Меню

Эхолот своими руками для рыбалки изготовление

Эхолот рыболова-любителя своими руками. | Мастер Винтик. Всё своими руками!

Как сделать эхолот своими руками?

 Структурная схема, поясняющая устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с. Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика.

Спадом тактовый импульс запускает передатчик А1, и излучатель-датчик BQ1 излучает в направлении дна короткий (40 мкс) ультразвуковой зондирующий импульс. Одновременно открывается электронный ключ S1, и колебания образцовой частоты 7500 Гц от генератора G2 поступают на цифровой счетчик РС1.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципиальная схема эхолота с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Необходимую для самовозбуждения генератора положительную обратную связь создают цепи R19C9 и R20C11.

Генератор формирует импульсы длительностью 40 мкс с радиочастотным заполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс длительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 использован а амплитудном детекторе, транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1. В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7.

На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4.

Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15. Генератор импульсов с образцовой частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной обратной связи, выводящей элемент на линейный участок характеристики. Это создает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки. Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4.

В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диод VD4 на входы R микросхем. Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена постоянной времени цепи R28C15. Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 [2]. Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число.

Через некоторое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

https://www.youtube.com/watch?v=VDtzMkThiyg

Эхолот смонтирован в коробке, склеенной из ударопрочного полистирола. Большинство деталей размещено на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них (рис. 3) смонтирован передатчик, на другой (рис. 4) — приемник, на третьей (рис. 5 — цифровая часть эхолота. Платы закреплены на дюралюминиевой пластине размерами 172Х72 мм, вложенной в крышку коробки. В пластине и крышке просверлены отверстия под выключатель питания Q1 (МТ-1), кнопку SB1 (КМ1-1) и гнездо ВР-74-Ф коаксиального разъема XI, а также вырезано окно для цифровых индикаторов.

В эхолоте применены резисторы МЛТ, конденсаторы КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие транзисторы этих серий, МП42Б — на МП25, КТ315Г-на КТ315В. Микросхемы серии К176 заменимы соответствующими аналогами серии К561, вместо микросхемы К176ИЕЗ (DD4) можно применить К176ИЕ4. Если эхолот будет использован на глубине не более 10 м, счетчик DD4 и индикатор HG3 можно не устанавливать.

Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с фер-ритовым (600НН) подстроечником диаметром 6 мм. Длина намотки — 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II — 160 витков. Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16Х10Х4,5. Обмотка I содержит 2Х 180 витков провода ПЭВ-2, 0,12, обмотка 11-16 витков провода ПЭВ-2, 0,39. Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм из органического стекла.

Диаметр щечек — 15, расстояние между ними — 9 мм. Подстроечник — от броневого магнитопровода СБ-1а из карбонильного железа.

Ультразвуковой излучатель-датчик эхолота изготовляют на основе круглой пластины диаметром 40 и толщиной 10 мм из титаната бария. К ее посеребренным плоскостям сплавом Вуда припаивают тонкие (диаметром 0,2 мм) проводники-выводы. Датчик собирают в алюминиевом стакане от оксидного конденсатора диаметром 45…50 мм (высоту — 23…25 мм — уточняют при сборке). В центре дна стакана сверлят отверстие под штуцер, через который будет входить коаксиальный кабель (РК-75-4-16, длина 1…2,5 м), соединяющий датчик с эхолотом. Пластину датчика приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм.

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник — к выводу обкладки датчика, приклеенной к резиновому диску, вывод другой обкладки — к оплетке кабеля. После этого диск с пластиной вдвигают в стакан, пропуская кабель в отверстие штуцера, и закрепляют штуцер гайкой. Поверхность тита-натовой пластины должна быть углублена в стакан на 2 мм ниже его кромки. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После затвердевания смолы поверхность датчика шлифуют мелкозернистой наждачной бумагой до получения гладкой плоскости.

К свободному концу кабеля припаивают ответную часть разъема XI. Для налаживания эхолота необходимы осциллограф, цифровой частотомер и блок питания напряжением 9 В. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88,8. При нажатии на кнопку SB1 должно появляться случайное число, которое с приходом очередного тактового импульса должно вновь сменяться числом 88,8. Далее налаживают передатчик. Для этого к эхолоту подключают датчик, а осциллограф, работающий в режиме ждущей развертки,- к обмотке 11 трансформатора Т1.

На экране осциллографа с приходом каждого тактового импульса должен появляться импульс с радиочастотным заполнением. Подстроечником трансформатора Т1 (если необходимо, подбирают конденсатор С10) добиваются максимальной амплитуды импульса, которая должна быть не менее 70 В. Следующий этап — налаживание генератора импульсов образцовой частоты. Для этого частотомер через резистор сопротивлением 5,1 кОм присоединяют к выводу 4 микросхемы DD1. На частоту 7500 Гц генератор настраивают подстроечником катушки L1. Если при этом подстроечник занимает положение, далекое от среднего, подбирают конденсатор С18.

Приемник (а также модулятор) лучше всего настраивать по эхо-сигналам, как это описано в [I]. Для этого датчик прикрепляют резиновым жгутом к торцевой стенке пластмассовой коробки размерами 300Х100Х100 мм (с целью устранения воздушного зазора между датчиком и стенкой ее смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф.

Критерием правильной настройки приемника, модулятора передатчика, а также качества ультразвукового датчика является число наблюдаемых на экране эхосигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцевых стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С13 в модуляторе передатчика и изменяют положение подстроечника трансформатора Т1.

Для регулировки устройства задержки включения приемника впаивают на место диод VD3, заменяют резистор R18 переменным (сопротивлением 10 кОм) и с его помощью добиваются исчезновения двух первых эхосигналов на экране осциллографа. Измерив сопротивление введенной части переменного резистора, его заменяют постоянным такого же сопротивления. После настройки число эхосигналов на экране осциллографа должно быть не менее 20. Для измерения глубины водоема датчик лучше всего закрепить на поплавке с таким расчетом, чтобы нижняя его часть была погружена в воду на 10…20 мм.

Можно прикрепить датчик к шесту, с помощью которого его погружают в воду кратковременно, на время измерения глубины. При использовании эхолота в плоскодонной алюминиевой лодке для измерения небольших глубин (до 2 м) датчик можно приклеить к днищу внутри лодки. В заключение следует отметить, что в солнечные дни яркость свечения цифровых индикаторов может оказаться недостаточной. Повысить ее можно заменой батареи «Корунд» («Крона») источником питания с несколько большим напряжением, например, батареи, составленной из восьми аккумуляторов Д-0,25 (никаких изменений схемы и конструкции прибора это не потребует).

 В. ВОЙЦЕХОВИЧ, В. ФЕДОРОВА г. Ленинград

ЛИТЕРАТУРА

1. Бокитько В., Бокитько Д. Портативный эхолот.- Радио. 1981. № 10, с. 23-25.

2. Виноградов Ю. Преобразователь для питания индикаторов.- Радио, 1984, № 4. с. 55.

Источник: Радио, № 10 — 1988г. 

П О П У Л Я Р Н О Е:

  • Детектор поклёвки с магнитоуправляемым контактом
  • информировать рыболова о малозаметном движении лес­ки на катушке, полностью снятой с тормоза. Оповещение осуществ­ляется посредством звукового и светового сигналов, продолжающих­ся в течение поклевки.Регулировка чувствительности производится посредством подстроечного резистора, смонтированного на плате прибора.

    Особенности:

    при наличии доступа к внешней стороне катушки де­тектор может располагаться непосредственно на удилище. Подробнее…

  • Ремонт спиннинговых катушек своими руками
  • Во многих рыболовных источниках, а так же в интернете в основном ремонт — это ТО катушек, а в лучшем случае замена втулки на подшипник и ничего про люфты и прочих неисправностях. Ниже, в статье описывается капитальный ремонт спиннинговых недорогих катушек. Подробнее…

  • Кукан для щуки своими руками
  • Ну не люблю я покупные куканы, или неудобные или дорогие. Пошёл, купил пяток велосипедных спиц, рублей по 15-20, не помню уже, пяток карабинов тоже рублей по 15. Долго мудрил с формой, наконец-то добился того, чего хотел. Теперь на лодке висит тросик металлический в пластиковой оплётке, пристёгнутый одним концом с карабином к уключине. На другом конце крючок кукана, остальные лежат в лодке отдельно. При поимке рыбы держим её одной рукой, другой легко расстёгиваем кукан, протыкаем губу, застёгиваем так же легко, и цепляем за карабин на тросик, и в воду, всё! Никогда не расстегнётся, за счёт нашлёпки на конце.  Подробнее…

Популярность: 20 790 просм.

Источник: http://www.MasterVintik.ru/exolot-rybolova-lyubitelya-svoimi-rukami/

Популярные эхолоты для рыбалки с лодки

Как сделать эхолот своими руками?

Приобретайте качественные товары по доступным ценам в лучших рыболовных интернет магазинах. Делайте подарки себе и своим близким!

Мы в социальных сетях — подписывайтесь на нас в , , и Instagram. Будьте в курсе последних новостей сайта.

Современную рыбалку с лодки трудно уже представить без эхолота. С его помощью можно быстро обнаружить стаю хищника или белой рыбы. Он позволит понять, где проходит основное русло или расположены крупные ямы.

Ваши уловы заметно увеличатся, если вы научитесь правильно пользоваться эхолотами. В этих устройствах имеется полезные функции, с помощью которых вам удастся на только найти рыбу, но и узнать, на какой глубине она находится. Наиболее востребованы устройства от производителей Lowrance, Humminbird, Garmin, JJ-connect.

В данной статье мы узнаем о том, как работают эхолоты для рыбалки с лодки, какие функции они имеют.

Как устроен эхолот для рыбалки с лодки

Эхолот является гидролокационным прибором, который определяет рельеф и структуру дна, а также наличие рыбы на сканируемом пространстве. Эхолот состоит из датчика, приемного устройства, дисплея и сопутствующих элементов: кабелей, пульта управления, крепежных материалов.

Датчик эхолота связан с приемным устройством кабелем. Он опускается в воду и от него исходят лучи, которые сканируют определенный сегмент пространства. У каждого луча имеется определенный угол охвата. Чем больше этот угол, тем больше объектов попадает в картинку. Чем меньше угол, тем лучше детализация. На дисплее будут отображаться даже незначительные неровности на дне.

В современный эхолотах имеется от 1 до 6 лучей. Чем больше лучей с небольшим углом захвата, тем более четкой получается картинка. В рейтингах эхолотов для рыбалки с лодки часто можно увидеть модели с 4-мя и 5-ю лучами.

Эхолоты можно разделить по сложности и количеству функций. Самые простые – это обзорные. Они имеют небольшой дисплей, который выдает черно- белое изображение. Эти модели показывают основные неровности донного рельефа: бровки, ямы, свалы и равнинные участки. Некоторые модели показывают рыбу.

Лучше всего данные эхолоты работают, когда лодка движется на медленной скорости или же стоит.

Более совершенные модели эхолотов оснащены системой звукового оповещения. Они выдают правдивую информацию о наличии рыбы. Эти эхолоты нельзя назвать элитными, но их можно порекомендовать начинающим рыболовам, которые только открывают для себя ловлю с лодки.

Наиболее продвинутые и функциональные эхолоты не просто сканируют дно и обнаруживают рыбу. Они имеют GPS навигатор, и способны запоминать координаты мест и рисовать маршруты следования лодки. Это настоящие картплоттеры.

Во многих эхолотах имеется режим 3 D. На дисплее отображается трехмерная картинка. Для более детального изучения участков дна есть функция «zoom», как у фотоаппаратов. При желании можно включить режим «alarm». Во время важных событий возникает звуковой сигнал. Это может быть, что крупная рыба попала в зону сканирования, попалась крутая бровка или яма.

Во многих эхолотах для летней рыбалки имеется такая функция «grayline». Она отделяет живые объекты от неживых. Для отслеживания рыбы предусмотрена функция «fishtrack». Демонстрируется рыба либо дугой, либо изображением рыбы.

Как лучи сканируют дно на лодочных эхолотах

Во многих эхолотах имеется широкий и узкий луч. В более совершенных моделях лучей больше, и они не так разительно отличаются друг от друга по углу захвата. В эхолотах с 6-ю лучами картинка отображается в трехмерном виде.

Узкие лучи обычно имеют угол захвата от 9 до 24 градусов. На экране отображается четкая картинка. Пусть в зону сканирования попадает не так много объектов, зато можно увидеть все неровности дна. Если таких лучей 3-4, то мы получим очень ясную информацию происходящего на дне. Узкие лучи работают в основном на частоте 200 кГц.

Широкие лучи имеют угол охвата 45-90 градусов. Эти лучи лучше обнаруживают рыбу, потому что имеют большой охват. Но они не улавливают мелких деталей. Работают широкие лучи в основном на частоте 85 Кгц.

Большинство моделей эхолотов оснащены датчиком, который показывает температуру воды в зоне сканирования.

Вот так схематически можно отобразить работу лучей под водой:

Если говорить о глубинах, которые способны сканировать эхолоты для летней рыбалки, то этот параметр зависит от мощности и частоты работы лучей. Как правило, современные эхолоты «достают» глубины до 300 метров. Но понятно, что на таких глубинах никто не ловит. Эхолота, который сканирует дно на глубине до 30 метров, будет вполне достаточно. Можно уменьшать глубину эхолокации до нужных величин, чтобы уменьшить энергопотребление устройства.

Отображение полученной информации на дисплее

Качество картинки зависит от разрешения экрана. Чем больше пикселей, тем четче получается изображение. Современные устройства имеют сенсорные дисплеи с возможностью зуммирования, как на планшетах и смартфонах. Если вам необходимо купить качественный эхолот для рыбалки с лодки, обратите внимание на модели с такой опцией. На экране должны четко отображаться средняя и мелка рыба и неровности донного рельефа.

Если эхолот снабжен системой навигации с установленными картами, то на мониторе будет отображаться движение лодки на карте. При необходимости можно сохранять координаты в память устройства, чтобы впоследствии быстро добраться до нужной точки. Чаще всего рыболовы пользуются электронными картами от Navionics.

Есть эхолоты для летней рыбалки, которые улавливают температуры на разных слоях водного пирога. Они показывают, где проходит граница термоклина.

Особенности эхолотов с картплоттерами

Картплоттеры оснащены встроенными, либо внешними модулями GPS. В устройствах есть разъемы для карт СД и процессор для обработки полученных данных. Основная задача картплоттера – это отображение местоположения лодки и сохранение точек. В результате сканирования можно получить цифровые карты с указанием глубин.

Вот такая информация отображается на картплоттерах:

Имея такие карты, можно обходиться без бумажных. К тому же, рельеф и глубины в водоемах со временем меняются. Поэтому свежая информация, полученная картплоттером, будет более точной.

Как указывалось ранее, рыболовам больше подходят карты от Navionics. Эта компания выпускает хорошие электронные карты пресноводных водоемов, прибрежных морских районов. Они могут продаваться вместе с эхолотами. При необходимости их можно скачать с официального сайта компании за определенную плату. В дальнейшем вы будете получать ссылки на новые версии карт. Обновление можно получать по Wi Fi. У современных моделей картплоттеров такая возможность имеется.

Для рыбалки с лодки лучше купить эхолоты- картплоттеры с размером диагонали от 4 до 6 дюймов. Такие модели подойдут для небольших лодок и катеров. Если у вас более габаритное плавсредство, то можете установить модели с дисплеем размером от 10 до 14 дюймов.

После пройденного пути информация о маршруте сохраниться в виде точек. У разных моделей количество запоминаемых точек разное. У многих моделей есть возможность выбора кратчайшего расстояния до заданной точки. Если вы сохранили точку, то в следующий раз задаете ее как конечный пункт и эхолот сам построит кратчайший маршрут к ней, учитывая особенности участка акватории.

Если загрузить карту в эхолот, то вы можете легко достичь нужной ямы, русла, или другого участка. Просто указываете точку на карте, и на карте прорисуется маршрут для лодки. Про нему вы и приплывете куда вам надо. Таким образом вы всегда будет попадать точно в нужное место, на котором когда-то вам удавалось хорошо отловиться.

Крепится дисплей эхолота к лодке очень просто. Например, на лодке ПВХ имеется специальный резиновый фиксатор. К нему болтами прикручивается подставка с эхолотом. В результате получается жестко закрепить эхолот:

Рыболовы придумывают и другие способы крепления. Самый безопасный – поместить экран внутрь лодки и зафиксировать его в дном положении. Можно использовать подставку, как в данном случае.

Эхолоты работают от аккумуляторов. Есть модели с встроенными аккумуляторами. Чаще всего используются аккумуляторы с рабочим напряжением 12 В, разработанные по технологии AGM. Они не впитывают воду и имеют емкость от 1 до 15 Ач.

эхолотов для рыбалки лодки

Представляем вам 3 самые лучшие модели по мнению экспертов:

Garmin echoMAP 72sv

Это один из лучших картплоттеров на сегодня. Он имеет навигацию GPS. Информация в процессе сканирования меняется раз в 5 секунд. Диагональ экрана составляет 7 дюймов. Разрешение дисплея: 800х 480 пикселей. Данная модель способна отображать объекты в 3D. Функция «Auto Guidance» проложит наиболее оптимальный и краткий маршрут с учетом всех преград и мелей, отмеченных на карте.

Lowrance HDS-9 Gen3

Данная модель картплоттера оснащена сенсорным экраном с диагональю 9 дюймов. Внутри имеется мощный процессор, который способен обрабатывать данные даже на скорости. В данном устройстве реализованы технологии CHIRP сонара и StructureScan HD, с помощью которых на экране отображаются рыба по бокам лодки, глубина и рельеф дна. В эхолоте имеется модуль Wi-Fi, с помощью которого можно подключаться к ПК и получать обновления карт по интернету. Фирменное приложение Lowrance GoFree App позволит осуществлять беспроводное управление устройством со смартфонов и планшетов.

Эхолот картплоттер Humminbird HELIX 12 CHIRP DI GPS

Данная модель имеет 4 луча с углами захвата 16°, 28°, 45° и 75°. Эхолот оснащен 12 дюймовым экраном TFT с разрешением 1280×800 пикселей. Данный эхолот для рыбалки с лодки рекомендуем купить более опытным рыболовам.

Хорошие рыболовные интернет магазины позволят вам приобрести любые товары для рыбалки по выгодным ценам!

Подписывайтесь на нас в социальных сетях — через них мы публикуем много интересной информации, фото и видео.

Популярные разделы сайта:

Календарь рыбака позволит вам понять, как клюют все рыбы в зависимости от времени года и месяца.

Страница рыболовные снасти расскажет о многих популярных снастях и приспособлениях для ужения рыбы.

Насадки для рыбалки — подробно описываем живые, растительные, искусственные и необычные.

В статье прикормки вы познакомитесь с основными видами, а также с тактиками их использования.

Изучите все приманки для рыбалки, что бы стать настоящим рыболовом и научиться правильному выбору.

Источник: http://ribalka-vsem.ru/index/ehkholot_dlja_rybalki_s_lodki/0-908

Держатель датчика Эхолота: крепление на лодку ПВХ своими руками, как закрепить струбцину

Как сделать эхолот своими руками?
Первые модели эхолотов появились около 30 лет назад. Сейчас этим прибором никого не удивишь. Его используют не только для поиска рыбных мест, но и замеров глубин и определения рельефа дна. Эхолот — это достаточно простой прибор, состоящий из датчика (трансдьюсера), приемника, соединительных проводов и элементов крепления.

Принцип действия прибора основан на отражении и приеме сигнала от предметов, находящихся под водой, с выводом поступившей информации на дисплей.

Чтобы получать корректные данные, приемопередающее устройство должно быть заглублено и располагаться перпендикулярно поверхности воды. Для этого используется держатель датчика эхолота.

В связи с тем, что прибор не предназначен для одного типа лодок, многие производители не комплектуют устройство креплениями.

Пять возможностей рыболовного эхолота

  1. Анализ рельефной поверхности – вторая по полезности функция, присутствующая в каждом втором устройстве. Её применяют, чтобы определить стоянку хищников вроде щуки или окуня.
  2. Анализатор скопления рыбных семейств – настраиваемая опция, облегчающая выбор точки ловли хищной и другой рыбы.
  3. Контроль температуры и давления в режиме перманентного аналитического мониторинга – опция, позволяющая выявить уровень активности подводных обитателей.
  4. Интегрированный GPS датчик помогает ориентироваться на водной поверхности, вне зависимости от типа водоёма, будь то река, озеро, водохранилище или море.
  5. Определение глубины – стандартная опция анонсируемого прибора.

    На основе полученных данных рыбак настраивает удилище, подбирает приманку, выставляет грузила.

Транцевые

Крепление датчика эхолота на транец – наиболее часто используемое рыболовами. Основными его составными частями являются

  • Струбцина – служит для надежной фиксации приспособления на транце;
  • Телескопическая штанга – два квадратных профиля вставленных друг в друга. Регулируется глубина погружения трансдьюсера путем изменения длины штанги;
  • Крепление для датчика на конце штанги – служит для фиксации самого трансдьюсера на держателе.

Универсальный транцевый держатель

Такой кронштейн позволяет закрепить датчик прибора на лодке с транцем любого типа.

Наиболее популярными в среде рыболовов являются такие модели данных кронштейнов, как:

  • Усиленный кронштейн датчика Сурикат;
  • Крепление трансдьюсера TK-550-Al;
  • Крепеж-струбцина KX-TY 1203.

Место крепления эхолота

Рыболовы со стажем 10-15 лет знают, как правильно закрепить датчик, обеспечить его работу в бесперебойном режиме с исключением риска выпадения за борт. Чаще всего, они используют одно из трёх мест крепления.

  1. Транец – точка временного размещения эхолота на время утренней, вечерней либо ночной рыбалки, имеется на всех лодках ПВХ. Жёсткая опора удерживает компьютерное устройство в выбранном положении не исключая функцию настройки положения фиксирующим креплением.
  2. Донная часть плавательного средства подходит для инсталляции чувствительных устройств с 20-30 настраиваемыми функциями. Монтаж эхолота к днищу производится с помощью специального клея, зачастую, поставляемого вместе с комплектом.
  3. Выносная точка инсталляции эхолота определяется собственником плавсредства, на котором отсутствует транец. Его заменяет пластиковая или деревянная рейка, обеспечивающая ровное положение перпендикулярно водной поверхности.

Монохромный или цветной дисплей рассматриваемого компьютерного устройства укрепляется к скамейке, фанерному или пластиковому сидению. Установка при помощи стального кронштейна, присосок или водостойкого клея отнимает 5-10 минут плюс время просушки. Нередко экранные модули эхолотов располагают на боковых понтонах, используя для этого быстросохнущий клей либо присоску. Способ крепежа каждый рыбак определяет самостоятельно. Подавляющее большинство анонсируемых приборов поставляется вместе с инструкцией установки.

Для чего предназначен датчик эхолота

Некоторые рыбаки считают, что, купив эхолот, они получают гарантию успеха на рыбалке. Однако приобретя устройство, обнаруживают, что получили дорогую игрушку. В действительности эхолот — это нужная и полезная вещь. Чтобы оценить все возможности этого устройства, необходимо разобраться в его работе и правилах эксплуатации.

Датчик эхолота является составной частью комплекта и служит для преобразования высокочастотного электрического сигнала в ультразвуковой импульс и его излучения, а также приема и обратного преобразования. На приборах для маломерных судов используются пьезоэлектрические трансдьюсеры.

В качестве излучающего элемента используется кристалл титаната бария с металлическим покрытием. Он располагается в пластмассовом или металлическом корпусе и залит звукопроницаемым материалом. Датчик предназначен для определения глубины водоема под килем. Однако существуют модели, способные измерять температуру воды и скорость плавсредства.

Инструкция по креплению эхолота на лодку ПВХ

Итак, вы обзавелись эхолотом со встроенным GPS навигатором, настраиваемой функциональной составляющей, крепёжными фиксаторами в комплекте. Порывшись в коробке, вы обнаружили, что устройство не снабжено пользовательской инструкцией. Ввиду этой особенности, монтаж прибора нужно производить собственными руками. Но как это сделать, не имея полупрофессионального опыта, знаний и навыков? Используя комплектный крепёж заводского типа.

Девять из десяти рекламируемых устройств поставляется с крепёжными элементами. С их помощью можно зафиксировать датчик в выбранном положении так, что никакие манёвры плавательного средства не ослабят фиксатор. Существуют модификации, заводской комплектацией которых не предусмотрено наличие фиксирующих инструментов. В этом случае их можно изготовить собственными руками или приобрести, как отдельный аксессуар.

Заядлые рыболовы не советуют полагаться на прочность сторонних приспособлений для монтажа бортового компьютера. Жёсткую, прочную, стабильную установку гарантирует только заводское крепление из нержавеющей стали с прослойкой из полиуретана или тугоплавкой резины. Установка трубчатого кронштейна или фиксирующего узла по инструкции в соответствии с рекомендациями изготовителя, минимизирует риск потери прибора.

Крепление навсегда

Если вы постоянно выходите на водоем на одной и той же посудине, то можно крепление датчика эхолота сделать постоянным, просто приклеив его в нужном месте конструкции плавательного средства. Этот вариант возможен как для ПВХ лодки, так и для стеклопластиковой. Вклейка ведется при помощи эпоксидного клея, он после схватывания обеспечивает надежное и прочное соединение.

Для деревянной лодки можно предусмотреть монтаж трансдьюсера на болтах или шурупах, дополнительно прогрунтовав и прокрасив место крепления. В качестве красящего состава можно использовать битумную мастику или яхтный лак.

Вариант с плавающим датчиком

В том случае, когда вы рыбачите на спокойном водоеме без течения и в вашем распоряжении весельная резиновая или ПВХ лодка, у которой даже транец отсутствует, можно использовать плавающее расположение трансдьюсера. Вот последовательность изготовления такого монтажа:

  1. К скамейке, а она у весельных лодок имеется, крепим корпус эхолота. Можно крепить непосредственно на скамейку, а можно предусмотреть какой-либо кронштейн.
  2. Трансдьюсер крепим скотчем или изоляционной лентой к середине пластиковой полулитровой бутылки, а провод датчика — к ее горлышку.
  3. Опускаем бутылку с трансдьюсером в воду на проводе (он достаточно крепок и в дополнительной фиксации не нуждается).
  4. Для регулировки глубины погружения можно использовать воду, наливая ее в достаточном количестве в бутылку.

Дешево и сердито!

Съемные самодельные держатели

Для изготовления держателя трансдьюсера понадобится:

Источник: https://guarantee-dostavka.ru/sovety/datchik-eholota.html

Как сделать эхолот своими руками? — Рыболовные подборки

Как сделать эхолот своими руками?

материалы в категории

Электронный эхолот может быть полезен при самых разных подводных работах- не только для рыбалки.Эхолот может быть изготовлен в двух вариантах: с пределами измерения глубины до 9,9 м (в его табло — два люминесцентных индикатора) и 59,9 м (три индикатора). Прочие их характеристики одинаковы: инструментальная погрешность — не более ±0,1 м, рабочая частота — 170…

240 кГц (зависит от резонансной частоты излучателя), мощность в импульсе — 2,5 Вт. Ультразвуковой излучатель он же и приемник эхосигнала — пластина из титаната бария диаметром 40 и толщиной 10 мм. Источник питания эхолотов — батарея типа «Корунд». Потребляемый ток — не более 19 и 25 мА (соответственно, в эхолотах для малых и больших глубин).

Габариты эхолотов — 175х75х45 мм, масса — 0,4 кг.

Принципиальная схема эхолокатора

Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы повторяются каждые 10 с. Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика.

Спадом тактовый импульс запускает передатчик А1 и излучатель BQ1 излучает в направлении дна короткий (40 мкс) ультразвуковой зондирующий импульс. Одновременно открывается электронный ключ S1 и колебания образцовой частоты от генератора G2 поступают на счетчик РС1. По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность.

Эхосигнал, отраженный от дна, принимается тем же BQ1 и закрывает ключ S1. Измерение закончено, на индикаторах счетчика РС1 высвечивается измеренная глубина.

Расчет глубины прост: при скорости распространения звука в воде 1500 м/с, за 1/7500 с фронт сигнала, проделывающего двойной путь, переместится на 0,2 м; и, соответственно, младшая единица на табло счетчика будет соответствовать глубине 0,1 м.

Очередной тактовый импульс вновь переведет счетчик РС1 в нулевое состояние и процесс повторится.

Принципиальная схема эхолота с пределом измерения глубины 59,9 м изображена на рис 2.

Его самовозбуждающийся на частоте ультразвукового излучателя BQ1 передатчик выполнен на транзисторах VT8, VT9. Включением-выключением передатчика управляет модулятор — ждущий одновибратор (VT11, VT12 и др.), подающий через свой ключ (VT10) питание на передатчик в течение 40 мкс.

Транзисторы VT1, VT2 в приемнике усиливают принятый пьезоэлементом BQ1 эхосигнал, транзистор VT3 детектирует их, а транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От прямого воздействия импульсов передатчика приемник защищается диодным ограничителем (R1, VD1, VD2).

В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с «+» источника питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов.

По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ (DD1.1), управляемый RS-триггером (DD1.3, DD1.4).

Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15. Генератор импульсов образцовой частоты (7500 Гц) собран на элементе DD1.2. Цепью R33, L1 он вводится в режим линейного усилителя, что создает условия для его возбуждения на частоте, зависящей от параметров контура L1 С 18.

Точно на частоту 7500 Гц генератор выводят подстройкой L1. Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающий через диод VD4 на R-входы этих микросхем. Тактовый генератор собран на транзисторах VT13, VT14. Частота следования импульсов зависит от постоянной времени R28-C15.

Нити накала люминесцентных индикаторов HG1-HG3 питаются от преобразователя напряжения, выполненного на транзисторах VT17, VT18 и трансформаторе Т2. Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При ее нажатии на ключ VT15 поступает закрывающий импульс и на табло эхолота появится какое-то случайное число.

Через некоторое время тактовый импульс перезапустит эхолот, и, если он исправен, на табло возникнет число 88.8. Все резисторы в эхолоте — типа МЛТ, конденсаторы — КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие этих серий, МП42Б — на МП25„ КТ315Г — на КТ315В. Микросхемы серии К176 можно заменить на эквивалентные из серии К561.

Если эхолот предполагается использовать на глубинах до 10 м, микросхему DD4 и индикатор HG3 можно не устанавливать. Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с ферритовым (600НН) подстроечником диаметром 6 мм. Длина намотки — 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II — 160 витков.

Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16х 10х4,5 Обмотка I содержит 2х180 витков провода ПЭВ-2 0,12, обмотка II — 16 витков провода ПЭВ-2 0,39.

Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм. Диаметр щечек — 15, расстояние между ними — 9 мм. Подстроечник — из карбонильного железа (от броневого магнитопровода СБ-1а).

К посеребренным плоскостям пластины излучателя сплавом Вуда припаивают тонкие выводы.

Излучатель собирают в алюминиевом стакане диаметром 45…50 мм (донная часть корпуса оксидного конденсатора). Его высоту — 23…25 мм — уточняют при сборке. В центре дна стакана сверлят отверстие под штуцер, через который будет выведен коаксиальный кабель длиной 1…

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник — к выводу обкладки, приклеенной к резиновому диску, вывод другой обкладки излучателя — к оплетке кабеля. Собранный таким образом излучатель вдвигают в стакан. Поверхность пластины излучателя должна быть ниже кромки стакана на 2 мм.

Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После ее затведения торец излучателя шлифуют мелкозернистой наждачной бумагой до получения гладкой плоской поверхности. К свободному концу коаксиального кабеля припаивают ответную часть разъема X1.

Налаживание эхолота

Для налаживания эхолота потребуется осциллограф и цифровой частотомер. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88.8. Работу передатчика проверяют осциллографом, работающим в режиме ждущей развертки. Его подключают к обмотке II трансформатора Т1.

С приходом каждого тактового импульса на экране осциллографа должен появляться радиочастотный импульс. Подстройкой трансформатора Т1 (грубо — подбором емкости конденсатора С 10) добиваются максимальной его амплитуды. Амплитуда радиоимпульса на пьезоизлучателе должна быть не меньше 70 В. Для настройки генератора образцовой частоты потребуется частотомер.

Его подключают через резистор сопротивлением 5,1 кОм к выходу (выв. 4) элемента DD1.2 и, изменяя положение подстроечника в катушке L1 (грубо — изменением емкости конденсатора С18), выставляют нужные 7500 Гц. Приемник и модулятор настраивают по эхосигналам.

Для этого излучатель прикрепляют резиновым жгутом к торцовой стенке пластмассовой коробки размером 300х100х100 мм (для устранения воздушного зазора это место смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф.

Критерием правильной настройки приемника, модулятора и качества ультразвукового излучателя является число наблюдаемых на экране эхо — сигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцовых (разнесенных на 300 мм) стенок коробки.

Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С 13 в модуляторе и подстраивают трансформатор Т1. Вернув на место диод VD3, приступают к регулировке задержки включения приемника. Она зависит от сопротивления резистора R18.

Этот резистор заменяют переменным на 10 кОм и находят такую его величину, при которой на экране осциллографа исчезают первые два эхосигнала. Это сопротивление и должен иметь резистор R18. После настройки число эхосигналов на экране осциллографа должно быть не меньше 20.

Источник: https://blogrybaka.com/kak-sdelat-eholot-svoimi-rukami/

Радиосхемы. — Эхолот рыболова- любителя

Как сделать эхолот своими руками?

материалы в категории

Электронный эхолот может быть полезен при самых разных подводных работах- не только для рыбалки.Эхолот может быть изготовлен в двух вариантах: с пределами измерения глубины до 9,9 м (в его табло — два люминесцентных индикатора) и 59,9 м (три индикатора). Прочие их характеристики одинаковы: инструментальная погрешность — не более ±0,1 м, рабочая частота — 170…

240 кГц (зависит от резонансной частоты излучателя), мощность в импульсе — 2,5 Вт. Ультразвуковой излучатель он же и приемник эхосигнала — пластина из титаната бария диаметром 40 и толщиной 10 мм. Источник питания эхолотов — батарея типа «Корунд». Потребляемый ток — не более 19 и 25 мА (соответственно, в эхолотах для малых и больших глубин).

Габариты эхолотов — 175х75х45 мм, масса — 0,4 кг.

Крепление эхолота на лодку ПВХ — заводское и своими руками: варианты и способы

Как сделать эхолот своими руками?

Эхолот создавался для кораблей, помогая обходить мелководье и подводные препятствия. Но с развитием микроэлектроники появилась возможность создавать компактные устройства для любителей рыбной ловли. Современные изделия могут показать рельеф дна, глубину, температуру воды и даже косяки рыбы.

Так как эхолот не относится к разряду дешевых товаров, давайте разберемся, зачем он нужен рыбаку. Итак:

  • Определяет глубину. Крупные особи всегда находятся около дна, поэтому правильно подобрать параметры спиннинга или выбрать оптимальный вес приманки является залогом успешной рыбалки;
  • Показывает рельеф дна. Особенно важно это при ловле хищных представителей водоема. Зная повадки рыбы можно быстро определить место ее обитания;
  • Указывает места скопления, размер рыбы. Так подобрать оптимальное место для заброса значительно легче;
  • Постоянно контролируется температура и атмосферное явление. От этих факторов в основном зависит активность подводных жителей;
  • Функция GPS. Особенно помогает при выезде на крупный водоем. Удачное место помечается, прибор сохраняет координаты.

Место установки эхолота

Хорошая лодка ПВХ незаменима для рыбалки, но эхолот для получения адекватных показаний требует выполнения нескольких условий:

  • Транец – это наиболее часто используемое место для крепежа на всех типах ПВХ лодок

    Перпендикулярный к поверхности воды сигнал от датчика (трансдьюсера). Только так можно добиться правильной картины дна;

  • Отсутствие пузырьков воздуха под водой около датчика в результате возникновения завихрений при движении лодки;
  • Исключение даже небольшой вибрации трансдьюсера.

Исходя из этих особенностей, рекомендуется три основных места для крепления датчика:

  • Транец. Это наиболее часто используемое место для крепежа на всех типах ПВХ лодок. Так обеспечивается необходимая жесткость, возможность корректировки положения при помощи заводских или самодельных креплений;
  • Днище лодки. Еще один распространенный метод, позволяющий добиться правильных показаний. Используется клей или присоски, часто включающиеся в комплектацию прибора;
  • Выносной способ. При отсутствии транца или постоянно меняющихся плавательных средствах можно использовать пластиковую бутылку, которая позволит разместить изделие перпендикулярно воде. Глубину погружения можно регулировать доливая или убирая жидкость из бутылки.

Непосредственно экран эхолота чаще всего крепится:

  • Скамейка в удобном месте. Это может быть кронштейн, присоска, клей. Каждый определяется самостоятельно;
  • Днище или боковая поверхность. Способы крепежа практически те же – клей или присоска.

Крепление эхолота

Каждый прибор комплектуется системой крепления, помимо этого подобрать крепеж можно под себя, он доступен в продаже отдельно. Но наши люди не привыкли доверять важное дело производителям, поэтому существует несколько вариантов самостоятельного изготовления.

Заводской способ

Наиболее распространенным креплением является вариант жесткой установки на транец при помощи следующих приспособлений:

  • Струбцина. Обычно выполняется из нержавеющего материала с резиновой прослойкой, позволяющей плотно и надежно закрепить изделие к жесткой поверхности лодки;
  • Кронштейн. Трубка, дающая возможность регулировать датчик по глубине, а в дорогих моделях и углу поворота;
  • Крепежный узел для трансдьюсера. Этим приспособлением датчик прижимается к кронштейну.

Порядок работы:

  • Струбцина плотно прижимается к транцу. При наличии двигателя положение изделия подбирается так, чтобы исключить неудобства при маневрировании. Место крепления обычно переносится вправо или влево ближе к борту;
  • Датчик жестко крепится к кронштейну, опускается на необходимую глубину;
  • Кронштейн с помощью специального болта прижимается к струбцине;
  • Проводится корректировка по глубине и углу к поверхности. Для этого зажим на струбцине слегка отпускается и кронштейн двигается в необходимом направлении. После этого вся конструкция жестко закрепляется.
  • Экран эхолота помещается на скамейке или днище. Возможен вариант с присоской на резиновом борту.

Преимущества:

  • Возможность быстрого монтажа и демонтажа. Для лодки ПВХ это важно, так как она после окончания рыбалки обычно сдувается и складывается;
  • Надежность крепления, корректное расположение датчика, простая корректировка.

Недостатки:

  • сравнительно высокая цена;
  • жесткость конструкции может привести к серьезным повреждениям транца при наезде на препятствие, поэтому управлять лодкой нужно крайне осторожно.

Кронштейн с помощью специального болта прижимается к струбцине

Вариант 1

Намного дешевле изготовить конструкцию самостоятельно. Для этого понадобится:

  • Обычная металлопластиковая труба около метра длиной;
  • Трубка из нержавеющего материала, диаметр которой будет немного больше металлопластиковой;
  • Струбцина. Легко находится в строительных магазинах;
  • Болты с шайбами, резиновые прокладки (можно использовать старые велосипедные камеры), хомуты, шплинт.

Порядок действий:

  • При помощи хомутов и прокладок крепим металлическую трубу длиной около 0,4 метра к струбцине;
  • Вставляем во внутрь металлопластик, нижний конец которого расплющиваем. Сверлим 2 отверстия для крепления датчика с помощью болтов, гаек. Обязательно использование шайб;
  • Трансдьюсер закрепляется, а провод от него пропускается внутри трубы;
  • Струбцина становится на свое место (транец), а длина металлопластиковой трубы выставляется с помощью шплинта и просверленных заранее отверстий;
  • На выступающий вверху конец металлопластика любым удобным способом крепится экран.

Вариант 2

Данный способ подойдет для людей, постоянно пользующихся одной и той же лодкой

Другой способ крепления датчика раз и навсегда заключается в его вклеивании в корпус. Как это делается:

  • Около киля снимаются все слои на днище вплоть до внешнего;
  • При помощи эпоксидного клея датчик приклеивается к поверхности. Малая толщина резины не способна помешать нормальной работе трансдьюсера;
  • Оставшееся место от выреза заливается тем же составом.

Данный способ подойдет для людей, постоянно пользующихся одной и той же лодкой, а при хранении в свернутом состоянии вреда датчику нанесено не будет.

Вариант 3

Вынос датчика за пределы плавательного средства. Простая инструкция:

  • скотчем или изолентой трансдьюсер крепится к середине пластиковой бутылки, объемом от 0,5 до литра;
  • провод от датчика теми же средствами закрепляется на горлышке;
  • экран становится на скамейке, к нему подключается провод;
  • в бутылку наливается вода до тех пор, пока не будет достигнута необходимая глубина погружения датчика.

Подойдет для водоемов без течения или заводей.

У вас нет эхолота? garmin striker plus 4cv выбор редакции

эхолот garmin striker plus 4cv удостоен множества международных наград. он получил награду на ces 2018, победил на европейской рыболовной выставке eftex 2018 и азиатской china fish 2018 deeper. умный эхолот был назван выбором редакции в изданиях fish alaska, anglers mail и pc magazine.

  • для рыбалки в любое время года и любых условиях.
  • создает карту водоема во встроенной программе garmin quickdraw contours.
  • высокая точность показа глубины водоема и местонахождение рыбы (ее размера, глубины нахождения).
  • издает звуковой сигнал при обнаружении рыбы.
четкие изображения сканирующего сонара chirp clearvü. рыбопоисковый эхолот striker plus 4cv включает технологию garmin chirp, которая в сочетании со сканирующим сонаром garmin clearvü обеспечивает почти фотографические изображения того, что находится под судном. вы получите четкую картину подводного рельефа, объектов и рыбы. традиционный сонар garmin chirp обеспечивает отличное разделение целей. таким образом, данный трансдьюсер поможет вам поймать больше рыбы.
программа garmin quickdraw contours. никто не знает водоем лучше, чем тот, кто в нем рыбачит. пока вы плаваете вдоль берегов и на глубине, программа quickdraw contours создает рыболовные карты hd для тех мест, в которых вы побывали. от пользователей не требуются специальные знания. устройство striker plus 4cv позволяет сохранить до 2 миллионов акров карт quickdraw contours с изобатами через 30 см.

купить на официальном сайте с доставкой. цена 5800 руб. бывают сезонные скидки.

блиц-советы

  • Всегда старайтесь использовать заводские крепежи – это надежнее.

    Выделяют всего несколько случаев, когда действительно стоит проявить собственную техническую мысль:

    • нестандартная лодка (для ПВХ практически фантастика, но Китай может удивить);
    • отсутствие транца;
    • несовместимость крепежного элемента прибора и держателя при раздельной покупке;
    • наличие нескольких лодок, принципиально отличающихся конструкцией;
  • При отсутствии струбцины всегда можно воспользоваться дрелью и болтами. Через отверстия в транце крепится кронштейн и эхолотом можно пользоваться успешно. Это не так удобно, как при съемных держателях, но на качество сигнала влиять не будет.
  • Эхолот сильно облегчает жизнь, но ловить рыбу вместо вас не в состоянии. Поэтому качественная приманка и хорошая снасть все равно необходима.

Загрузка…

Источник: https://lakeking.ru/snasti/gadjet/eholot/kreplenie-na-lodku.html

Основным залогом успеха на любом водоеме является то, насколько правильно и тщательно рыболов определит глубину в месте ловли. От этого зависит грамотный выбор конкретной точки для заброса оснастки, ее особенности и прочие технические нюансы, влияющие на результативность ужения. Издавна для этих целей применялся глубиномер для рыбалки, позволяющий решить поставленную задачу.

Устройства для определения глубины и рельефа дна используются круглый год. Их применяют со льда либо по открытой воде, с ними можно проводить измерения, находясь в лодке или на берегу. Различные варианты глубиномеров позволяют рыболову выбрать оптимальную модификацию под конкретную ситуацию и собственные предпочтения, чтобы в процессе ловли ощущать себя максимально комфортно и непринужденно.

Глубиномер – устройство, предназначенное для измерения глубины и изменения рельефа дна в заданной акватории. С его помощью можно обнаружить различные аномальные зоны на участке ловли и определить самые потенциально перспективные точки, куда стоит послать оснастку. Он помогает найти свалы, канавки, возвышенности, локальные бугорки, приямки и прочие характерные места стоянки рыбы.

Глубиномеры для рыбалки можно смастерить самому либо приобрести в магазине. Самодельное изделие дешево, просто и надежно. Заводское дороже, но не придется тратить время на его изготовление. Самый современный прибор для измерения глубины – эхолот. Сегодня именно он пользуется наибольшим спросом и применяется многими рыбаками.

Глубиномер своими руками

Самым простым решением приобрести глубиномер для рыбной ловли является изготовление его самостоятельно в домашних условиях. Это устройство легко сделать из подручных материалов. Сегодня среди рыболовов распространены следующие типы этих приспособлений:

  • из свинцовой груши;
  • с поплавком-маркером;
  • из свинца и резины;
  • из пенопласта и свинцового грузила.

Ниже рассмотрим некоторые варианты изготовления глубиномера своими руками, их преимущества и особенности.

С поплавком-маркером

Простая и надежная конструкция глубиномера, которая к тому же является весьма эффективной на разных малознакомых водоемах. Пошаговая инструкция ее изготовления выглядит так:

  • Берется пенопластовый шарик либо круглый поплавок грузоподъемности порядка 15–20 грамм.

Совет! Обычные поплавки намного хуже видно с большой дистанции, поэтому выбор в пользу шарика предпочтителен.

Все. Глубиномер готов. Теперь можно приступать к измерениям глубины в месте ловли и определению рельефа дна:

Совет! Для максимально точных измерений на бланк можно нанести шкалу с любым шагом. Это зависит от предпочтений рыболова.

  • Определив значение глубины в первой точке, подматываем катушкой леску и сдвигаем груз на один-два метра, повторяя процедуру измерений.

Таким образом, «прозваниваем» все направление до берега. После выполняем забросы под разными углами и измеряем глубину. В течение получаса можно досконально изучить рельеф в зоне ловли и определить потенциально уловистые точки.

Из пенопласта и свинцового грузила

Этот вариант также предназначен для измерения с берега, по принципу действия схож с первым устройством. Изготовить его можно так:

  • Берем кусок пенопласта прямоугольной или квадратной формы. В нем проделываем сопрягающиеся два отверстия, расположенные под углом 40–50 градусов к горизонтальной оси.

Совет! Вместо пенопласта можно взять пробку большого размера.

  • В отверстие вставляем использованный стержень от простой шариковой ручки.
  • Леска для измерения глубины пропускается через стержень.
  • К ее свободному концу крепится свинцовый груз необходимого веса напрямую либо с помощью вертлюжка.

Этот глубиномер позволяет весьма точно измерять глубину на стоячих водоемах. На реках с течением получаем значения с некоторой погрешностью.

Из свинца и резины

Этот глубиномер предназначен не столько для промера участка ловли, сколько для определения максимально привлекательного для рыбы нахождения приманки. Применяется в поплавочной или штекерной рыбалке , когда необходимо насадку приподнять над пятном прикормки на 3–5 см, сделав ее заметнее и аппетитнее для рыбы. Выглядит и изготавливается следующим образом:

  • На крючок цепляем прямоугольный кусочек резины.
  • На его другом крае фиксируем свинцовый груз весом, способным утопить применяемый поплавок.

Этот простейший глубиномер позволяет быстро настроить оснастку, и расположить приманку на оптимальном расстоянии от дна.

Фото 3. Вариант: силикон и джиг головка. Крючок цепляем за силикон.

Современный глубиномер – эхолот

Из современных приборов, предназначенных для измерения глубины и прорисовки рельефа дна, рыболовами применяется эхолот. Это устройство позволяет не просто узнать цифры, но и визуально увидеть, что происходит под водой в конкретном месте.

Существует эхолот для ловли с берега и с лодки. Вторая категория наиболее востребована и пользуется огромным спросом. Первая – малознакома нашим рыболовам. Ее применяют единицы, хотя этот прибор очень эффективен и позволяет изучить ситуацию под водой, находясь вне плавсредства.

Как выбрать эхолот для рыбалки с берега? Вопрос непростой. Изначально необходимо обращать внимание на цену изделия. Ведь слишком дорогие модели не по карману простому обывателю, да и порой соотношение в необходимости прибора и его стоимости не сопоставимы.

Чтобы выбрать хороший береговой эхолот, необходимо обращать внимание на следующие параметры:

  • Мощность, позволяющая измерять глубину на большом расстоянии. Небольшое значение этого показателя приводит к тому, что прибор передает картинку на дисплей, находясь лишь вблизи рыболова.
  • Угол сканирования. Чем он больше, тем большую площадь «захватывает» датчик эхолота. Но чересчур высокое значение может привести к искажению изображения. Рекомендуется выбирать устройство с усредненными характеристиками.
  • Размер, разрешение экрана эхолокатора и количество цветов. Этот показатель определяет качество изображения рельефа дна на дисплее.

Помимо эхолота, некоторые производители выпускают цифровые глубиномеры. Они дешевле эхолокаторов, но позволяют измерить глубину, дополнительно отображают температуру воды либо воздуха. Их можно использовать в зимнее время, сканируя зону ловли прямо через лед.

Обеспечивая себе удачную рыбалку, рыбак должен знать все о том месте, где собирается ловить. Рельеф водоёма, наличие коряг на дне, глубина – все эти факторы влияют на удачливый клёв. Незаменимым приспособлением для выбора места являются глубиномеры для рыбалки. Устройства для определения глубины используются круглогодично. Но особенно актуально использовать глубиномер или эхолот зимой, когда условия ловли меняются, и знание глубины может помочь в определении местонахождения рыбы.

Глубиномер – это специальное устройство, которое позволяет вам определить с максимальной точностью глубину и рельеф выбранного вами места на водоёме.
Каждый рыбак, занимающийся прикормкой рыбы, хочет, чтобы последняя обратила на неё внимание. Для этого он помечает её цветом или добавляет какие-либо запахи. Насаживая приманку, надо знать, что рыба будет её видеть на расстоянии 3÷
5 сантиметров над прикормкой. А для этого надо знать глубину в том месте, где собрались ловить.

Самодельные устройства

Рыболовные глубиномеры изготавливаются из различных материалов.

Из резины и дробинки

Не мудрствуя долго, вы можете изготовить самый незатейливый глубиномер для рыбалки очень просто своими руками. Эта конструкция известна давно. На кусочек резины от камеры велосипеда крепим свинцовую дробинку и прицепляем это устройство на крючок. После того как вы забросили удочку с этим устройством, меряем длину лески. Таким образом, можно установить оптимальную высоту крючка над уровнем дна. Обычно она составляет 5 сантиметров.

Используем резинку и дробь

Из свинцовой груши

Следующий экземпляр самодельного устройства изготовлен из свинцовой груши. Сверху на таком грузике имеется петля. Вам придётся напильником спилить основание груши, сделать его плоским, чтобы эта груша не заваливалась, а вставала на дно ровно. По размеру основания вырезать из пробки или резинки кружок и приклеить к грузилу. Остаётся привязать его к леске и также промерить дно в облюбованном месте.

Леска для глубиномера

Для определения глубины ручным способом надо иметь отдельную . Чтобы лучше измерить леску при определении глубины, можно через равный промежуток на леске навязать узелки, а для лучшей видимости вплести в эти узелки разноцветные нити. Причём разным цветом можно отметить различное расстояние. Красный – полметра, синий — метр, зелёный — пять метров. Посчитав узелки, вы быстро можете определить глубину. Чтобы свободно ушла под воду на её конце надо прикрепить грузило. А ещё лучше на конец такой лески прицепить кормушку. Такая удочка выполнит для вас две функции — померит глубину и прикормит рыбу.

Кормушка и глубиномер

Электронный глубиномер

Если вы не расположены мастерить своими руками, или хотите измерить глубину более быстрым и современным способом, тогда вы можете это сделать с помощью электронного глубиномера. Устройства, в основном зарубежного производства, работают по принципу эхолота. Электронный глубиномер для рыбалки посылает ультразвуковые импульсы, а затем их принимает. Скорость распространения сигнала в воде составляет 1,5 км в секунду. Самые простые рыболовные экземпляры могут измерить глубину в 60 метров.

Электронный

Принцип работы

Прибор может измерить глубину и через лёд. Также он покажет температуру воды и воздуха. К сожалению, рыбу вам не удастся отыскать при помощи этого прибора. Эти глубиномеры гораздо дешевле эхолотов. Для определения глубины вам надо опустить датчик прибора в лунку и нажать кнопку. На экране появятся значения. Как известно, рыба способна улавливать ультразвуковые сигналы, поэтому промерять дно этими приборами лучше за некоторое время до рыбалки. В противном случае клёв может быть прекращён, а рыба распугана.

Но научно-технический прогресс не стоит на месте. На рынке имеется ручной глубиномер, который уже способен определять наличие рыбы. К таким моделям относятся — Fisherman 120 и Fisherman 140. Он может работать через лёд. В воде можно повернуть его в любую сторону. Эта модель наиболее адаптирована к зимним условиям. Она защищена от воды, экран не замерзает. Ценовая политика таких глубиномеров небольшая.

Лучший глубиномер — это эхолот

Но всё-таки самым продвинутым глубиномером является эхолот. Эти современные рыболовные приборы помогут вам не только измерить глубину, но и определить рельеф, да и рыбу обнаружить. При выборе этого прибора вы должны руководствоваться своими намерениями, решить для чего он вам нужен. Можно его использовать летом, а можно применять эхолот зимой. Больших различий в использовании не наблюдается. Просто могут выдерживать низкие температуры. Ещё эхолоты зимние более компактны, а также в их конструкции продуманы схемы питания, которые работают при низких температурах.

Эхолоты летние могут использоваться как , или катера, так и с берега. Более простые и дешёвые конструкции могут работать на маленькой скорости и просматривать пространство непосредственно под лодкой. Дорогие модели встроены в различные плавательные средства, и способны на большой скорости определять глубину, рельеф, наличие рыбы. Если вы рыбачите с берега, то датчик эхолота, можете закинуть на удочке, принимающее устройство примет обратный сигнал.

Используйте эхолот зимой и летом, и тогда наверняка ваш улов будет богаче!

Народная примета: Полицейский остановил и не оштрафовал – клёва не будет.

В настоящее время эхолоты для рыбалки очень популярны среди рыбаков и спортсменов.
Что дает эхолот
рыбаку?
Ответ на этот вопрос, казалось бы, весьма прост – эхолот
ищет и находит рыбу, и это является его основным предназначением. Однако однозначность этого ответа может казаться абсолютно справедливой только начинающему рыболову. Каждый мало-мальски грамотный рыбак знает, что рыба не распределяется равномерно по пространству водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими изменениями глубин и даже перепадами температур между слоями воды. Интерес могут представлять коряги, камни, ямы, растительность. Иными словами, рыба не только ищет, где глубже, но и где ей лучше ночевать, охотиться, маскироваться, кормиться. Поэтому первостепенная задача эхолота – это определение глубин водоема и изучение рельефа дна.
Структурная схема, которая поясняет устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с.

Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика. Спадом тактовый импульс запускает передатчик А1, и излучатель-датчик BQ1 излучает в направлении дна короткий (40 мкс) ультразвуковой зондирующий импульс. Одновременно открывается электронный ключ S1, и колебания образцовой частоты 7500 Гц от генератора G2 поступают на цифровой счетчик РС1.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципиальная схема эхолота
с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Необходимую для самовозбуждения генератора положительную обратную связь создают цепи R19C9 и R20C11.» Генератор формирует импульсы длительностью 40 мкс с радиочастотным заполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс длительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота
собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 использован а амплитудном детекторе, транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1.

В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4. Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15.

Генератор импульсов с образцовой частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной обратной связи, выводящей элемент на линейный участок характеристики. Это создает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки.

Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диод VD4 на входы R микросхем.

Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена постоянной времени цепи R28C15.

Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 .

Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число. Через некоторое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

Эхолот смонтирован в коробке, склеенной из ударопрочного полистирола. Большинство деталей размещено на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них (рис. 3) смонтирован передатчик, на другой (рис. 4) — приемник, на третьей (рис. 5 — цифровая часть эхолота. Платы закреплены на дюралюминиевой пластине размерами 172Х72 мм, вложенной в крышку коробки. В пластине и крышке просверлены отверстия под выключатель питания Q1 (МТ-1), кнопку SB1 (КМ1-1) и гнездо ВР-74-Ф коаксиального разъема XI, а также вырезано окно для цифровых индикаторов.

В эхолоте применены резисторы МЛТ, конденсаторы КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие транзисторы этих серий, МП42Б — на МП25, КТ315Г-на КТ315В. Микросхемы серии К176 заменимы соответствующими аналогами серии К561, вместо микросхемы К176ИЕЗ (DD4) можно применить К176ИЕ4. Если эхолот будет использован на глубине не более 10 м, счетчик DD4 и индикатор HG3 можно не устанавливать.

Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с ферритовым (600НН) подстроечником диаметром 6 мм. Длина намотки — 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II — 160 витков. Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16Х10Х4,5. Обмотка I содержит 2Х 180 витков провода ПЭВ-2, 0,12, обмотка 11-16 витков провода ПЭВ-2, 0,39. Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм из органического стекла. Диаметр щечек — 15, расстояние между ними — 9 мм. Подстроечник — от броневого магнитопровода СБ-1а из карбонильного железа.

Ультразвуковой излучатель-датчик эхолота изготовляют на основе круглой пластины диаметром 40 и толщиной 10 мм из титаната бария. К ее посеребренным плоскостям сплавом Вуда припаивают тонкие (диаметром 0,2 мм) проводники-выводы. Датчик собирают в алюминиевом стакане от оксидного конденсатора диаметром 45…50 мм (высоту — 23…25 мм — уточняют при сборке). В центре дна стакана сверлят отверстие под штуцер, через который будет входить коаксиальный кабель (РК-75-4-16, длина 1…2,5 м), соединяющий датчик с эхолотом. Пластину датчика приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм.

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник — к выводу обкладки датчика, приклеенной к резиновому диску, вывод другой обкладки — к оплетке кабеля. После этого диск с пластиной вдвигают в стакан, пропуская кабель в отверстие штуцера, и закрепляют штуцер гайкой. Поверхность титанатовой пластины должна быть углублена в стакан на 2 мм ниже его кромки. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После затвердевания смолы поверхность датчика шлифуют мелкозернистой наждачной бумагой до получения гладкой плоскости. К свободному концу кабеля припаивают ответную часть разъема XI.

Для налаживания эхолота необходимы осциллограф, цифровой частотомер и блок питания напряжением 9 В. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88,8. При нажатии на кнопку SB1 должно появляться случайное число, которое с приходом очередного тактового импульса должно вновь сменяться числом 88,8.

Далее налаживают передатчик. Для этого к эхолоту подключают датчик, а осциллограф, работающий в режиме ждущей развертки,- к обмотке 11 трансформатора Т1. На экране осциллографа с приходом каждого тактового импульса должен появляться импульс с радиочастотным заполнением. Подстроечником трансформатора Т1 (если необходимо, подбирают конденсатор С10) добиваются максимальной амплитуды импульса, которая должна быть не менее 70 В.

Следующий этап — налаживание генератора импульсов образцовой частоты. Для этого частотомер через резистор сопротивлением 5,1 кОм присоединяют к выводу 4 микросхемы DD1. На частоту 7500 Гц генератор настраивают подстроечником катушки L1. Если при этом подстроечник занимает положение, далекое от среднего, подбирают конденсатор С18.

Приемник (а также модулятор) лучше всего настраивать по эхо-сигналам, как это описано в [I]. Для этого датчик прикрепляют резиновым жгутом к торцевой стенке пластмассовой коробки размерами 300Х100Х100 мм (с целью устранения воздушного зазора между датчиком и стенкой ее смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф. Критерием правильной настройки приемника, модулятора передатчика, а также качества ультразвукового датчика является число наблюдаемых на экране эхосигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцевых стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С13 в модуляторе передатчика и изменяют положение подстроечника трансформатора Т1.

Для регулировки устройства задержки включения приемника впаивают на место диод VD3, заменяют резистор R18 переменным (сопротивлением 10 кОм) и с его помощью добиваются исчезновения двух первых эхосигналов на экране осциллографа. Измерив сопротивление введенной части переменного резистора, его заменяют постоянным такого же сопротивления. После настройки число эхосигналов на экране осциллографа должно быть не менее 20.

Для измерения глубины водоема датчик лучше всего закрепить на поплавке с таким расчетом, чтобы нижняя его часть была погружена в воду на 10…20 мм. Можно прикрепить датчик к шесту, с помощью которого его погружают в воду кратковременно, на время измерения глубины. При использовании эхолота в плоскодонной алюминиевой лодке для измерения небольших глубин (до 2 м) датчик можно приклеить к днищу внутри лодки.

Следует отметить, что в солнечные дни яркость свечения цифровых индикаторов может оказаться недостаточной. Повысить ее можно заменой батареи «Корунд» («Крона») источником питания с несколько большим напряжением, например, батареи, составленной из восьми аккумуляторов Д-0,25 (никаких изменений схемы и конструкции прибора это не потребует).

Немного теории

Как c помощью эхолота мы видим рыбу?

Звуковые волны эхолота отражаются от физических движимых объектов (т.е. мест, где скорость распространения звука изменяется). Рыба в основном состоит из воды, но разница между скоростью звука в воде и в газе, который находится в воздушном пузыре рыбы, настолько велика, что позволяет звуку отображаться и возвращаться. Воздушный пузырь позволяет рыбе удерживаться на определенной глубине без помощи плавников, (по тому-же принципу и подводные лодки построены). Поэтому с помощью эхолота мы «видим» не саму рыбу, а ее воздушный пузырь что, по большому счету, для рыбака все равно. Есть пузырь — есть и рыба. Но все-таки надо знать,что, каждый наполненный газом воздушный пузырь, как поток воздуха в трубе органа, имеет собственную естественную частоту. Когда пузырь достигают звуковые волны той же частоты, он резонирует, и частота резонанса в несколько раз выше, чем частота самой волны. Поэтому «цель» выглядит большей, чем есть на самом деле.

Если смотреть глубже, тон резонирования воздушных пузырей определяется давлением воды, размером и формой пузыря и физическими препятствиями внутри самой рыбы.
Эти факторы меняются, когда рыба движется вертикально сквозь разные глубины.

Как сонар показывает рыб?

На рисунке виден типичный «овал ногтя» (дуга), образуемый схемой движения одной рыбы от центра к углам либо угол конуса, когда лодка стоит. Тот же самый эффект может быть создан, если лодка движется, а рыба неподвижна. Но вы редко увидите эту идеальную дугу, поскольку рыба, которую вы ищете, все время перемещается за пределы дуги, а не обязательно по уровню или центру.Чем крупнее «овал ногтя», тем крупнее рыба, не так ли? Нет, необязательно.

Рыба одинакового размера, плывущая по центру дуги к поверхности, может находиться в дуге короткое время и поэтому давать мелкий отпечаток. Если же та же рыба прижимается ко дну и проходит по центру дуги, то попадет в целевую зону на более длительный период времени и даст более крупный сигнал. В общем говоря, рыба будет казаться меньше, чем ближе она к преобразователю, и крупнее, чем дальше от него.
Это прямо противоположно тому, что видят наши глаза при солнечном свете. Вариации в этом идеальном «овале ногтя» могут возникать по ряду причин. Рыба плавает вверх и вниз, она проходит через внешние границы дуги под неправильными углами, лодка движется то медленно, то быстро, рыба может быть так близко к дну, что частично попадает в «мертвую зону».Например, вы обнаружите, что косяк нужной рыбы, находящийся в тесном скоплении в горизонтальном пласте, образует большую дугу, но с углами, которые мало отличаются от отметки одной рыбы. Итак, вы увидите множество вариаций этой формы «овала ногтя», но помните, что она является обычным отображением, которое возвращается рыбой.
Есть одна ошибка, типичная для всех эхолотов, о которой знают или даже задумываются лишь немногие рыбаки, это то, что все КАЖЕТСЯ, как будто оно находится под лодкой, хотя на самом деле это не так.

Рисунок показывает то, что действительно происходит под водой с нашим звуковым конусом и наше впечатление о нем, основанные на мигающей шкале или двухмерном изображении.

На рисунке видно, как все эхолоты выдают ошибку в чтении рыбы, находящейся между лодкой и дном.
Это происходит из-за того, что прибор старается выстроить всю найденную рыбу в пределах конуса в одну прямую линию, которая убеждает нас, что рыба находится прямо под днищем лодки.
Также рисунок показывает нам, что происходит когда две (или более) рыбы обнаруживаются на том же самом расстоянии (от преобразователя), хотя на самом деле они находятся на разных концах конуса.
Все они помечаются эхолотом, как на одном расстоянии, и поэтому показываются как одна рыба.
Рыбалка с эхолотом
очень интересная, к тому-же добавляет уверенности и в итоге — улова.

Глубиномер. Всем известно что самый простой глубиномер, это веревка с грузом и узлами, завязанными через метр. Мы немного усложним конструкцию. и узлы считать не придется.

Понадобившиеся инструменты.

1. Сварочный инвертор.
2. Дрель на стойке.
3.Угловая шлифовальная машина.
4. Ножовка по металлу.
5. Киянка.
6. Тиски.
7. Гаечный ключ.
8. Бормашина.
9. Заточной станок.
10. Пинцет.
11. Наждачная бумага.
12. Рулетка.

Понадобившиеся материалы.

1. Рыболовная катушка.
2. Металлическая шпилька.
3. Алюминиевая трубка.
4. Гайки.
5. Подшипники.

Для начала нужно закрепить подшипники на шпильке. Диаметр шпильки должен максимально соответствовать внутреннему диаметру подшипника. Накручиваем на шпильку первую гайку.

Одеваем подшипник.

Фиксируем подшипник второй гайкой и затягиваем до упора.

В центре рыболовной катушки сверлим отверстие под диаметр имеющейся шпильки.

Одеваем катушку на шпильку и фиксируем третьей гайкой.

Теперь нужно изготовить бегунок. Для этого к еще одной гайке привариваем обрезок гвоздя или проволоки.
В принципе можно обойтись и без сварочных работ и выточить бегунок например из текстолита или оргстекла, кому как проще.

Зачищаем сварочный шов и придаем форму бегунку на заточном станке.

Так же желательно бегунок покрасить, хотя конечно лучше сделать его из нержавейки.

Отрезаем шпильку необходимой длины. Длина зависит от того, какой диаметр катушки и сколько метров шнура предполагается на него намотать. В нашем случае получилось 20 см.

Подравниваем срез и снимаем фаску.

Крепим второй подшипник к свободному краю шпильки зафиксировав его между двумя гайками.

Размечаем длину алюминиевой трубки, от края подшипника возле катушки, до среза шпильки. Внутренний диаметр трубки должен соответствовать наружному диаметру подшипника. Отрезаем.

По центру трубки необходимо прорезать паз для бегунка. Мы воспользовались бормашиной, можно использовать надфили. Длина паза равна расстоянию между внутренними гайками.

Обрабатываем все срезы наждачной бумагой и собираем все детали воедино.

Берем бегунок пинцетом и вставляем его в паз.

Придерживая бегунок пальцами вкручиваем в него шпильку.

Набиваем трубку на подшипник, слегка постукивая киянкой. Бегунок необходимо оставить примерно по центру шпильки чтобы не упирался в края паза.

Теперь закручиваем гайку на свободный край шпильки и устанавливаем второй подшипник с помощью отрезка трубки меньшего диаметра.

Закручиваем и затягиваем последнюю гайку, желательно чтобы она была самоконтрящаяся.

Глубиномер готов, осталось только разметить шкалу. Наматываем на катушку шнур с грузом, выставляем бегунок в крайнее положение возле катушки и приступаем к разметке.
Разматываем на столе рулетку, устанавливаем глубиномер на ноль и тянем за груз. Дойдя до отметки в 1 м. ставим засечку на корпусе возле бегунка, и так далее пока не закончится паз или шнур.

Засечки и цифры на корпусе глубиномера лучше нанести бормашиной или нацарапать иглой, и нанести слой краски.

Вот такая не сложная, но весьма полезная конструкция. Эхолот она конечно не заменит, но промерять глубины водоема поможет.

Ну и на всякий случай. Полипропиленовая труба присутствует на фото потому что изначально корпус глубиномера предполагалось сделать из него, но в процессе работы предпочли алюминиевую трубку, так как полипропилен надежд не оправдал.

Если вы впервые попадаете на какой-нибудь водоем, то перед вами встает вопрос: как обеспечить удачную рыбалку? Удачная рыбалка, которая подразумевает хороший лов, включает в себя несколько важных нюансов. Чтобы выбрать правильное место для рыбалки можно обладать разными знаниями, например, можно быть наблюдательным и ориентироваться на уровень воды, температуру воздуха, размещение коряжника и т.д.

Но для успешной рыбалки необходимо учитывать такой фактор, как определение глубины водоема и, соответственно, рельефа дна в тех местах, где обычно кормится рыба. Конечно, глубину можно попытаться измерить визуально, то есть если вода в каком-то месте темнее, то там явно глубже. Но время не стоит на месте и на сегодняшний день можно воспользоваться таким удобным устройством, как рыболовный глубиномер
.

Глубиномер для рыбалки

Как уже говорилось, глубиномер применяется для того, чтобы измерить глубину водоема в месте лова рыбы, а также он необходим для опускания прикормки на определенную глубину. Глубиномеры бывают разными: легкими, тяжелыми, свинцовыми и т.д., то есть здесь можно говорить о механическом варианте глубиномера. Кстати, устройство данного вида легко изготовить самому.

Также стоит отметить другой вариант глубиномера, который включает в себя такие приборы, как эхолот и электронные глубиномеры, работающие по принципу излучения ультразвукового сигнала. То есть сигнал излучается, а затем отражается от дна и устройство фиксирует его отражение. Обычно подобные приборы устанавливают на разнообразных плавательных средствах, но в то же время существуют и портативные версии глубиномеров, которые доступны для повсеместного использования на водоемах.

Эхолот глубиномер

Электронные глубиномеры и, в частности, эхолоты можно разделить на летние и зимние варианты. Данное разделение обладает условностью, так как основная масса этих устройств имеет универсальное назначение и их можно применять как летом, так и зимой.

Глубиномер для летней рыбалки

Эхолоты для летнего использования подразумевают, что их будут применять с лодки или с берега. Эхолоты, устанавливаемые на лодки, имеют некоторые различия между собой. Так, более дешевые модели могут эффективно работать только на маленьких скоростях, и они обычно охватывают пространство непосредственно под лодкой. Что касается более дорогих моделей, то их способности существенно выше: работают на более высоких скоростях, охватывают пространство не только под лодкой, но и впереди нее.

Также к летней рыбалке относятся береговые эхолоты, которые имеют отличия от приборов, устанавливаемых на катерах и лодках. Различия заключаются в том, что существует датчик эхолота, который забрасывается на удочке, а доставка информации осуществляется посредством радиосигнала. Лидирующие позиции в данном секторе занимает компания Humminbird, которая известна своей серией SmartCast.

Глубиномер для зимней рыбалки

Некоторые эхолоты можно дополнительно оснастить датчиком, который позволяет просматривать дно сквозь лед. Правда, надо иметь в виду, что данный датчик поможет вам, если это первый лед в котором минимум пузырьков воздуха.

Основную часть эхолотов, имеющих датчик с широким лучом, можно применять как с лодки летом, так и на льду в зимних условиях. Единственное, что требуется, чтобы эхолоты, используемые зимой , выдерживали низкие температуры. Некоторые производители выпускают специальные модели эхолотов, которые способны выдерживать температуру ниже минус десять градусов, например, JJ-Connect Fisherman 200 Ice Edition.

Также стоит отметить тубусный вариант эхолота, подразумевающий расположение датчика в специальном тубусе, который опускается в лунку (Botton Line — Fishin» Buddy 2255). Кроме этого, существует инновационный вид эхолотов, который относится к так называемым флешерам. Данные устройства в реальном времени сканируют пространство. Экран эхолота – это круг, который разделен на зоны, и при этом на нем можно рассмотреть даже приманку (Hondex FL-18).

Глубиномер цифровой

Применение электронного глубиномера основано на простом действии. Его необходимо поместить в лунку и произвести нажатие кнопки, и вы увидите на экране цифры, имеющие отношение к глубине, а также узнаете температуру воздуха и воды. В качестве примера можно рассмотреть модель JJ-Connect Fisherman 120. Данный глубиномер можно использовать не только в лунке, но также он эффективен при сканировании через лед. Плюс к этому в этой модели присутствует функция, с помощью которой можно определить наличие рыбы. Правда, эта функция не позволяет определить, где конкретно располагается рыба.

Это электронное устройство отличается от эхолотов тем, что его луч можно направлять в удобную для вас сторону. Также стоит отметить тот факт, что цена на это устройство вполне демократическая и обычно не сильно превышает отметку в сто долларов. Кроме этого, на рынке присутствует ручной эхолот глубиномер JJ-Connect Fisherman 140, который представляет собой более продвинутую версию Fisherman 120.

Грузило-глубиномер

Разная рыболовная снасть подразумевает использование разных видов глубиномеров. Например, при ловле на штекерное удилище можно использовать глубиномер от Stonfo. Данный глубиномер обладает замочком, который позволяет надежно и крепко закрепиться на оснастке. Положительным фактором этого изделия является его низкая цена. Также к штекерным глубиномерам относятся изделия, имеющие свинцовый корпус и мягкий материал снизу (Sensas). При этом их крепление осуществляется с помощью крючка , который продевается в петельку, расположенную наверху, а затем он втыкается в пенку. И наконец, глубиномер-прищепка, который обычно применяют при ловле с плоским поплавком. Его крепление производится на цепочку дробин.

Что касается маха и матчевой удочки , то здесь закрепление глубиномера-прищепки осуществляется на крючке оснастки. Если поплавок тонет, то глубина мала и стоит глубиномер сдвинуть вверх по леске . Эту операцию необходимо повторять пока поплавок не покажется из воды.

Глубиномер своими руками

Сделать механический глубиномер
самостоятельно можно, и это довольно простой процесс. Рассмотрим поэтапно работу, которая заключается в изготовлении свинцового глубиномера. Перед началом работы требуется подготовить заготовку, которая представляет собой свинцовый груз, имеющий петлю сверху, а также клей “Момент”, напильник и туристический коврик.

  1. С помощью напильника необходимо придать свинцовой заготовке форму треугольника, при этом низ груза должен быть плоским.
  2. Далее следует поставить груз на туристический коврик и с помощью ручки обвести его основание.
  3. Полученный контур необходимо вырезать.
  4. Затем вырезанный кружок надо намазать клеем, дать немного подсохнуть и после этого его следует приклеить к основанию груза.
  5. В принципе, работа закончена — самодельный глубиномер готов. Единственное, что можно сделать, так это навести лоск, то есть с помощью зажигалки подправить края.

Эхолот для рыбалки своими руками

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Cамодельный мини-эхолот на микроконтроллере Atmel ATMega8L

и

ЖКИ от мобильного телефона nokia3310

Представляю вашему вниманию авторскую разработку – самодельный мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию может повторить каждый желающий. Материал я старался изложить так, чтобы читателям в доступной форме дать побольше полезной информации по теме. Надеюсь, что повторение конструкции принесет Вам много удовольствия и пользы.

Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.

С уважением, Alex

Эхолот, сонар (sonar) — сокращение от SOund NAvigation and Ranging. Эхолот известен где-то с 40-х годов, технология была разработана во время Второй мировой войны для отслеживания вражеских подводных лодок. В 1957 году компания Lowrance выпустила первый в мире эхолот на транзисторах для спортивной рыбной ловли.

Эхолот состоит из таких основных функциональных блоков: микроконтроллер, передатчик, датчик-излучатель, приемник и дисплей. Процесс обнаружения дна (или рыбы) в упрощенном виде выглядит следующим образом: передатчик выдает электрический импульс, датчик-излучатель преобразует его в ультразвуковую волну и посылает в воду (частота этой ультразвуковой волны такова, что она не ощущается ни человеком, ни рыбой). Звуковая волна отражается от объекта (дно, рыба, другие объекты) и возвращается к датчику, который преобразует его в электрический сигнал (см. рисунок ниже).

Приемник усиливает этот возвращенный сигнал и посылает его в микропроцессор. Микропроцессор обрабатывает принятый с датчика сигнал и посылает его на дисплей, где мы уже видим изображение объектов и рельефа дна в удобном для нас виде.

На что следует обратить внимание: рельеф дна эхолот рисует только в движении. Это утверждение вытекает из принципа действия эхолота. Тоесть, если лодка неподвижна, то и информация о рельефе дна неизменна, и последовательность значений будет складываться из одинаковых, абсолютно идентичных значений. На экране при этом будет рисоваться прямая линия.

Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще Вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.

От эхолотов, описанных в [1, 2, 3] моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.

Вся конструкция собрана в корпусе «Z14». Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА (в авторском варианте 23мА).

Теперь о возможностях эхолота. Рабочая частота 200 кГц и настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Моя конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4 м. Прибор показал отличные результаты. По мере возможности постараюсь протестировать работу эхолота на более больших глубинах, о чем будет сообщено читателям.

Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке ниже:

Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.

Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.

Далее сигнал обрабатывается в микроконтроллере и отображается в нужном виде на графическом ЖК дисплее 84х48 точек.

Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная – 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.

Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам?
Вариант 1: приобрести готовый датчик.
Вариант 2: изготовить самому из пьезокерамики ЦТС-19.

При прошивке микроконтроллера ATMega8L fuse bits выставить согласно картинке ниже :

Полная информация по изготовлению, настройке, прошивке и руководству по использованию мини-эхолота

смотрите в прилагаемом архиве!

Эхолот для рыбалки своими руками

для этой схемы

Основные функциональные блоки эхолота: схема управления (то есть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4, нагрузкой которых является трансформатор Т1. Сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.
Сигнал с выхода приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.
Далее сигнал обрабатывается в микроконтроллере и отображается в нужном виде на графическом ЖК дисплее 84х48 точек.
Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная – 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.
Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам?
Вариант 1: приобрести готовый датчик.
Вариант 2: изготовить самому из пьезокерамики ЦТС-19 по технологии, описанной в [1-3] см. раздел «ссылки».

На место R143 впаиваем резистор 1,8 кОм, на место R141 – подстроечный резистор Rп сопротивлением 0,5..1кОм.

Подключаем питание (полностью заряженный аккумулятор или «крону»). Измеряем потребляемый ток: если он выше 30 мА – ищите ошибки в схеме. В моем экземпляре потребляемый ток в режиме «PAUSE» составлял 19 мА. Далее смотрим на дисплей: если Вы видите то, что показано на рисунке ниже – это значит, что собранная схема на 90% рабочая.

Теперь приступим к настройке остальных 10%. Отсоединяем батарею питания. Отключаем питание выходного каскада передатчика (выпаять R21). Отсоединяем выводы 1,2 микросхемы IC4 от вывода 8 (Port B7) микроконтроллера (выпаяв перемычку-переход возле ножки контроллера) и подключаем их на общий провод. Подключаем к выводу 4 IC4 частотомер и подаем на схему питание. Вращением ручки подстроечного резистора Rп устанавливаем частоту генератора равной двойной резонансной частоте вашего излучателя. То есть, если резонансная частота излучателя равна 200 кГц – то устанавливаем частоту генератора равной 400 кГц. Отсоединяем батарею питания. Отсоединяем выводы 1,2 IC4 от общего провода и впаиваем перемычку обратно. Подаем на схему питание и нажимаем кнопку «START». Подключаем осциллограф к выводу 8 микроконтроллера и убеждаемся в наличии управляющего отрицательного импульса длительностью примерно 45 мкС (смотрите осциллограмму ниже).

Подключаем осциллограф параллельно излучателю-датчику и убеждаемся в наличии зондирующих импульсов амплитудой не менее 75В. Если амплитуда меньше – значит проблема скорее всего в неправильной работе трансформатора (к.з., не «тот» сердечник, не подобрано нужное количество витков).

Далее в режиме «PAUSE» проверяем режим работы по постоянному току приемника сигналов на IC8 и компаратора на IC7 согласно карты напряжений. Напряжение на выводе 2 микросхемы IC4 должно быть больше напряжения на выводе 3 микросхемы IC4 на 30..80мВ, а если быть точнее – то на минимально необходимое для того, чтобы на выходе компаратора еще был лог. «0». В случае необходимости выставляем напряжение подбором номиналов R23..R25.

Нажимаем кнопку «START» и опускаем излучатель в сосуд с водой глубиной не менее 65см. Далее подключаем осциллограф к выводу 3 микросхемы IC7 и наблюдаем формируемые зондирующие импульсы и отраженный сигнал (смотрите осциллограмму ниже).

Ручкой подстроечного резистора Rп подстраиваем частоту задающего генератора передатчика по максимальной амплитуде отраженного сигнала (второй импульс на осциллограмме выше).

Отсоединяем подстроечный резистор Rп и измеряем его сопротивление. Подбираем такого же номинала резистор и впаиваем его на место R141.

Схема зарядки при правильном монтаже работает сразу и в наладке не нуждается.

На этом вся настройка мини-эхолота заканчивается.

Эхолот рыболова-любителя своими руками.

Структурная схема, поясняющая устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с. Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципиальная схема эхолота с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Необходимую для самовозбуждения генератора положительную обратную связь создают цепи R19C9 и R20C11.

Генератор формирует импульсы длительностью 40 мкс с радиочастотным заполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс длительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 использован а амплитудном детекторе, транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1. В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4. Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15. Генератор импульсов с образцовой частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной обратной связи, выводящей элемент на линейный участок характеристики. Это создает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки. Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диод VD4 на входы R микросхем. Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена постоянной времени цепи R28C15. Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 [2]. Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число. Через некоторое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

Эхолот смонтирован в коробке, склеенной из ударопрочного полистирола. Большинство деталей размещено на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них (рис. 3) смонтирован передатчик, на другой (рис. 4) — приемник, на третьей (рис. 5 — цифровая часть эхолота. Платы закреплены на дюралюминиевой пластине размерами 172Х72 мм, вложенной в крышку коробки. В пластине и крышке просверлены отверстия под выключатель питания Q1 (МТ-1), кнопку SB1 (КМ1-1) и гнездо ВР-74-Ф коаксиального разъема XI, а также вырезано окно для цифровых индикаторов.

В эхолоте применены резисторы МЛТ, конденсаторы КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие транзисторы этих серий, МП42Б — на МП25, КТ315Г-на КТ315В. Микросхемы серии К176 заменимы соответствующими аналогами серии К561, вместо микросхемы К176ИЕЗ (DD4) можно применить К176ИЕ4. Если эхолот будет использован на глубине не более 10 м, счетчик DD4 и индикатор HG3 можно не устанавливать. Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с фер-ритовым (600НН) подстроечником диаметром 6 мм. Длина намотки — 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II — 160 витков. Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16Х10Х4,5. Обмотка I содержит 2Х 180 витков провода ПЭВ-2, 0,12, обмотка 11-16 витков провода ПЭВ-2, 0,39. Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм из органического стекла. Диаметр щечек — 15, расстояние между ними — 9 мм. Подстроечник — от броневого магнитопровода СБ-1а из карбонильного железа.

Ультразвуковой излучатель-датчик эхолота изготовляют на основе круглой пластины диаметром 40 и толщиной 10 мм из титаната бария. К ее посеребренным плоскостям сплавом Вуда припаивают тонкие (диаметром 0,2 мм) проводники-выводы. Датчик собирают в алюминиевом стакане от оксидного конденсатора диаметром 45…50 мм (высоту — 23…25 мм — уточняют при сборке). В центре дна стакана сверлят отверстие под штуцер, через который будет входить коаксиальный кабель (РК-75-4-16, длина 1…2,5 м), соединяющий датчик с эхолотом. Пластину датчика приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм.

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник — к выводу обкладки датчика, приклеенной к резиновому диску, вывод другой обкладки — к оплетке кабеля. После этого диск с пластиной вдвигают в стакан, пропуская кабель в отверстие штуцера, и закрепляют штуцер гайкой. Поверхность тита-натовой пластины должна быть углублена в стакан на 2 мм ниже его кромки. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После затвердевания смолы поверхность датчика шлифуют мелкозернистой наждачной бумагой до получения гладкой плоскости. К свободному концу кабеля припаивают ответную часть разъема XI. Для налаживания эхолота необходимы осциллограф, цифровой частотомер и блок питания напряжением 9 В. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88,8. При нажатии на кнопку SB1 должно появляться случайное число, которое с приходом очередного тактового импульса должно вновь сменяться числом 88,8. Далее налаживают передатчик. Для этого к эхолоту подключают датчик, а осциллограф, работающий в режиме ждущей развертки,- к обмотке 11 трансформатора Т1. На экране осциллографа с приходом каждого тактового импульса должен появляться импульс с радиочастотным заполнением. Подстроечником трансформатора Т1 (если необходимо, подбирают конденсатор С10) добиваются максимальной амплитуды импульса, которая должна быть не менее 70 В. Следующий этап — налаживание генератора импульсов образцовой частоты. Для этого частотомер через резистор сопротивлением 5,1 кОм присоединяют к выводу 4 микросхемы DD1. На частоту 7500 Гц генератор настраивают подстроечником катушки L1. Если при этом подстроечник занимает положение, далекое от среднего, подбирают конденсатор С18. Приемник (а также модулятор) лучше всего настраивать по эхо-сигналам, как это описано в [I]. Для этого датчик прикрепляют резиновым жгутом к торцевой стенке пластмассовой коробки размерами 300Х100Х100 мм (с целью устранения воздушного зазора между датчиком и стенкой ее смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф. Критерием правильной настройки приемника, модулятора передатчика, а также качества ультразвукового датчика является число наблюдаемых на экране эхосигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцевых стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С13 в модуляторе передатчика и изменяют положение подстроечника трансформатора Т1. Для регулировки устройства задержки включения приемника впаивают на место диод VD3, заменяют резистор R18 переменным (сопротивлением 10 кОм) и с его помощью добиваются исчезновения двух первых эхосигналов на экране осциллографа. Измерив сопротивление введенной части переменного резистора, его заменяют постоянным такого же сопротивления. После настройки число эхосигналов на экране осциллографа должно быть не менее 20. Для измерения глубины водоема датчик лучше всего закрепить на поплавке с таким расчетом, чтобы нижняя его часть была погружена в воду на 10…20 мм. Можно прикрепить датчик к шесту, с помощью которого его погружают в воду кратковременно, на время измерения глубины. При использовании эхолота в плоскодонной алюминиевой лодке для измерения небольших глубин (до 2 м) датчик можно приклеить к днищу внутри лодки. В заключение следует отметить, что в солнечные дни яркость свечения цифровых индикаторов может оказаться недостаточной. Повысить ее можно заменой батареи «Корунд» («Крона») источником питания с несколько большим напряжением, например, батареи, составленной из восьми аккумуляторов Д-0,25 (никаких изменений схемы и конструкции прибора это не потребует).

В. ВОЙЦЕХОВИЧ, В. ФЕДОРОВА г. Ленинград

1. Бокитько В., Бокитько Д. Портативный эхолот.- Радио. 1981. № 10, с. 23-25.

2. Виноградов Ю. Преобразователь для питания индикаторов.- Радио, 1984, № 4. с. 55.

Что такое глубиномер для рыбалки?

Основным залогом успеха на любом водоеме является то, насколько правильно и тщательно рыболов определит глубину в месте ловли. От этого зависит грамотный выбор конкретной точки для заброса оснастки, ее особенности и прочие технические нюансы, влияющие на результативность ужения. Издавна для этих целей применялся глубиномер для рыбалки, позволяющий решить поставленную задачу.

Устройства для определения глубины и рельефа дна используются круглый год. Их применяют со льда либо по открытой воде, с ними можно проводить измерения, находясь в лодке или на берегу. Различные варианты глубиномеров позволяют рыболову выбрать оптимальную модификацию под конкретную ситуацию и собственные предпочтения, чтобы в процессе ловли ощущать себя максимально комфортно и непринужденно.

Какими бывают глубиномеры?

Глубиномер – устройство, предназначенное для измерения глубины и изменения рельефа дна в заданной акватории. С его помощью можно обнаружить различные аномальные зоны на участке ловли и определить самые потенциально перспективные точки, куда стоит послать оснастку. Он помогает найти свалы, канавки, возвышенности, локальные бугорки, приямки и прочие характерные места стоянки рыбы.

Глубиномеры для рыбалки можно смастерить самому либо приобрести в магазине. Самодельное изделие дешево, просто и надежно. Заводское дороже, но не придется тратить время на его изготовление. Самый современный прибор для измерения глубины – эхолот. Сегодня именно он пользуется наибольшим спросом и применяется многими рыбаками.

Глубиномер своими руками

Самым простым решением приобрести глубиномер для рыбной ловли является изготовление его самостоятельно в домашних условиях. Это устройство легко сделать из подручных материалов. Сегодня среди рыболовов распространены следующие типы этих приспособлений:

  • из свинцовой груши;
  • с поплавком-маркером;
  • из свинца и резины;
  • из пенопласта и свинцового грузила.

Ниже рассмотрим некоторые варианты изготовления глубиномера своими руками, их преимущества и особенности.

С поплавком-маркером

Простая и надежная конструкция глубиномера, которая к тому же является весьма эффективной на разных малознакомых водоемах. Пошаговая инструкция ее изготовления выглядит так:

  • Берется пенопластовый шарик либо круглый поплавок грузоподъемности порядка 15–20 грамм.
    На леску с помощью вертлюжка цепляется грузило необходимого веса. Во многих случаях достаточно 50–60 граммов.

Фото 1. Две унции равны примерно 56 граммам.

Все. Глубиномер готов. Теперь можно приступать к измерениям глубины в месте ловли и определению рельефа дна:

    Для начала на бланке удилища следует нанести какую-либо отметку для измерений. От ролика лесоукладывателя отмеряется 50 см и вокруг бланка несколько раз обматывается изолента.

Фото 2. Маркировка изолентой.

  • Определив значение глубины в первой точке, подматываем катушкой леску и сдвигаем груз на один-два метра, повторяя процедуру измерений.

Таким образом, «прозваниваем» все направление до берега. После выполняем забросы под разными углами и измеряем глубину. В течение получаса можно досконально изучить рельеф в зоне ловли и определить потенциально уловистые точки.

Из пенопласта и свинцового грузила

Этот вариант также предназначен для измерения с берега, по принципу действия схож с первым устройством. Изготовить его можно так:

  • Берем кусок пенопласта прямоугольной или квадратной формы. В нем проделываем сопрягающиеся два отверстия, расположенные под углом 40–50 градусов к горизонтальной оси.
  • В отверстие вставляем использованный стержень от простой шариковой ручки.
  • Леска для измерения глубины пропускается через стержень.
  • К ее свободному концу крепится свинцовый груз необходимого веса напрямую либо с помощью вертлюжка.

Этот глубиномер позволяет весьма точно измерять глубину на стоячих водоемах. На реках с течением получаем значения с некоторой погрешностью.

Из свинца и резины

Этот глубиномер предназначен не столько для промера участка ловли, сколько для определения максимально привлекательного для рыбы нахождения приманки. Применяется в поплавочной или штекерной рыбалке, когда необходимо насадку приподнять над пятном прикормки на 3–5 см, сделав ее заметнее и аппетитнее для рыбы. Выглядит и изготавливается следующим образом:

  • На крючок цепляем прямоугольный кусочек резины.
  • На его другом крае фиксируем свинцовый груз весом, способным утопить применяемый поплавок.

Этот простейший глубиномер позволяет быстро настроить оснастку, и расположить приманку на оптимальном расстоянии от дна.

Фото 3. Вариант: силикон и джиг головка. Крючок цепляем за силикон.

Современный глубиномер – эхолот

Из современных приборов, предназначенных для измерения глубины и прорисовки рельефа дна, рыболовами применяется эхолот. Это устройство позволяет не просто узнать цифры, но и визуально увидеть, что происходит под водой в конкретном месте.

Существует эхолот для ловли с берега и с лодки. Вторая категория наиболее востребована и пользуется огромным спросом. Первая – малознакома нашим рыболовам. Ее применяют единицы, хотя этот прибор очень эффективен и позволяет изучить ситуацию под водой, находясь вне плавсредства.

Как выбрать эхолот для рыбалки с берега? Вопрос непростой. Изначально необходимо обращать внимание на цену изделия. Ведь слишком дорогие модели не по карману простому обывателю, да и порой соотношение в необходимости прибора и его стоимости не сопоставимы.

Чтобы выбрать хороший береговой эхолот, необходимо обращать внимание на следующие параметры:

  • Мощность, позволяющая измерять глубину на большом расстоянии. Небольшое значение этого показателя приводит к тому, что прибор передает картинку на дисплей, находясь лишь вблизи рыболова.
  • Угол сканирования. Чем он больше, тем большую площадь «захватывает» датчик эхолота. Но чересчур высокое значение может привести к искажению изображения. Рекомендуется выбирать устройство с усредненными характеристиками.
  • Размер, разрешение экрана эхолокатора и количество цветов. Этот показатель определяет качество изображения рельефа дна на дисплее.

Помимо эхолота, некоторые производители выпускают цифровые глубиномеры. Они дешевле эхолокаторов, но позволяют измерить глубину, дополнительно отображают температуру воды либо воздуха. Их можно использовать в зимнее время, сканируя зону ловли прямо через лед.

Технический прогресс в наше время проник во все области жизни, и рыбалка не исключение. Различные гаджеты уже имеются у большинства рыболовов. Эхолот для зимней рыбалки — это чрезвычайно полезный прибор, позволяющий существенно повысить эффективность рыбалки. И сегодня многие рыболовы обходятся без эхолота на зимней рыбалке. В некоторых случаях он действительно не нужен, в частности:.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Посылки из Китая — Wireless Bluetooth Fish Finder

Заглянем внутрь? Подбор эхолота для зимней рыбалки

Удача на рыбалке во многом определяется ландшафтом дна, а также зависит от разнообразия флоры и фауны, обитающей в водоёме. Не последнее место во время рыбной ловли уделяется и оснащению, которое изменялось одновременно с эволюционированием человека. Эхолот или сонар — это электронный прибор, излучающий ультразвуковые импульсы и принимающий отражённые от препятствий эхо-сигналы.

С его помощью осуществляют исследования структуры и рельефа дна водоёмов любого типа море, океан, озеро и др. Служит он и для обнаружения объектов, находящихся под водой, в том числе и рыбы. В общем случае ловля рыбы представляет собой достаточно простой процесс. Нужно найти рыбу и поймать её. Ловить рыбу люди научились давно. А вот поиск ёе в толще воды до середины ХХ века осуществлялся практически вслепую. Только после окончания Второй мировой войны рыболовецкие суда начали оснащать приборами, созданными на базе гидролокаторов, которые использовались для обнаружения подводных лодок.

Эти устройства отличались большими размерами и могли устанавливаться только на крупных судах. Серийное производство полупроводниковой комплектации транзисторы, пьезокерамика и пр. А развитие микроэлектроники и цифровых технологий привело к тому, что эти малогабаритные приборы оснастили большими жидкокристаллическими экранами и большим количеством полезных функций.

Один из известных производителей рыболовецких эхолотов — американская компания Garmin Ltd. Организовали её два талантливых инженера — Gary Burrell и Min Kao. Сочетание их имён и стало названием новой компании. Основополагающими принципами с первых дней её существования стали:.

В полной мере эти принципы воплощены и в устройствах, которые предлагаются компанией любителям рыбной ловли. Для них специалисты Garmin разработали и освоили серийное производство большого количества разнообразных ультразвуковых эхолотов, с помощью которых легко определить место будущей удачной рыбалки. Структурная схема любого ультразвукового эхолота включает в свой состав ряд обязательных элементов. В их число входят:. Самым важным элементом эхолота является преобразователь, который преобразует электрический сигнал в ультразвуковые импульсы.

Он же осуществляет и их обратное преобразование. Как правило, изготавливают трансдьюсер из кристаллов титаната бария, который помещают в защитный корпус и заливают звукопроводящим компаундом. Дополнительно кристалл покрывают металлическим покрытием. При воздействии электрических сигналов, поступающих от передатчика, кристалл начинает изменять свои размеры, что вызывает появление волн в толще воды. Таким же образом отражённая волна вызывает на рабочей поверхности кристалла появление переменного напряжения, которое поступает в приёмник.

Передатчик любительского эхолота подаёт на рабочую поверхность датчика-излучателя электрических сигналов, обеспечивающих излучение в толщу воды ультразвуковых импульсов частотой 50, или кГц. Эти сигналы, отражаясь от поверхности дна, а также от находящихся под водой предметов и рыб, возвращаются, обрабатываются и усиливаются приёмником.

Затем результаты сканирования поступают на дисплей, где отображаются в графическом или буквенно-цифровом виде. Кроме того, дисплей используется для отображения режимов работы прибора. Все принятые и обработанные приёмником сигналы появляются на мониторе в виде точек или вертикальных полос, отстоящих от линии поверхности воды на расстоянии, пропорциональном глубине, на которой находится объект. При этом с помощью горизонтальной развёртки текущее изображение медленно передвигается по экрану.

Компания Garmin, эхолоты которой удовлетворяют требованиям самых искушённых рыбаков, способны донести до пользователя информацию о структуре дна водоёма и особенностях его рельефа. А также они укажут места обитания рыбы и проинформируют о температуре воды. При этом все модели собраны во влагозащищенных корпусах и оборудованы подсветкой дисплея. В комплект поставки практически всех моделей входит и трансдьюсер.

Для того чтобы потенциальным потребителям облегчить выбор подходящего эхолота, весь спектр выпускаемых сонаров можно разделить на несколько групп. Эхолоты Garmin, входящие эти группы, предназначены для:. В номенклатуре компании присутствуют зимние эхолоты Гармин, способные сканировать водоём со льда, а также дорогостоящие многофункциональные модели, которые применяются на рыбалке в любых условиях.

У многочисленных любителей активного отдыха, использующих эхолоты Гармин для рыбалки, наибольшей популярностью пользуются:.

Своей популярности эхолоты серии ECHO обязаны в первую очередь невысокой цене. Причём низкой стоимостью отличаются приборы, оснащённые монохромными экранами.

Самый доступный из эхолотов этой серии способен обнаружить рыбу в пресной воде на глубине до метров и имеет:. Кроме того, дисплей эхолота обеспечивает четкоё видеоизображение, обеспечивая разрешение обычный дисплей или DV-дисплей вертикальных линий. Эхолоты отличаются простым, интуитивно понятным интерфейсом. Для того чтобы пользователь смог пользоваться всеми предусмотренными функциями, прибор имеет режим демонстрации.

Сонары, входящие в линейку приборов Fishfinder, предназначены для ловли рыбы с лодки в небольших замкнутых водоёмах. Они оснащены двухлучевыми излучателями, обеспечивающими обзор сканируемой поверхности в радиусе 60 градусов. Особенностью эхолотов этой серии является наличие возможностей усиления трансдьюсера и увеличения отдельных зон на экране монитора.

Это позволяет более внимательно изучать полученное видеоизображение. Кроме того, пользователю предоставляется возможность разделения экрана на две части и сравнения полученных результатов сканирования одних и тех же участков водоёма узким или широким лучом. Главная Рыболовные принадлежности Эхолоты Эхолоты компании Гармин для рыбалки: обзор моделей.

Автор статьи Попович Леонид Владимирович. Практик эр 6 pro2 описание. Как использовать эхолот. Выбор устройства эхолот.

Рыбалка с эхолотом

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео. Главная Каталог самоделки Дизайнерские идеи Видео самоделки Книги и журналы Обратная связь Лучшие самоделки Самоделки для дачи Приспособления Автосамоделки Электронные самоделки Самоделки для дома Альтернативная энергетика Мебель своими руками Строительство и ремонт Для рыбалки и охоты Поделки и рукоделие Самоделки из материала Самоделки для компьютера Cупергаджеты Другие Материалы партнеров 5 новых самоделок! Пошерстив интернет на тему ворот, было принято решение делать откатные. Вариант беcпроигрышный, если не получится, можно переделать в распашные.

Эхолоты и сонары для рыбалки с берега и лодки Это эхолоты для рыбалки с лодки. Ремонт камер видеонаблюдения своими руками: основные.

Рыболовные самоделки своими руками, снасти, приманки, полезные приспособления

Данный раздел сайта содержит ссылки на множество наших интересных рыболовных самоделок, которые можно смастерить в домашних условиях. Здесь вы найдете руководства, схемы и советы по созданию множества приманок, ловушек для раков, отцепов, снастей, и других различных рыболовных приспособлений. Самая большая доля представленных самоделок относится к приманкам, причем как спиннинговым воблеры, мандулы, блесны, глиссеры, грушки, силиконки так и фидерным кормушки, прикормки, каши, пружинки, резинки. В конце статьи мы собрали из интернета около сотни самых интересных, на наш взгляд, фотографий различных самоделок. Очень рекомендуем к просмотру. Статьи по теме:. Ловля на мормышки: разновидности, снасти, техника ловли. Какую катушку выбрать для фидера — обзор характеристик. Характеристики и возможности фидерных удилищ. Лодка для рыбалки: на что обращать внимание при пркупке.

Самобеглый эхолот или Sonar boat своими руками.

Чтобы понять, как выбрать эхолот, необходимо разобраться с техническим устройством прибора и особенностями его эксплуатации. Благодаря нашим советам вы сможете подобрать подходящий аппарат для ловли рыбы в различных условиях. Главный принцип работы эхолота заключается в отправке ультразвукового импульса в воду и его отражении от имеющихся там объектов. Результаты сканирования водного пространства и рельефа дна отображаются на экране прибора. Поэтому одним из важнейших показателей аппарата является испускаемый луч.

Рыбалка с использованием различного инновационного для этого занятия оборудования превращается не просто в удовольствие и отдых. Она также становится источником получения заряда бодрости на долгое время, источником позитивных воспоминаний и документальных свидетельств крупных побед — фотографий и видеосюжетов.

Эхолоты для рыбалки с берега

Вернуться в Своими руками. Сейчас этот форум просматривают: Google [Bot] и гости: 0. Чат [0] Галерея Форум Портал Магазин. Прикормочный кораблик с радио-эхолотом. Закончил в феврале месяце, модернизацию прикормочного кораблика!

Эхолот для зимней рыбалки через лед

Шура shurup , Благодаря конструктивным особенностям эта кормушка при подмотке всплывает, что бывает очень полезно при ловле на закоряженных участка водоема. Gaga Goon — особая серия тонущих воблеров, серия эффектная и эффективная. Попробуйте и убедитесь сами! Бланки выполнены из прочного, предельно легкого, наделенного великолепными сенсорными свойствами, графита SC-1V. Классические крючки с лопаткой известной французской фирмы, отлично подойду для ловли белой рыбы. Sprut Arumi 70SP — стройный танцор твичинга.

рабочий агрегат,но наверное как и флешер, эфективнее будет его использовать на зимней рыбалке. Эхолот измеряет глубину на четырёх пределах:до 2,5;5;12,5 и 25 метров. Не уже ли своими руками?.

Сегодня мы не будем анализировать технические тонкости очередного изобретения цивилизации. Зато посмотрим на эхолот глазами и другими органами чувств рыбы. Этот шайтан-прибор используют практически все рыболовы — как промышленники и любители, так и браконьеры, к сожалению. Им не пренебрегают также подводные охотники, дайверы-фотографы, фридайверы и все остальные категории граждан, имеющие отношение к подводному миру.

Started by Niko77 , June 21, Posted June 21, Posted June 22, Posted June 23, Posted June 24,

ТОП популярных товаров для рыбалки — покупайте с хорошими скидками для личного пользования и в подарок друзьям, знакомым. Приобретайте качественные товары по доступным ценам в лучших рыболовных интернет магазинах.

Форум Новые сообщения Поиск по форуму. Что нового Новые сообщения Недавняя активность. Пользователи Сейчас на форуме. Карта Рыбака. Вход Регистрация.

Технический прогресс коснулся и такого хобби, как рыбалка. К сожалению, ловить рыбу в наше время так, как ловили наши предки, не получится. Сейчас, отправляясь на рыбалку, рассчитывать на личный опыт или везение — это обычная трата времени. Это связано с различными факторами.

Камера для рыбалки своими руками

Дешевый беспроводной эхолот с Алиэкспресс для рыбалки.

Смартфон плюс USB-камера как эхолот для рыбалки со льда

Эхолот на Arduino

🔍ИЩУ РЫБУ! БЕСПРОВОДНОЙ ЭХОЛОТ ИЗ КИТАЯ СУПЕР ВЕЩЬ!

Обзор и реальный тест эхолота диппер Deeper Sonar Pro Plus на рыбалке Подводные съемки

ПОСЫЛКА за 65$ — БЕСПРОВОДНОЙ ЭХОЛОТ из КИТАЯ + ТЕСТ

Константин Кузьмин. Беспроводной Bluetooth эхолот Deeper Smart Fishfinder.

ИЗГОТОВЛЕНИЕ ВОБЛЕРОВ на ЩУКУ. САМОДЕЛКИ для РЫБАЛКИ СВОИМИ РУКАМИ

Посылки из Китая — Wireless Bluetooth Fish Finder

Также смотрите:

  • Рыбалка на темную снасть
  • Рыбалка в николаевке башкирии
  • Русская рыбалка 3 6 загадочное озеро количество дневной
  • Как сделать нарезку из рыбы для рыбалки
  • Колеман на зимней рыбалке
  • Русская рыбалка лабынкыр триада на красивой мече
  • Ловля рыб в трофейной рыбалке
  • Русская рыбалка 3 гренландия достижения
  • Поводки для ловли рыбы из плетенки
  • Поморы зимняя рыбалка
  • Реки тюмени рыбалка
  • Удочка для ловли хариуса летом
  • Оснастка удочки для ловли хариуса в горных реках
  • Пират одежда для рыбалки
  • Весы для рыбалки с памятью

Главная »
Популярное »
Как сделать эхолот для рыбалки своими руками

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *