Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши «вздутости», их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и «типа дроссель» L5.
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.
8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 — 1000uF, C12 — 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 — у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (…2-ю ногу), С26, J11 (…3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от «всех остальных», для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите
Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.
Простое устройство
Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.
Основные компоненты для схемы простого блока питания:
- Понижающий трансформатор;
- Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
- Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
- Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.
Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.
Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.
Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.
Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.
Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.
Важно!
Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.
Регулируемый блок питания
Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.
Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.
Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.
Как работает схема:
- Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
- Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
- Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.
Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.
Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.
Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.
Двухполярный блок питания
Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.
Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:
- Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
- Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
- Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
- Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
- Для транзисторных элементов обязательно монтировать радиаторы охлаждения.
Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.
Защита блока питания
Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.
Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.
Некоторые идеи для изготовления:
- Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
- Скрепить конструкцию уголком;
- Нижнее основание БП с мощными трансформаторами должно быть усилено;
- Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
- Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.
Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.
Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.
Важно!
Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.
Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.
Видео
Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.
Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.
С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания — это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.
Описание микросхемы
LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.
Микросхема может быть исполнена в корпусе ТО-220:
или в корпусе D2 Pack
Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт — это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.
Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!
Сборка в железе
Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)
Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.
А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.
Все это аккуратно упаковываем в корпус и выводим провода.
Ну как вам? 😉
Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное — 15 Вольт.
Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт
Все работает на ура!
Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.
Аналоги на Алиэкспресс
Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.
Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:
Посмотреть можно по этой
ссылке.
Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:
Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа — дешёвая , усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.
Список использованных в схеме деталей:
Трансформатор 2 x 15 вольт 10 ампер
D1…D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).
F1 = 1 ампер
F2 = 10 ампер
R1 2k2 2,5 ватт
R3,R4 0.1 Ом 10 ватт
R9 47 0.5 ватт
C2 two times 4700uF/50v
C3,C5 10uF/50v
D5 1N4148, 1N4448, 1N4151
D11 светодиод
D7, D8, D9 1N4001
Два транзистора 2N3055
P2 47 или 220 Ом 1 ватт
P3 10k подстроечник
Хотя LM317
и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!
Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317
минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП — поставим 3 диода, D7,D8 и D9 на выходе LM317
к базе 2N3055
транзисторов. У микросхемы LM317
максимальное выходное напряжение — 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 — (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.
Примечание
. Помните, что нужно изолировать транзисторы от шасси! Это делается изоляционными и теплопроводными прокладками или, по крайней мере, тонкой слюдой. Можно применить термоклей и термопасту. При сборке мощного регулируемого блока питания не забывайте использовать толстые соединительные провода, которые подходят для передачи большого тока. Тонкие проводки нагреются и поплавятся!
Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.
Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.
При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.
Индикатор для блока питания
Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.
Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:
Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention
указывает на включившуюся защиту от перегрузки.
Дополнения от BFG5000
Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.
Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.
Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran
и BFG5000
.
Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ
Loading…
БЛОК ПИТАНИЯ НА LM723
На основе специализированной микросхемы LM723 можно собрать регулируемый источник стабилизированного напряжения до 40 вольт, с током нагрузки до 10-ти ампер (при наличии ключевого внешнего транзистора, так как сама микросхема выдерживает до одного ампера).
Показанная ниже схема расчитана на 30В 10А исходящего питания, и имеет плавную регулировку напряжения и тока. Блок питания строится на базе микросхемы LM723 — регулятора напряжения и ограничения тока. Эта схема используется уже более 20 лет и ни разу не подвела.
Электрическая схема блока питания на LM723
Внутренняя структура микросхемы LM723
Цоколёвка LM723 и возможные варианты корпусов
Батарея конденсаторов на входе С1-С7 может быть заменена на один большой, ёмкостью 10000 мкФ, если у вас есть подходящий. Резисторы R1-R6 по 5 Вт будут довольно горячими под высокой нагрузкой, поэтому должны быть смонтированы с возможностью отвода тепла (возле вентиляционных отверстий корпуса). Печатной платы как таковой не требуется. Единственное, что нужно собрать вместе, это микросхему LM723, 3 резистора и 2 конденсатора. Остальные радиоэлементы крепятся к радиатору и к регуляторам на передней панели блока питания.
Схема БП на LM723 с фикисрованными напряжениями
Как возможный вариант, введите выставление напряжения с помощью тумблера и дополните схему индикаторами напряжения и тока, собранными например по такой схеме. На фото ниже вы как раз и видите такой БП, имеющий несколько стандартных фиксированных напряжений на выходе.
Максимальное входное напряжение составляет 40 Вольт. Транзисторы нужно устанавливать на хороший по размерам радиатор. Мостовой выпрямитель может монтироваться также непосредственно на общий радиатор. Для получения более подробной информации смотрите даташит LM723.
Мощный, регулируемый БП на LM723
Микросхема LM723 это интегральный стабилизатор с регулируемым выходным напряжением и схемой защиты от перегрузки.
Регулировка выходного напряжения происходит по входу ноги 4. Регулировкой устанавливается зависимость напряжения на выводе 4 А1 от выходного напряжения.
Компаратор микросхемы работает так, что напряжение на выходе (вывод 10) регулирует таким образом, чтобы напряжение на его выводе 4 было неизменным. Соответственно, напряжение на выводе 10 практически равно выходному. Но максимально допустимый ток выхода мал, поэтому для получения максимального тока нагрузки (у нас 20 А) необходима силовая часть, коим и является схема на транзисторах VT1,VT2 в первой схеме схеме, или VT1 — VT5 во второй.
Схема защиты от перегрузки по току работает по измерению напряжения на сопротивлении, включенном последовательно нагрузке. Входами датчика тока являются выводы 2 и 3 А1. Эти выводы подключены параллельно сопротивлению (в первой схеме не реализовано вообще никак), образованному резисторами R7-R10 (во второй схеме), которое включено последовательно с нагрузкой.
Понятно, что следуя закону Ома напряжение на сопротивлении будет расти с увеличением тока.
Пока напряжение между выводами 2 и 3 ниже 0,6 В защита не срабатывает, воспринимая это как то, что ток нагрузки не превышает максимально допустимого значения. При токе приближающимся к отметке 23-24 А напряжение между выводами 2 и 3 достигает величины 0,6 В и более. Это приводит к срабатыванию защиты, которая снижает напряжение на выводе 10 А1 до нуля, и, таким образом, отключает нагрузку.
Даташит на LM723
Топология печатной платы может быть такой:
Для сборки необходимо:
Микросхема LM723
Транзистор КТ3102 (можно заменить на BC547B)
Транзистор КТ3107 (можно заменить на BC556)
Транзистор КТ815Г (можно заменить на BD139)
Транзистор КТ827А(можно заменить на 2N6059 или 2N6284)
Понятно резисторы и конденсаторыДля второй схемы:
Транзистор BD131
Транзисторы 2N3055
В заключении еще несколько схем блока питания на LM723
Еще записи по теме
Регулируемый блок питания своими руками
После мультиметра переменный источник питания (также называемый регулируемым блоком питания или лабораторным БП) является одним из самых полезных элементов оборудования, которое необходимо иметь в своей мастерской. Выходное напряжение блоков питания может регулироваться в широком диапазоне от менее 1 вольта до более чем 30 В, в зависимости от того как и по какой схеме он собран.
Регулируемые источники питания используются для питания радиосхем, которые ремонтируем или собираем. При разработке или тестировании устройств возобновляемой энергии можно использовать такой БП для имитации зарядки или разрядки аккумулятора, для настройки контроллера и нагрузки.
Вы можете конечно купить блок питания в магазинах электроники, но лучше построить свой собственный. Так вы чётко будете знать его работу, устройство, а при необходимости (это неизбежно в будущем) почините или улучшите.
Далее рассмотрим две схемы регулируемого блока питания. Обе используют детали, которые элементарно найти в местном магазине электронных компонентов.
Регулируемый блок питания на LM317

Первая схема это регулятор напряжения на основе LM317. Микросхема LM317 может выдавать до 1,5 А, имеет защиту от короткого замыкания и перегрева. Максимальное входное напряжение составляет 40 вольт постоянного тока, и оно изменяется на выходе до 1,2 вольт. Конечно LM317 следует установить на радиатор (если нагрузка планируется мощная — то большой).
Регулируемый блок питания на LM723
Схема блока питания на LM723 с регулировкой
Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.
Источник напряжения стабилизатора
Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.
Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.
Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.
Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.
Блок питания на микросхеме LM723
Электропитание
Главная Радиолюбителю Электропитание
Много лет лежала на полке у меня микросхема LM723. Раньше на этой микросхеме представляли конструкции зарубежные журналы в 80х — 90х годах. Это известные журналы «RADIOTECHNIKA» (Венгрия), «FUNKAMATEUR» (Германия) и другие. В настоящее время эта микросхема стала доступна в России. Пределы регулировки выходного напряжения (по паспорту) от 2 до 37 В. Немного подумав, я построил блок питания на данной микросхеме с параметрами:
Uвых…………………. 0…30В
Iвых………………….. 3…5А
Рис. 1. Блок питания на микросхеме LM723
Резистором R8 устанавливают верхний предел регулировки, т.е. 30,4 В. Защиту по току и напряжению можно поставить любую, Вас устраивающую. В авторском варианте индикация цифровая. Собирался блок питания как экспериментальный, прошел апробацию и показал неплохие результаты. По моей просьбе его повторили несколько радиолюбителей. Нареканий не было. В авторском варианте трансформатор брался ШЛ25/40-25. Ток использовался на 3А (необходимости на больший ток не было). Блок индикации выполнен на микросхеме КР572ПВ2А. Печатная плата разрабатывалась, в зависимости от применяемых деталей. Удачного повторения. Все вопросы по e-mail.
Автор: Patrin
Патрин Анатолий
г.Кирсанов, Россия,
Тамбовская обл.
Дата публикации: 16.07.2004
Мнения читателей
- Sibirsky / 17.03.2010 — 19:19
Точный аналог LM723(uA723 и т.д.) — (КР)142ЕН14. ( см. справочник »Микросхемы для линейных источников питания и их применение», изд-во »Додека», 1996год, ISBN-5-87835-009-2 стр. 85 — 90). В справочнике есть краткая инфа и по 142ЕН1,142ЕН2, КР142ЕН1,КР142ЕН2. 723-я была прототипом для ЕН1,ЕН2. Наши »конструляторы» упростили (испохабили) оригинальную видларовскую схему, и на свет появилась 142ЕН1,ЕН2. Несколько более близки к оригиналу КР142ЕН1 и КР142ЕН2. (ДА-ДА! »Нутрянка» КР142ЕН1,ЕН2 ОТЛИЧАЕТСЯ от таковой в 142ЕН1,ЕН2!) Личные впечатления о 723-ей. Собрал макет стабилизатора 0 — 50в (не по этой, по своей схеме, т.н. »плавающий стабилизатор»). Пробовал и КР142ЕН14 (92г.!!) и LM723 от SGS-Thomson, все работает (неверующим предлагаю поискать ИСПРАВНЫЕ 142ЕН14). При Uвых = 25V напряжение гуляет на 10 — 30mV (для ЕН14, LM723 стабильнее, но не сильно). Источник опорного напряжения очень стабилен — грел микросхему паяльником,опорное напряжение не изменилось и на сотню микровольт. А вот усилитель ошибки (ОУ) — дерьмо. Мерял лабораторным вольтметром В7-78/1. - Shahter / 24.02.2010 — 12:49
Где ж точная копия если распиновка другая?! http://professor-one.nm.ru/istok%20pitaniya.html - oldcock / 20.03.2009 — 08:25
Обозначенный VT1 p-n-p тразистор никак не может быть типа КТ601, ибо оный имеет проводимость n-p-n. Ишо не очень ясно куда подключать питание DD1, видимо к эмиттеру VT1… - UA9MGM / 17.03.2009 — 03:14
LM723 — это не наша КР142ЕН2, ЕН1А-Г, ЕН14! ПОЛНЫХ ОТЕЧЕСТВЕННЫХ АНАЛОГОВ НЕТ! Неверующим предлагаю собрать БП с панелькой для LM723 и поочереди вставлять КР142ЕНxx ? Удачи! - ТИХОНОВИЧ / 06.10.2008 — 21:21
РАБОТАЕТ НОРМАЛЬНО. СПАСИБО ЗА ПОЛЕЗНУЮ ВЕЩЬ.ИСПОЛЬЗУЮ ДЛЯ ПИТАНИЯ С НЕБОЛЬШИМИ ДОРАБОТКАМИ УСИЛИТЕЛЬ И МАГНИТОЛУ В АВТОБУСЕ С 24 ВОЛЬТОВЫМ ЭЛ. ОБОРУДОВАНИЕМ. - DMJ / 24.12.2006 — 15:16
LM723 — это наша КР142ЕН2 (точная копия) или К142ЕН2 (в другом корпусе с отличиями в цоколевке)
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:






























