том, что он может преобразовывать напряжения и ток, находящийся в сети, до нужного нам параметра для питания и подключения различных электроприборов. При этом такой прибор обеспечивает высокую защиту от короткого замыкания.
Блок питания может быть различного двух типов:

  • регулируемый;
  • импульсный.

Кроме этого схема, которая применяется для сборки данного типа блока питания, может быть различной — от самой простой, до весьма сложной.

Обратите внимание! Если вы являетесь новичком в радиоэлектронике, то для начала следует выбирать простые схемы. Такая схема будет понятной для вас и позволит быстро создать прибор для самых разнообразных нужд.

Вариант схемы

Примерная схема

Решение собирать блок питания на микросхеме lm317 значительно упрощает процесс сборки. При этом сама схема также упрощается. Благодаря микросхеме появляется возможность сделать блок питания с регулировкой и обеспечивается стабилизация питания.
Если верить комментариям, которые оставляют радиолюбители, такая сборка в разы превосходит отечественные аналоги, обладая при этом большими ресурсами.

Принцип работы

Теперь рассмотрим принцип работы прибора, так как собирая блок питания типа lm317 для получения возможности регулировать показатель напряжения, а также силу тока в сети, необходимо обязательно четко знать и понимать данный аспект. Без этого невозможно правильно собрать прибор, даже если схема будет достаточно простой.

Вариант блока питания

Рабочий БП

Для блока питания типа lm317 характерен следующий принцип работы. Микросхема lm317 занимается регулированием силы тока по выводу и способствует падению напряжения. Падение напряжения происходит на резисторе. Резистор, на котором происходит падение напряжения, обладает значением в 1,25 В.
В результате такая схема позволяет путем изменения номинала резистора производить регулировку напряжения и обеспечивать изменение показателя силы тока.

Элемент блока питания

Микросхема

Обратите внимание! Если спайка деталей была осуществлена правильно, то такой прибор предупреждает появление короткого замыкания. Здесь немаловажную роль в сборке играет качество самых деталей. Поэтому отдавайте предпочтение более качественной продукции, покупая ее у проверенных продавцов.

Помимо этого необходимо помнить, что данная схема сборки блока питания с участием микросхемы lm317 имеет некоторые ограничения. Нижним пределом ограничений является 0,8 Ом, а верхним пределом – 120 Ом. Таким образом, для выбор резистора для того, чтобы эта схема нормально функционировала, нужно руководствоваться формулой 0,8<R1

Область применения

Блок питания типа lm317 можно применять для изменения параметра напряжения и силы тока в следующих ситуациях:

  • питание разнообразных электроприборов, особенно тех, для которых необходимо отличное от 220 В напряжение;
  • проверка изделий своей домашней электролаборатории;
  • создание освещения при использовании светодиодных лент и других осветительных приборов, работающих на низких показателях напряжения;

Обратите внимание! Наиболее часто блок питания используется в тандеме со светодиодной лентой. Благодаря этому можно получить качественную подсветку в любом помещении дома. При этом защита от короткого замыкания будет на достаточно высоком уровне.

Освещение на потолке

Подсветка

  • для освещения аквариумов и других объектов в доме.

Это основной, но далеко не полный перечень всех ситуаций, в которых вам может понадобиться помощь блока питания на lm317.
Блок питания, работающий на микросхеме lm317, позволит вам перестать пользоваться случайными адаптерами, а также периодически покупать батарейки.

Характеристики прибора

Собранный на основе микросхемы lm317, блок питания обладает следующими характеристиками:

  • возможность регулировать параметр выходного напряжения начиная от 1,2 В и заканчивая 28 В;
  • нагрузка по силе тока может составлять до 3 А. Но следует помнить, что меняя трансформатор, вы будете изменять и этот параметр.

Обратите внимание! Такой нагрузки вполне достаточно для того, чтобы проверять работоспособность самодельных электроконструкций.

При этом схема, применяемая в данном случае, будет достаточно простой и позволит собрать требуемый прибор человеку с минимальными познаниями в радиоэлектронике. В нее входят дешевые и распространенные детали, которые легко можно отыскать на рынке или в специализированных магазинах.

Необходимые элементы

Примерный набор деталей

Если вы хотите создать регулируемый тип блока питания на микросхеме lm317 для изменения параметра напряжения и силы тока, вам понадобятся следующие детали:

  • стабилизатор lm317;
  • Tr1 — силовой трансформатор;
  • Т1 — транзистор (тип КТ819Г);
  • F1 — предохранитель с параметрами 0.5А и 250 В;
  • D1 — диод 1N5400;
  • Br1 — диодный мост;
  • C1 — электролитический конденсатор (модель 3300 мкф*43В);
  • C2 — керамический конденсатор (тип 0.1 мкф);
  • C3 — электролитический конденсатор ( модель 1 мкф*43 В);
  • LED1 — светодиод любого цвета;
  • Р1 — построечное сопротивление на 4.7K;
  • R1 – сопротивление на 18K;
  • R2 — сопротивление на 220 Ом;
  • R3 — сопротивление на 0.1 Ом*2Вт.

Стоит отметить, что в зависимости от того, какая схема планируется использоваться для сборки такого блока, будет меняться и возможный перечень необходимых в работе деталей.

Готовимся к сборке

Трансформаторы для блока питания

Трансформатор

Перед тем как мы начнем сборку регулируемого типа блока с защитой от короткого замыкания, основанного на микросхеме lm317, необходимо купить все требуемые в работе детали и компоненты. Здесь нужно помнить, что от качества приобретенной радиотехнической продукции будет напрямую зависеть срок службы и качество работы собираемого БП.
Поэтому, если вы не очень хорошо разбираетесь в комплектующих, покупать лучше всего только там, где вам могут предоставить сертификат качества отпускаемой продукции.
Одной из самых важных деталей в любой схеме сборки будет трансформатор. Он используется для понижения напряжения в качестве преобразователя.

Эту деталь можно извлечь из любого электроприбора, который у вас дома стоит без дела или уже сломался. Например, трансформатор можно извлечь из телевизора, магнитофона и т.д.

Элемент блока питания

Силовой трансформатор

Некоторые рекомендуют включать в схему трансформатор марки ТВК-110. Он устанавливался ранее в черно-белых телевизорах в блоке для кадровой развертки. Но здесь имеется один минус – выходное напряжение здесь будет составлять всего 9 В, а сила тока будет маленькой. При этом если вам потребуется подпитать мощный электроприбор, то данный трансформатор не справится с возложенной на него нагрузкой.
Здесь, если есть потребность в мощном БП, следует использовать силовые трансформаторы.

При этом помните, что их мощность должна составлять минимум 40 Вт. Чтобы сделать БП на микросборке lm317t для ЦАП, вам понадобится выходное напряжение в диапазоне 3,5-5 В. Именно такой уровень напряжения следует поддерживать в цепи для питания микроконтроллера.
Также вам могут потребоваться незначительные изменения во вторичную обмотку, без затрагивания первичной обмотки.

Собираем блок питания

После того как вы выбрали сборочную схему и обзавелись всеми нужными комплектующими, можно приступать в работе. Как уже говорилось, в нашем случае сборка блока питания регулируемого типа будет происходить на базе микросхемы lm317.
Сборка происходит следующим образом:

  • устанавливаем выбранный тип трансформатора;
  • затем приступаем к сборке выпрямительного блока или каскада. Здесь нужно спаять полупроводниковые диоды. В данной ситуации ничего сложного нет. Единственное, нужно учитывать тип выправления;

Обратите внимание! Тип выправления может быть двухполупериодным, однополупериодным, с утроением, с удвоением, мостовым. Для обычного БП лучше брать мостовой тип выправления.

Мхема каскада

Схема выпрямительного каскада

  • далее определяем выводы на схеме. Здесь имеется три вывода: масса (1), вход (2) и выход (3). Переворачиваем корпус так, чтобы нумерация шла слева направо. Теперь осталось только провести стабилизацию напряжения. Минус с выпрямителя подаем на второй вывод, а с третьего снимаем стабилизированное напряжение.

Схема стабилизатора

Схема стабилизатора напряжения

Собраный БП

Вариант готового БП

После этого ориентируемся по выбранной схеме, устанавливая оставшиеся детали.
Все элементы схемы можно поместить в корпус, для которого следует использовать пластик или лист алюминия. Но можно придать БП абсолютно любую форму, которую вы сами захотите.

Как видим, при правильно подобранной схеме, в зависимости от своего уровня профессионализма и знаний радиотехники, можно без особых проблем создать своими руками блок питания регулируемого типа на базе микросхемы lm317. Для того чтобы у вас все получилось, нужно следовать схеме сборки, а также приобрести качественные детали. В результате у вас получится отличный блок питания с отменными характеристиками – незаменимый помощник в домашней лаборатории любого радиолюбителя.

В лаборатории радиолюбителя или домашнего мастера, занимающегося ремонтом электронного оборудования, лабораторный блок питания абсолютно необходим. Он должен выдавать регулируемое напряжение от 0 до 12 В (а лучше до 30) при токе хотя бы до 1,5 (а лучше до 5) ампер. Также не будет лишней защита от перегрузки, удобно иметь ограничение максимального тока. Подобный блок питания можно собрать своими руками.

Виды источников питания

Все источники питания можно разделить на два больших класса:

  • импульсные;
  • трансформаторные.

Эти термины не очень точные – трансформаторный источник питания может иметь как линейный, так и импульсный стабилизатор напряжения, а импульсный БП содержит трансформатор.

Каждый тип имеет свои преимущества и недостатки, базирующиеся на принципе действия. Трансформаторный источник питания с линейным регулятором напряжения распределяет энергию между нагрузкой и регулирующим элементом (как правило, мощным транзистором) и представляет собой делитель напряжения. Одним плечом служит регулирующий элемент, другим – нагрузка.

Рекомендуем: Виды блоков питания и их назначение

При уменьшении напряжения на нагрузке (например, из-за увеличения потребляемого тока) транзистор приоткрывается и поддерживает это напряжение постоянным. При увеличении напряжения на нагрузке процесс обратный – транзистор призакрывается. Так происходит процесс стабилизации.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Принцип действия линейного стабилизатора.

Минусы этой схемы:

  • требуется, чтобы входное напряжение было заметно выше выходного;
  • через регулирующий транзистор постоянно идет ток, равный току нагрузки — впустую рассеивается большая мощность;
  • КПД даже теоретически не может превышать отношение Uвых/Uвх.

Плюсами являются:

  • относительно простая и недорогая схема;
  • выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).

Импульсный источник питания действует по другому принципу. Здесь энергия распределяется во времени. У ключевых транзисторов всего два состояния – они либо полностью открыты, либо полностью закрыты. Длительность открытого положения определяет средний ток через первичную обмотку трансформатора и усредненное напряжение на выходных конденсаторах фильтра (соответственно, и на нагрузке). Этим процессом удобно управлять методом широтно-импульсной модуляции (ШИМ), когда частота преобразования остается постоянной, а меняется лишь длина импульса.

В идеальном импульсном источнике стабилизированного напряжения у ключей в открытом положении нулевое сопротивление, падение напряжения отсутствует, а в закрытом – полностью отсутствует ток. Поэтому энергия на транзисторах не рассеивается. На практике не все так радужно. Идеальных транзисторов не существует, поэтому в открытом состоянии на них падает определенное напряжение (сопротивление не равно нулю), а в закрытом существует ток утечки (сопротивление не равно бесконечности).

Но основные потери, снижающие КПД, происходят по другой причине. Транзисторные ключи переходят из одного состояния в противоположное не мгновенно. На это нужно время, зависящее от быстродействия элемента. Во время перехода через транзистор идет сквозной ток, на нем падает напряжение – следовательно, выделяется мощность. Эти потери называются коммутационными, их величина зависит от частоты преобразования.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Реальный и идеальный ключ в импульсном источнике питания.

Но все равно, КПД такого источника выше, чем линейного. И это основной плюс такой схемы. Другое достоинство – меньшие габариты и вес источника питания. Это достигается за счет того, что преобразование осуществляется на достаточно высокой частоте – до нескольких десятков килогерц. Поэтому самый тяжелый и громоздкий элемент (силовой трансформатор) получается легким и компактным. Главным минусом является сложность схемы.

Обычно на ток до 2 А применяются линейные источники напряжения. Ближе к токам 3 А и выше достоинства импульсников начинают перевешивать.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Как подобрать компоненты

Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Площадь сердечника для разных типов трансформаторов.

Мощность вычисляется по формуле:

P=S2/1.44 где:

  • P-мощность в Ваттах;
  • S- сечение в квадратных сантиметрах.

Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.

Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:

  • определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
  • эта величина умножается на необходимый уровень напряжения.

Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.

Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.

Транзистор Наибольший ток коллектора (постоянный), А
КТ818 (819) 10
КТ825 (827) 20
КТ805 5
TIP36 25
2N3055 15
MJE13009 12

При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.

Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо.

Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:

  • габариты конденсатора;
  • бросок тока на заряд, который может быть значительным при большой емкости.

Выходной конденсатор БП может иметь емкость около 1000 мкФ.

Схемы лабораторных блоков питания

В интернете можно найти множество схем лабораторных блоков питания. Выбор определяется исходя из задач, квалификации мастера и наличия комплектующих.

Импульсный БП на tl494

Микросхема TL494 является культовой в сфере построения импульсных источников питания. Большинство БП стационарных компьютеров сделано на ее основе.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Распиновка и назначение выводов TL494.

На базе TL494 можно сделать и лабораторный источник в соответствии с рассмотренной выше структурой.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Схема импульсного БП на TL494.

На входе блока установлен сетевой фильтр. После него расположен высоковольтный выпрямитель на VDS1 (можно применять любые сборки и диоды на соответствующее напряжение и то), формирующий постоянное напряжение 220 вольт. Параллельно выпрямителю включен вспомогательный трансформатор TR3 с выпрямителем VDS2. Эти элементы формируют напряжение +12 вольт для питания микросхем. TL494 генерирует последовательность импульсов, частота которых определяется цепочкой С3R3. Сигнал усиливается ключами на транзисторах T1, T2 и через трансформатор TR1 подается на базы T3, T4. Эти мощные транзисторы формируют высоковольтные импульсы в первичной обмотке трансформатора TR2. Импульсы с частотой следования несколько десятков килогерц трансформируются во вторичную обмотку трансформатора, выпрямляются сборкой D5, фильтруются и подаются к потребителю.

Цепь обратной связи по напряжению формируется на элементах OP3, OP4 операционного усилителя. Резистором R15 устанавливается необходимый выходной уровень. Фактический ток измеряется как падение напряжения на шунте из резисторов R25, R26. Элементы OP1, OP2 создают цепь ограничения наибольшего тока (необходимое значение устанавливается потенциометром). Микросхема TL494 в зависимости от заданного тока и напряжения увеличивает или уменьшает длительность открытого состояния ключей. Транзисторы T3, T4, а также диод D5 должны быть установлены на радиаторы. Крайне желательно организовать принудительный обдув элементов схемы. Вентилятор может быть подключен к источнику постоянного напряжения +12 вольт.

Номиналы и типы элементов приведены на схеме. Многие комплектующие, включая намоточные элементы, можно взять от неисправного или ненужного компьютерного БП. Дроссель L5 намотан на желтом тороидальном сердечнике и содержит 50 витков провода диаметром 1,5 мм.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Источник питания с импульсным стабилизатором.

Другой вариант применения микросхемы TL494 – в импульсном стабилизаторе для БП, выполненного по «трансформаторной» схеме. Этот источник выдает напряжение от 0 до 30 вольт при токе до 5 ампер.

Здесь микросхема управляет открытием и закрытием ключа на транзисторе VT1. В открытом состоянии энергия накапливается в дросселе L1, в закрытом – отдается из дросселя потребителю. Диод VD1 «съедает» импульс отрицательного напряжения, возникающий при коммутации цепи с большой индуктивностью.

Чем больше нагрузка, тем быстрее расходуется энергия в индуктивности, тем быстрее падает напряжение на конденсаторе C4, тем на большее время надо открывать транзистор. Напряжение обратной связи поступает на микросхему с движка потенциометра R9. Им устанавливается необходимый выходной уровень. Ток измеряется как падение напряжения на шунте R12. Необходимое значение уровня ограничения по току устанавливается с помощью R3.

Участок схемы, содержащий операционный усилитель LM358 и логическую микросхему К155ЛА3 (лучше применить К555ЛА3) служит для индикации режима БП – стабилизация тока или стабилизация напряжения.

Резисторы R4 и R10, предназначенные для точной подстройки напряжения и тока, можно не ставить – на практике от них пользы нет. При сборке надо обеспечить эффективное охлаждение элементов:

  • транзистора VT1;
  • диода VD1;
  • дросселя L1;
  • шунта R12.

Использование кулера крайне рекомендуется. Также следует установить приборы для индикации текущих значений тока и напряжения.

Рекомендуем попробовать: Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

На п210 транзисторе

В запасниках многих радиолюбителей сохранились транзисторы П210. Применение для них найти не так просто – появились более современные компоненты, их частотные характеристики и коэффициент усиления оставляют устаревший прибор далеко позади. Но один параметр — максимальный ток коллектора П210, составляющий 12 А при установке на радиаторе — позволяет и сегодня использовать их в регулируемых источниках питания.

Схема несложная, но надо обратить внимание, что транзистор включается в отрицательное плечо (П210 имеет структуру p-n-p). Конденсатор после выпрямителя должен иметь емкость не менее 5000 мкФ, а на выходе – не меньше 1000 мкФ. П210 может иметь малый коэффициент усиления, поэтому к нему добавлен транзистор VT2 – любой маломощный структуры p-n-p.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Схема источника питания на транзисторе П210 или аналогичном.

В источнике можно применить трансформатор ТН-36-127/220-50, имеющий 4 вторичные обмотки по 6,3 вольта. Соединив две из них последовательно, можно построить самодельный блок питания с выходным напряжением до 12 В, а если соединить по той же схеме 4 обмотки – до 24 В. Также можно использовать другие понижающие трансформаторы, подходящие по току и напряжению.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Схема соединения обмоток ТН-36-127/220-50.

Подобные источники регулируемого напряжения можно строить и на других транзисторах, включая n-p-n. В этом случае силовой элемент включается в положительное плечо БП.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Источник питания на транзисторе КТ829.

Эти простые БП не имеют защиты от КЗ и перегрузки. На выходе крайне желательно установить вольтметр и амперметр для контроля режима. Транзистор обязательно устанавливать на радиаторе.

На lm317

На микросхеме LM317 можно собрать блок питания с линейным стабилизатором напряжения и регулируемым ограничением по току. Основное достоинство этой микросхемы – простая схема включения с минимумом обвязки. Стандартная схема включения выглядит так:

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Стандартная схема включения LM317.

Выходное напряжение задается делителем R1R2. Микросхема изменением выходного напряжения пытается удержать ток через делитель так, чтобы падение напряжения на R1 составляло 1,25 вольт. Поэтому, чем больше R2, тем больше выходное напряжение. Если вместо R2 поставить потенциометр, то выходное напряжение можно регулировать. Выходной уровень вычисляется по формуле Uвых=1,25*(1+R2/R1).

Если R2=0, то на выходе будет 1,25 вольта – это минимально возможное напряжение для данного включения.

В интернете существует много схем на LM317 с регулировкой напряжения от нуля вольт (в том числе с подачей на вывод Adjust отрицательного смещения). Большинство этих технических решений работоспособны только на бумаге.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

В даташите на микросхему есть такая схема включения.

Этого достаточно, чтобы построить простой регулируемый лабораторник, но есть проблема. Микросхема в таком включении выдает не более 1,5 А, если ее даже установить на радиатор. Второй минус – чтобы получить выходное напряжение 30 В, на вход надо подать около 35 VDC. Если надо получить на выходе уровень, близкий к минимальному, вступают в действие ограничения по наибольшей рассеиваемой мощности – при перепаде 35/1,25 наибольший ток может быть 0,3..0,5 А (в зависимости от корпуса микросхемы). Это совсем мало. Поэтому микросхему надо умощнить внешним транзистором.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Производитель предлагает такую схему.

В качестве внешнего можно использовать отечественный транзистор структуры p-n-p КТ818 с буквенным индексом Б-Г (КТ818А может не пройти по напряжению коллектор-эмиттер). Если его установить на радиатор, наибольший ток в теории составит 10 А, но это в случае, если нет ограничений по току диодов выпрямителя и мощности трансформатора.

Мощные транзисторы структуры n-p-n более распространены. Если надо умощнить стабилизатор таким элементом, можно воспользоваться схемой из даташита.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Использование мощного n-p-n элемента, рекомендуемое разработчиком микросхемы.

Здесь применяется маломощный транзистор p-n-p (можно использовать отечественный КТ814), который управляет мощным элементом n-p-n (например, КТ819).

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Часто применяемое на практике использование мощного n-p-n элемента.

Но чаще применяется включение, не предусмотренное разработчиком – транзистор включается базой к выходу микросхемы.

Каждая из предложенных схем может применяться в качестве лабораторного блока питания на LM317, но на практике популярностью пользуется схема ЛБП, дополненная регулировкой максимального тока.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Схема блока питания на LM317.

Питается устройство от сетевого трансформатора с двумя обмотками. Дополнительная обмотка служит для создания отрицательного плеча питания ОУ LM301, на котором собрана схема ограничения тока. Операционный усилитель включен по схеме компаратора – на одном выводе присутствует образцовое напряжение, регулируемое с помощью Р1, на другом – напряжение, создаваемое фактическим током на шунтовом резисторе R5.

Если реальный ток превышает установленный, состояние на выходе компаратора изменяется на противоположное. Загорается светодиод, напряжение ограничивается на уровне, поддерживающем установленное значение тока.

На базе этой схемы собран стационарный блок питания, обеспечивающий два канала напряжения с регулировкой 1,25..30 вольт и ограничением тока в пределах 5А на каждый канал.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Внешний вид БП.

При необходимости каналы могут быть соединены последовательно с общей точкой – получится двухполярный источник. 90+ процентов комплектующих и материалов, включая корпус, обычно можно найти в запасниках любого радиолюбителя.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Внутренняя компоновка источника питания.

Блок собран в корпусе от неисправного измерителя АЧХ «Тест». Применены силовые трансформаторы неизвестного происхождения, подходящие по мощности и напряжению (у одного пришлось перемотать вторичную обмотку для получения напряжения 35 вольт). На нем не хватило места для дополнительной обмотки, поэтому отрицательное плечо одного из каналов запитывается от отдельного маленького трансформатора.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Печатная плата стабилизатора.

Большинство элементов размещены на платах, рисунок и расположение деталей можно найти в интернете. Можно разработать и изготовить свою плату.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Рекомендуемый рисунок печатной платы и расположение элементов на ней.

Изменена схема измерения – применены блоки вольтметр-амперметр, которые можно купить на торговых площадках в интернете. Элементы R8, R9, P4 и аналоговый вольтметр в этом варианте устанавливать не надо. Выходные транзисторы установлены на радиаторах, имеющихся на задней стенке корпуса. Диоды выпрямителя установлены на самодельные радиаторы.

Отечественным аналогом LM317 является микросхема 142ЕН12А.

При наладке БП был нагружен автомобильными лампочками до тока в 5 А, подстроечным резистором P1 (при максимальном сопротивлении Р2) выставлено срабатывание защиты.

Схема показала себя работоспособной, хотя ограничение тока работает не по лучшему алгоритму. При выходе тока за пределы напряжение просто снижается до минимума. Лучше найти схему, которая в этом случае переводит БП в режим стабилизации тока. Если нужен более высоковольтный ЛБП (с выходным уровнем до 60 вольт), его можно сделать на микросхеме LM317HV и применить трансформаторы с соответствующим напряжением.

На lt1083

Вместо микросхемы LM317 можно применить LT1083. Ее специфические отличия:

  • низкое падение напряжения (при максимальном токе не более 1,5 В);
  • повышенный выходной ток.

Первое преимущество ведет к тому, что на микросхеме будет рассеиваться меньшая мощность, поэтому при малых значениях напряжения с нее можно снять повышенный ток. К тому же выходное напряжение трансформатора можно сделать более низким (ненамного, на 1..2 вольта, но иногда и это критично).

Второй плюс ведет к тому, что во многих случаях можно обойтись без внешнего мощного транзистора. Наибольший ток, отдаваемый стабилизаторами серии LT108X, приведен в таблице.

Микросхема Максимальный ток, А
LT1083 3
LT1084 5
LT1085 7,5

Ток в 7,5 ампер закрывает 90+ процентов нужд домашней лаборатории. В остальном по теме обзора схема не отличается от схемы на LM317.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Распиновка и типовая схема включения линейных стабилизаторов серии LT108X.

Статья в тему: Схемы компьютерных блоков питания — полное описание с примерами

Регулировка напряжения и тока

Универсального способа регулировать ток и напряжение не существует. Все зависит от конструкции и схемы регулируемого блока питания. В некоторых вариантах это происходит изменением параметров обратной связи, в других изменением опорного напряжения (для напряжения) или установкой опорного уровня компаратора (для тока). Но все оперативные регулировки производятся органами управления, вынесенными на переднюю панель БП – так удобнее.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Регулируемый блок питания на стабилизаторе напряжения LM317

Простой регулируемый блок питания на трех микросхемах LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания.  Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими.

Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3  до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

Рисунок №1 – Электрическая принципиальная схема регулируемого блока питания.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт.

Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)
VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока.

 VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18  КОм (нужно подбирать под ток светодиода).
R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма  R2 + R3 = 5КОм.

R3 — 5,6 Ком.R4 – 240 Ом.

C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФC3 — 10 мкФ (электролитический)C4 —  1 мкФ (электролитический)

DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Рисунок №2 – Пример радиатора.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.

Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

Рисунок №3 — Плата печатная и сборочный чертёж

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт //bip-mip.com/

Как можно подключить вольтметр и амперметр к этой схеме

  Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации.

Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение.

А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Окно специального калькулятора для расчёта LM317Управляющий делитель напряжения

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

Источник: //bip-mip.com/reguliruemyj-blok-pitaniya-pitaniya-na-lm317.html

LM317 и LM317T схемы включения, datasheet

Простой регулируемый блок питания на трех микросхемах LM317

Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока,  светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.

Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.

Так же написал обзоры и datasheet других популярных ИМС TL431, LM358 LM358N, LM494. C хорошими иллюстрациями, понятными и простыми схемами.

  • 1. Характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Калькуляторы
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, даташит

Характеристики

Основное назначение это стабилизация положительного напряжения.  Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам,  букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.

Скачать даташиты:

  1. полный LM317, LM317T datasheet;
  2. LM117, LM217, LM317, LM317T datasheet.

Характеристики

LM317 LM338 LM350
Входное Вольт 1,2 – 37В 1,2 – 37В 1,2 – 37В
Напряжение на выходе до 36В до 36В до 36В
Сила тока 1,5А
Нагрев до 125°  —  —
Защита от перегрева от замыкания  —  —
Нестабильность на выходе 0,1%  —  —

Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей.  Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.

Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.

В даташите указана огромная сфера применения, проще написать где она не используется.

Аналоги

КР142ЕН12

Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.

  1. LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
  2. LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
  3. LM317HV, LM117HV —  напряжение на выходе до 60V, если вам не достаточно стандартных 40V.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Типовые схемы включения

Преобразователь с пониженными пульсациями LM317T

Регулируемый источник тока

Схема с предварительным стабилизатором

Регулятор 1,25 — 20 Вольт с регулируемым током

Параллельное подключение с одним регулятором

Схема для зарядки аккумуляторов на LM317T

Схема зарядки аккумулятора на 50мА

Схема плавного включения питания

Регулирование двумя LM317T синусоиды переменного тока

Зарядное устройство на 6V с ограничением Ампер

Параллельное подключение для увеличения мощности

Блок питания с большим током LM317T

Калькуляторы

..

Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.

Онлайн калькулятор стабилизатора тока на LM317

Программа  для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей  с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.

Скачать программу калькулятор для LM317, LM317T

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно.

Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти.  Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Светодиодный драйвер

Светодиодный драйвер до 5А

Зарядное для аккумуляторов

Регулируемый двухполярный блок питания от 0 до 36В

Двухполярный БП LM317 и LM337,  для получения положительного и отрицательного напряжения.

Радиоконструкторы

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, даташит

Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.

Premium WordPress Themes DownloadDownload Premium WordPress Themes FreeDownload Best WordPress Themes Free DownloadDownload Premium WordPress Themes Freedownload karbonn firmwareDownload WordPress Themes

Источник: //led-obzor.ru/lm317-lm317t-shemyi-vklyucheniya-datasheet

LM317T: схема блока питания мощного регулируемого

Простой регулируемый блок питания на трех микросхемах LM317

На микросборке LM317T схема блока питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания – трансформатор

Необходимо использование в качестве преобразователя напряжения понижающий трансформатор. Его можно взять от практически любой бытовой техники – магнитофонов, телевизоров и пр.

Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький.

И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт.

Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера.

Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный блок – это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя.

Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому – мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой).

Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени.

Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим.

После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев – получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла.

Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому.

Впрочем, можно поступить и более продвинуто – смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо.

Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод.

С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно.

Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется.

Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления – постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их соединения подключается первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания.

Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой).

Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод.

Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями.

Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента.

Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Источник: //fb.ru/article/193348/lm-t-shema-bloka-pitaniya-moschnogo-reguliruemogo

lm317 стабилизатор тока – стабилизация и защита схемы

Простой регулируемый блок питания на трех микросхемах LM317

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров.  Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 300 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей.

Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В.

Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.

Самый простой стабилизатор ТОКА на LM317 (РЕГУЛИРУЕМЫЙ) Simplest LED driver on LM317.

(4 5,00 из 5)

Источник: //ostabilizatore.ru/lm317-stabilizator-toka.html

Регулируемый стабилизатор напряжения на LM317

Простой регулируемый блок питания на трех микросхемах LM317

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

Описание

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В.

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе.

Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА.

Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА.

А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.

Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:R2=R1*((Uвых/Uоп)-1).Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.

Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Источник: //elekt.tech/elektronika/stabilizer/reguliruemyj-stabilizator-napryazheniya-na-lm317.html

Интегральный стабилизатор LM317

Простой регулируемый блок питания на трех микросхемах LM317

> Теория > Интегральный стабилизатор LM317

Схема линейного интегрального стабилизатора с регулируемым выходным напряжением LM317 разработана автором первых монолитных трёхвыводных стабилизаторов Р. Видларом почти 50 лет назад.

Микросхема получилась настолько удачной, что без изменений выпускается в настоящее время всеми основными производителями электронных компонентов и в разных вариантах включения применяется во множестве устройств.

Корпуса и назначение выводов

Общая информация

Схемотехника устройства обеспечивает более высокие показатели по нестабильности параметров, в сравнении со стабилизаторами на фиксированное напряжение, и имеет практически все типы защиты, применяемые для интегральных микросхем: ограничение выходного тока, отключение при перегреве и превышении предельных рабочих параметров.

При этом требуется минимальное количество внешних компонентов для LM317, схема использует встроенные средства стабилизации и защиты.

Устройство выпускается в трёх вариантах исполнений – LM117/217/317, отличающихся предельно допустимой рабочей температурой:

  • LM117: от -55 до 150 оС;
  • LM217: от -25 до 150 оС;
  • LM317: от 0 до 125 оС.

Все типы стабилизаторов производятся в стандартных корпусах TO-3, различных модификациях TO-220, для поверхностного монтажа – D2PAK, SO-8. Для устройств малой мощности используется ТО-92.

Цоколёвка для всех трёхвыводных изделий совпадает, что облегчает их замену. В зависимости от применённого корпуса, в маркировку вводятся дополнительные обозначения:

  • K – TO-3 (LM317K);
  • T – TO-220;
  • P – ISOWATT220 (пластмассовый корпус);
  • D2T – D2PAK;
  • LZ – TO-92;
  • LM – SOIC8.

Для LM317 используются все типоразмеры, LM117 выпускается только в корпусе ТО-3, LM217 – в ТО-3, D2PAK и ТО-220. Микросхемы LM317LZ в корпусах ТО-92 отличаются пониженными значениями максимальной мощности и выходного тока, до 100 мА, при аналогичных других свойствах.

Иногда производитель использует свою маркировку, например, LM317НV от Texas Instruments – высоковольтные регуляторы в диапазоне 1,2-60 В, при этом цоколёвки корпусов совпадают с изделиями других фирм. В отличие от других микросхем, аббревиатура ЛМ (LM) применяется всеми производителями.

Расшифровка других возможных обозначений приводится в техническом описании конкретного прибора.

Основные электрические параметры LM117/217/317

Стабилизатор тока на lM317 для светодиодов

Характеристики регуляторов определяются при разнице между входным (Ui) и выходным напряжением (Uo) 5 вольт, токе нагрузки 1,5 ампера и максимальной мощности 20 ватт:

  • Нестабильность по напряжению – 0,01%;
  • Опорное напряжение (UREF) – 1,25 В;
  • Минимальный ток нагрузки – 3,5 мА;
  • Максимальный выходной ток – 2,2 А, при разнице входного и выходного напряжений не более 15 В;
  • Предельная рассеиваемая мощность ограничена внутренней схемой;
  • Подавление пульсаций входного напряжения – 80 дБ.

Важно отметить! При максимально возможном значении Uin – Uout = 40 вольт допустимый ток нагрузки снижается до 0,4 ампер. Предельная рассеиваемая мощность ограничена внутренней схемой защиты, для корпусов ТО-220 и ТО-3 – приблизительно от 15 до 20 ватт.

Применения регулируемого стабилизатора

При проектировании электронных устройств, содержащих стабилизаторы напряжения, более предпочтительно применять регулятор напряжения на LM317, особенно для ответственных узлов аппаратуры.

Использование таких решений требует дополнительной установки двух резисторов, но обеспечивает лучшие параметры питания, чем традиционные микросхемы с фиксированными напряжениями стабилизации, обладают большей гибкостью для разных применений.

Базовая схема использования микросхемы как стабилизатора напряжения

Напряжение на выходе рассчитывается по формуле:

UOUT = UREF (1+ R2/R1) + IADJ, где:

  • VREF = 1,25V, ток управляющего выхода;
  • IADJ весьма мал – около 100 мкА и определяет погрешность установки напряжения, в большинстве случаев не учитывается.

Входной конденсатор (керамический или танталовый 1мкФ) устанавливается при значительном удалении от микросхемы ёмкости фильтра источника питания – более 50 мм, конденсатор на выходе применяется для снижения влияния переходных процессов на высоких частотах, для многих применений необязателен.

Схема включения использует только один элемент регулировки – переменный резистор, на практике применяется многооборотный или заменяется постоянным нужного номинала. Метод управления позволяет реализовать программируемый источник на несколько напряжений, переключаемый любым доступным способом: реле, транзистором и т. д.

Подавление пульсаций можно улучшить, если зашунтировать вывод управления конденсатором ёмкостью 5-15 мкФ.

Схема стабилизатора LM317 с дополнительным конденсатором и защитными диодами

Диоды типа 1N4002 устанавливаются при наличии выходного фильтра с конденсаторами большой ёмкости, выходном напряжении более 25 вольт и шунтирующей ёмкости свыше 10 мкФ.

Микросхема LM317 редко используется на предельных режимах эксплуатации, средний ток нагрузки для многих решений не превышает 1,5 А.

Установка прибора на радиатор необходима в любом случае, при выходном токе более 1 ампера желательно использовать корпус ТО-3 или ТО-220 с металлической контактной площадкой LM317T.

К сведению. Увеличить нагрузочную способность стабилизатора напряжения можно, применив мощный транзистор как регулирующий элемент для выходного тока.

Мощный стабилизатор с транзисторами

Ток нагрузки устройства определяется параметрами VT1, подойдёт любой n-p-n транзистор с током коллектора 5-10 А: TIP120/132/140, BD911, КТ819 и др. Возможно параллельное включение двух-трёх штук. В качестве VT2 применяется любой кремниевый средней мощности, соответствующей структуры: BD138/140, КТ814/816.

Следует учитывать особенности подобных схем: допустимая разница между напряжениями на входе и выходе формируется из падений напряжений на транзисторе, около 2 вольт, и микросхеме, для которой минимальное значение – 3 вольта. Для устойчивой работы устройства рекомендуется не менее 8-10 вольт.

Свойства микросхем серии LM317 позволяют стабилизировать с высокой точностью ток нагрузки в широких пределах.

Cтабилизатор тока на LM317

Фиксация тока обеспечивается подключением всего одного резистора, номинал которого рассчитывается по формуле:

I = UREF/R + IADJ = 1.25/R, где UREF = 1,25 V (сопротивление R в омах).

Схема может применяться для зарядки аккумуляторов стабильным током, питания светодиодов, для которых важно постоянство тока при изменении температуры. Также стабилизатор тока на LM317 может быть дополнен транзисторами, как и в случае стабилизации напряжения.

Отечественная промышленность выпускает функциональные аналоги LM317 со сходными параметрами – микросхемы КР142ЕН12А/Б с токами нагрузки 1 и 1,5 ампера.

Выходной ток до 5 ампер обеспечивает стабилизатор LM338 при аналогичных других характеристиках, что позволяет использовать все преимущества интегрального прибора без внешних транзисторов. Полным аналогом LM317 по всем параметрам, кроме полярности, является регулятор отрицательного напряжения LM337, на базе этих двух микросхем легко строятся двухполярные блоки питания.

Регулируемый стабилизатор напряжения

Источник: //elquanta.ru/teoriya/integralnyjj-stabilizator-lm317.html

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Простейший регулируемый блок питания на LM317

Если вы хотите собрать очень мощный лабораторный блок питания, то микросхема LM317 — не лучшая идея, но в условиях нехватки опыта или денег, или если вам просто не нужна очень большая мощность, на мой взгляд, LM317 — идеальный вариант. См. также калькулятор LM317

Начнём с плюсов и минусов данной схемы. Плюсы:

  • Простота: эту схему сможет собрать даже начинающий радиолюбитель.
  • Размер: все необходимые детали можно уместить в корпус, гораздо меньший, чем необходим для других схем.
  • Цена: я, покупая все детали в магазине, потратил около 350 рублей, а если заказывать всё в Китае, то потребуется не более пары сотен рублей.
  • Стабильность: выходное напряжение LM317 намного стабильнее, чем у других преобразователей.

Найденный мной минус всего один — перегрев при большом токе, но его легко устранить, как именно — написано ниже.

О самих микросхемах вы можете прочитать в самом конце статьи, а пока рассмотрим блок питания.

Отдельно рассмотрим некоторые участки схемы.

  • Не обязательно питать схему 12 вольтами, вы можете использовать входное напряжение до 40В, но важно помнить, что при увеличении «съедаемого» напряжения уменьшается максимальный ток, несильно, но при большом входном напряжении будет весьма заметно.
  • Диодный мост (D3) и предохранитель (FU1) необходимо подбирать, исходя из максимальной силы тока БП.
  • Вместо трансформатора можно взять любой преобразователь, например, старый БП от компьютера, адаптер для ноутбука (в таком случае диодный мост, конечно, не нужен) и т.д.
  • Резисторы R3 и R4 надо подбирать самим, в зависимости от конкретных светодиодов (светодиоды будут сигнализировать о подаче на выходы тока), можете воспользоваться вот этим калькулятором http://cxem.net/calc/ledcalc.php .
  • По желанию можно подключить вольтметр параллельно регулируемому выходу.
  • Для увеличения мощности можно подключить несколько LM317 параллельно (Одна микросхема рассчитана на ток до 1.5А)
  • LМ317 необходимо закрепить на радиаторе, также можно использовать кулер, но можно обойтись без него.

После сборки схемы вырезаем отверстия в заготовленном корпусе и крепим все детали к нему.

Корпус я заказывал в интернете, и он оказался маловат, поэтому детали впихнул с трудом и, в итоге, выглядит всё не очень, за что извиняюсь.

Очень важным плюсом данной схемы является компактность, я всё впихнул в коробку 95х55х25мм, поэтому очень удобно крепить такой БП вертикально, лично я закрепил его на стойку для светодиодной ленты.

А теперь о самих микросхемах LM317, это очень универсальная вещь, из неё можно собрать не только регулятор напряжения, но и регулятор силы тока и ещё несколько полезных вещей. LM317 имеет следующие характеристики (Я приведу только наиболее значимые для блока питания, остальные вы можете найти в даташите):

  • Максимальное входное напряжение 40В
  • Выходное напряжение 1,2 — 37В (10.5 при входном 12В)
  • Максимальный номинальный ток 1,5 А, и вот тут поподробнее. Объясню, почему эту микросхему лучше брать в магазине, а не во всемогущем Китае: оригинальные микросхемы могут быть мощнее номинала, моя выдаёт до 2А, а китайские часто могут выдавать не больше 1-1.2А. Как я уже писал, для увеличения тока можно подключить несколько одинаковых микросхем, и даже если у вас получится БП на 1,5А, лучше взять две, т.к. при большом токе они будут меньше греться.

Простой регулируемый блок питания на трех микросхемах LM317 — Своими Руками

Блок питания — одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В.
  10. Любой светодиод.

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Источники:

http://sdelaitak24.ru/%D1%80%D0%B5%D0%B3%D1%83%D0%BB%D0%B8%D1%80%D1%83%D0%B5%D0%BC%D1%8B%D0%B9-%D0%B1%D0%BB%D0%BE%D0%BA-%D0%BF%D0%B8%D1%82%D0%B0%D0%BD%D0%B8%D1%8F-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA/
http://cxem.net/pitanie/5-335.php
http://radioskot.ru/publ/raznoe/bp_na_lm317_s_blokom_zashhity/18-1-0-1027

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *