Генератор Вимшурста или электрофорная машина – это индукционный электростатический прибор, созданный как непрерывный источник электрической энергии. В XXI веке используется как вспомогательная техника для демонстрации физических опытов, касающихся различных электрических эффектов и явлений.
Немного из истории изобретения
В 1865 г. физик-экспериментатор из Германии Август Теплер разработал итоговые чертежи электрофорной машины. Одновременно с этим было сделано второе независимое открытие подобного агрегата немецким ученым Вильгельмом Хольцем. Главным отличием прибора была возможность получать большую мощность и разность потенциалов. Хольц считается создателем источника постоянного электрического тока.
Простая начальная конструкция применения электрофорной машины в 1883 г. была усовершенствована Джеймсом Уимсхерстом из Англии. Его модификация используется во всех физических лабораториях для наглядной демонстрации опытов.
Конструкция электрофорной машины
2 соосных диска вращаются друг против друга, неся при этом простейшие конденсаторы из алюминиевых секторов. Благодаря случайным процессам в первичный момент на участке одного из сегмента образуется заряд. Вызывается явление процессом трения о воздух. Из-за симметричности конструкции нельзя заранее предсказать итоговый знак.
В конструкции используются 2 лейденовские банки. Они создают из последовательно включенных конденсаторов единую систему. Это влияет на двойное уменьшение требований к рабочему напряжению в каждой емкости. Следует подбирать одинаковые номиналы, это залог равномерного распределения рабочего напряжения.
Снять напряжение призваны индукционные нейтрализаторы. Вся конструкция напоминает металлический гребень, парящий на некотором расстоянии над диском. В точку съема заряда приходят оба диска с эквивалентными знаками внешней поверхности. Нейтрализаторы спарены. После осуществления разгрузки сильно снижается заряд сегментов. В дополнительных конструкциях щетка легко соприкасается с краем диска.
Оператор за счет силы электрического привода либо собственной рукой насильно сближает отталкивающиеся элементы системы. Взаимодействующие друг с другом заряды стараются расположиться как можно дальше. Процесс способствует резкому росту поверхностной плотности зарядов во всех точках съема.
Электричество собирается в лейденовских банках с гребней нейтрализаторов. Происходит быстрый рост напряжения. Избежать выхода из строя системы помогает разрядник, прикрепленный к 2 электродам. Возможно получение дуги различно силы при регулировании дистанции между ними. Существует взаимосвязь: чем сильнее напряженность поля между 2 разрядниками, тем более шумный эффект сопровождает процесс опустошения банок Лейдена.
Сегменты остаются опустошенными после точки съема заряда. По течению движения устанавливаются уравнители потенциала или нейтрализаторы по принципу действия. Каждая противоположная сторона диска уже отдала заряд у различных щеток. В момент прохождения точки съема и после нее остаточные знаки заряда являются различными.
Отрезок толстой проволоки из меди с щетками из тончайших проволочек, парящих на небольшой высоте или трущих сегменты, способствует замыканию указанных противоположностей. Результат – заряды на обоих сегментах приравниваются к нулю, вся энергия превращается согласно закону Джоуля-Ленца в тепло, образующееся на утолщенной медной жиле.
Что такое банки Лейдена
Первым электрическим конденсатором, созданным учеными из Голландии Питером ван Мушенбруком, была лейденская банка. Изобретенный конденсатор имеет форму цилиндра с широким или средним горлом разного диаметра. Лейденскую банку делают из стекла. Изнутри и снаружи она оклеена специальным листовым оловом. Прикрывается изделие деревянной крышкой. Главной функцией изобретения является накопление и хранение больших зарядов.
Стимулировало создание такой банки широкое изучение электричества, общей скорости его распространения, а также свойств проводимости электроэнергии различных материалов. Благодаря ей получилось впервые добыть электрическую искру искусственным путем. Сейчас банки Лейдена применяются только как неотъемлемая часть электрофорных машин.
Каков принцип работы электрофорной машины
Из силы оператора берется энергия для смены знаков. Уже между уравнителями и щетками диски двигаются со взаимным отталкиванием навстречу друг другу. Свою роль играет количество оборотов в минуту. Повышена плотность заряда. Сильнейший заряд противолежащих дисков выталкивает остатки через отрезки медной проволоки. Из этого вытекает энергия, достаточная для смены знака.
За счет повышения показателей поверхностной плотности происходит съем заряда в приборе. В единичной точке делаются энергетические запасы в банке Лейдена, другое место служит для изменения знака. Индукционные нейтрализаторы практически не имеют отличий. Они оба выполняют общую функцию нейтрализации энергии. Общая схема:
- Существует 2 типа конденсаторов в конструкции: банки Лейдена, где заряд накапливается, и комбинация сегмента обоих дисков с диэлектриком и алюминиевой обкладкой.
- Понижением заряда алюминиевых сегментов занимаются 2 вида нейтрализаторов. Первый используется для смены знака или поляризации, второй для зарядки лейденовской банки.
Вся энергия поступает не от трения алюминия и меди или электризации воздуха. Она создается за счет принудительных наполнений конденсаторов силой кручения диска. Все процессы выполняются благодаря резкому повышению в точках съема поверхностной плотности зарядов.
Применение электрофорной машины
С 70-х гг. машина Вимшурста не используется для непосредственной добычи электрической энергии. Сегодня она выступает историческим экспонатом, иллюстрирующим историю возникновения и развития научно-технического прогресса и инженерной мысли. Лабораторная демонстрация, для чего создают электрофорную машину, показывает различные явления и эффекты электричества.
Допустимо использование индукционных нейтрализаторов, снимая заряды с жидких диэлектриков, например нефти. На любом производстве в воздухе получить искру опасно, это может привести к пагубным последствиям, задымлению и даже взрыву.
История открытий и исследований в области электричества имеет тесную связь с применением различных конструкций и устройств для получения электрических зарядов. Свою роль в научных изысканиях сыграла электрофорная машина, действие которой основано на возбуждении электричества благодаря индукции.
Электрофорная машина из cd дисков и 2-х кулеров
Самодельная электрофорная машина из cd дисков и 2-х кулеров собранная своими руками, вырабатывает примерно 20 000 В., что ограниченно расстоянием между обкладками конденсаторов диска.
Берем два компакт диска и очищаем их от слоя-носителя информации (с CD-R дисков легче всего удалить этот слой). После обезжириваем поверхность спиртом. Далее из алюминиевого скотча (продается в строительных магазинах), нарезаем сектора и приклеиваем их на диски.
У двух вентиляторов от СБ компьютера, обрезаем лопасти и с помощью двухстороннего скотча приклеиваем двигатели к дискам. Собираем электрофорную машину. Зазор между дисками должен быть минимальным, от этого зависит КПД устройства. Щетки сделаны из многожильного провода (МГТФ). Держатели щеток — медная проволока, диаметром 1 мм.
Запуск. Если расположение щеток правильное и они касаются обкладок дисков, электрофорная машина при запуске начнет вырабатывать статическое электричество. Но продлится это недолго. Между щетками и обкладкой появится зазор, исправляем это путем легкого придавливания щеток к дискам, либо заряжаем диски электричеством (например, наэлектризовав расческу).Если все правильно сделано, то при работе электрофорной машины, вы почувствуете запах озона и услышите легкий треск статического электричества.
Электрофорная машина
(генератор Вимшурста)
Электрофорная машина работает как непрерывный источник электрической энергии. Этот прибор используют зачастую как вспомогательный для демонстраций различных электрических явлений и эффектов.
Электрофорная машина (генератор Вимшурста)
Немного из истории изобретения
Электрофорная машина разработана в далеком тысяча восемьсот шестьдесят пятом году Августом Теплером, немецким физиком. Что любопытно, совершенно независимо другой ученый-экспериментатор Вильгельм Гольц изобрел подобную конструкцию, но даже более совершенную, так как его аппарат позволял получить большие значения разностей потенциалов и мог служить источником постоянного тока. К тому же гольцевская машина была намного более простой в конструкции. В конце девятнадцатого века английский экспериментатор в области электричества и механики Джеймс Вимшурст усовершенствовал агрегат. И по сегодняшний день именно его вариант (пусть и чуть более современный) используется для демонстраций электродинамических опытов благодаря способности создавать огромную разность потенциалов между коллекторами. Электрофорная машина была улучшена уже в сороковых годах двадцатого века ученым по фамилии Иоффе, который разработал новый тип электростатических генераторов для осуществления питания рентгеновской установки. Хотя машину Вимшурста сейчас не используют для непосредственной задачи добычи электрической энергии, она является историческим экспонатом, который иллюстрирует историю развития инженерной мысли и научно-технического прогресса.
Электрофорная машина
Конструкция электрофорной машины
Этот аппарат состоит из двух дисков, которые вращаются навстречу друг другу. Работа электрофорной машины как раз и заключается в осуществлении такого двойного обоюдного вращения. На дисках расположены токопроводящие изолированные друг от друга сегменты. С помощью обкладок сторон обоих дисков образовываются конденсаторы. Именно поэтому электрофорная машина иногда называется конденсаторной. На дисках расположены нейтрализаторы, которые отводят заряды от противоположных элементов дисков на землю с помощью щеток. Коллекторы находятся слева и справа. Именно на них поступают снятые гребенками с заднего и переднего дисков генерируемые сигналы.
Электрофорная машина
Что такое банки Лейдена?
Во многих случаях заряды накапливаются на конденсаторах. Их называют банками Лейдена. После этого возможно воспроизведение намного более сильных разрядов и искр. Внутренние обкладки каждого конденсатора соединяются с кондукторами по отдельности. Щетки, которые касаются секторов дисков, объединены с внутренними обкладками банок Лейдена. Вся конструкция на сегодняшний день монтируется на пластмассовых стойках. Вместе с лейденовскими банками части машины закрепляются на подставке из дерева. Учитывая наглядность конструкции, электрофорная машина своими руками может быть сделана достаточно просто. Даже человек, который не имеет специального технического образования, может ее собрать и эксплуатировать в свое удовольствие.
На чем основана работа электрофорной машины?
Использование взаимного усилия обоих дисков – именно этот принцип является основным в данном устройстве. Эффект возникновения разности потенциалов, а затем разрядов и искр достигается правильным расположением секторов. Конечно, существуют разработки, использующие и чистые диски, но подобный коэффициент полезного действия они не выдают. Такие конструкции часто применяются в небольших учебных учреждениях. Расстояние между дисками у такого прибора, как электрофорная машина, играет важнейшую роль и оказывает существенное влияние на достижение необходимого напряжения на конденсаторах.
Электрофорная машина
Каков принцип работы аппарата?
Электрофорная машина с момента ее изобретения (а это начало восемнадцатого века) пережила много изменений. Но основная идея осталась. Основой конструкции машины являются диски с наклеенными обкладками (металлическими полосами). Приложив определенную механическую силу с помощью ременной передачи, их можно вращать в разные стороны, противоположные друг другу. На обкладке одного диска возникает положительный заряд. Он притянет к себе другой заряд (отрицательный). Положительный уйдет через проводник со щетками (нейтрализатор), который касается противоположной обкладки. Поворачивая диски, получаем заряды, аналогичные исходным. Но они уже будут влиять на другие обкладки. Учитывая то, что диски вращаются в противоположные стороны, заряды стекаются к коллекторам. У такого демонстрационного аппарата, как электрофорная машина, принцип работы основан именно на этом моменте. На щетках обоих дисков, которые не касаются их поверхности и находятся по краям, заряды в какой-то момент становятся настолько огромными, что в воздушном пространстве возникает пробой, и проскакивает электрическая искра. Именно поэтому к коллекторам можно присоединять дополнительные конденсаторы разных емкостей, что придаст большую красоту эффекту возникновения разряда.
Электрофорная машина – это генератор статического заряда, состоящий из двух колес, вращающихся во взаимно противоположных направлениях. Часто используется учителями на уроках физики для устрашения занимающихся силой электрической дуги.
Конструкция
Конструкция изобретения Джеймса Вимхерста описана плохо в открытых источниках, часто люди не в силах объяснить, как работает электрофорная машина.
Общая идея
Два вращающихся друг против друга соосных диска несут простейшие конденсаторы из секторов алюминия. За счет случайных процессов в начальный момент на одном из сегментов – равномерно расположенных по кругу – образуется заряд. Это вызвано процессами трения о воздух либо прочими причинами. Причем, поскольку конструкция симметричная, знак заранее не предсказуем. Не рекомендуется ставить в электрофорную машину электролитические конденсаторы.
Вместо этого применяются две лейденские банки. Их внешние обкладки из фольги объединены, чтобы создать единую систему из . Так уменьшаются требования к рабочему напряжению каждой емкости в два раза. Номиналы подбираются по возможности одинаковыми. В противном случае требования к рабочему напряжению распределятся неравномерно, что приводит к негативным последствиям.
Напряжение с сегментов дисков снимается при помощи индукционных нейтрализаторов. Ниже описан принцип действия. По сути конструкция, напоминающая металлический гребень, на некоторой высоте парит над диском. Нейтрализаторы спаренные, в точку съема заряда оба диска приходят с эквивалентным знаком на внешней поверхности. После разгрузки заряд сегментов сильно падает. Это обусловлено особой конструкцией индукционных нейтрализаторов, оставляющих поверхностную плотность заряда в районе 0,2 – 6 мкКл на метр в квадрате. В избранных конструкциях щетка слегка касается краем диска.
Прогрессивный рост поверхностной плотности заряда на сегментах в точке съема обусловлен тем, что навстречу друг другу движутся системы, создающие электрические поля, чьи напряженности направлены в противоположные стороны. Получается, что собственной рукой оператор (либо за счет силы электрического привода) отталкивающиеся системы насильно сближает. Взаимодействующие заряды пытаются расположиться подальше друг от друга. Это вызывает резкий рост поверхностной плотности зарядов в точках съема.
От гребенок нейтрализаторов электричество собирается в лейденские банки. Напряжение быстро растет, чтобы избежать выхода системы из строя вследствие превышения допустимых параметров конденсаторов, к двум электродам прикреплен разрядник. Дистанция между ними, как правило, регулируется, что позволяет получить дугу различной силы. Чем больше напряженность поля между разрядниками, тем более шумным эффектом сопровождается процесс опустошения лейденских банок.
После точки съема заряда сегменты остаются пустыми. Через 30 градусов по ходу движения диска стоят уравнители потенциала, называемые нейтрализаторами по принципу действия. Авторы обзора назвали бы уравнителями. Противоположные стороны диска отдали уже заряд у разных щеток. Следовательно, после прохождения точки съема знаки остатков заряда на них неизменно различны. И кусок толстой медной проволоки с щетками из тонких проволочек, трущих сегменты или парящих на малой высоте, замыкают накоротко указанные противоположности. В результате заряд на обоих сегментах становится равным нулю, энергия превращается по закону Джоуля-Ленца в тепло, выделяющееся на толстой медной жиле.
После обнуления диски продолжают двигаться во встречном направлении. Получается, освобожденный от заряда сегмент одного круга вращения оказывается напротив полупустого сегмента другого. Заряд между емкостями немедленно делится поровну, ведь диски сконструированы по одинаковым чертежам. Следовательно, кажутся идентичными. Первый диск отдает половину заряда, идет на точку съема. Второй достигает точки уравнителя потенциала первого и там отдает половину заряда.
Порой люди интересуются принципом работы прибора, ведь первый диск отдал остаточный заряд на уравнителе, второй поступил аналогично. Где взять энергию для смены знака?
Объяснение принципа работы
Энергия для смены знака на уравнителе берется из силы оператора. Помните, уже между щетками и уравнителями диски движутся друг другу навстречу со взаимным отталкиванием. Плотность заряда повышена. Принцип действия уравнителя не отличается от съемника. Более сильный заряд противолежащего диска буквально выталкивает через медную проволоку остатки на разряжаемом, и энергии хватает на смену знака.
В машине происходит съем заряда за счет повышения поверхностной плотности. В одной точке энергия запасается в лейденские банки, в другой служит для смены знака. Причём индукционные нейтрализаторы, видимо, некогда не отличались друг от друга. Оттого возникает путаница с названиями. По сути оба – нейтрализаторы. Если бы замыкающую проволоку из меди со съемными щетками назвали уравнителем, каламбур бы исчез. Повторим подробно:
- В конструкции два типа конденсаторов. Во-первых, к указанному классу относятся лейденские банки как накопители заряда. Во-вторых, каждый сегмент обоих дисков считается конденсатором с алюминиевыми обкладками и диэлектриком между ними.
- В машине два типа нейтрализаторов по сути их действия – понижающих заряд алюминиевых сегментов. Первый служит для заряда лейденских банок, второй – для поляризации (смены знака).
Вся энергия в конечном итоге берется не от электризации воздухом или трением меди и алюминия, их расстыковки. Нет! Энергия получается за счет принудительного наполнения конденсаторов силой кручения дисков. А выполняются процессы за счет резкого повышения поверхностной плотности зарядов в точках съема.
Индукционные нейтрализаторы
Нейтрализаторы в процессе работы способны загрязняться. Следовательно, периодически требуется чистить, иначе снижается эффективность. В машине Вимхерста факт уменьшения КПД мало играет роли. Если машина не работает, стоит проверить чистоту игл. В конструкции используется четыре индукционных нейтрализатора:
- Сдвоенные уравнители лежат практически перпендикулярно друг другу.
- По одному съемнику — на каждую лейденскую банку.
Представляют собой щетку из тонкой проволоки либо острых зубчатых плоских гребней (расчесок). Основа бывает металлической, что используется в машине Вимхерста, и деревянной. Острия всегда металлические, назначение — по возможности быстро отводить заряд на заземление. Принцип действия: по мере приближения остриев к заряженной плоскости линии напряженности смыкаются на них, образуя высокие значения.
Для справки. Плотность линий поля прямо пропорциональная напряженности в данной точке.
Повышенная плотность в районе острия способствует ионизации воздуха (без искры) и образованию зарядов обоих знаков, проводящих ток в нужном направлении. Параметры нейтрализаторов сильно зависят от расстояния между остриями и уменьшением радиуса их кривизны (заточкой). Применяемые в машине Вимхерста проволочные нейтрализаторы в виде щеток наименее эффективны. На съемниках стоят гребенки либо иглы. Считается, что для последних нейтрализаторов максимальная результативность достигается при указанных условиях:
- Соотношение высоты игл к расстоянию между ними от 0,6 до 1,8.
- Длина игл 12 — 50 мм и более.
- Диаметр игл 0,5 — 1 мм.
Уменьшение угла заточки за 60 градусов (повышение кривизны) в этом случае слабо влияет на свойства нейтрализатора. Иглы желательно поднести на расстояние от 5 мм к поверхности. Чем ближе, тем быстрее происходит съем заряда. Фактически минимальное расстояние до плоскости зависит исключительно от собственных вибраций диска. Касание не приведет к отказу системы, но резко снизится срок эксплуатации за счет механического разрушения отдельных элементов.
В противовес общепринятому мнению, созданному от бесконечных демонстраций машины, иглы лучше крепить на диэлектрическом основании. Предпринятым шагом уменьшается ёмкость между диском и гребнем, чем повышается плотность заряда: С = q/U. Заряд уже априорно задан, понижение емкости повышает разницу потенциалов (напряжение), чем облегчается процесс ионизации.
Для безопасности нейтрализатор снабжается кожухом. Нелишне напомнить, что прочие части (помимо ручки вращения) машины Вимхерста в период работы трогать нельзя. Края кожуха удалены от игл нейтрализатора не менее 50 мм.
Индукционным тип приборов назван за действие на расстоянии. Процесс носит название электростатической индукции. Это значит, что один заряженный предмет на расстоянии влияет на второй, без заряда. В металле электроны слабо связаны с решеткой, легко идут в сторону, куда увлекаются полем. Эффект носит поверхностный характер по понятной причине — линии напряженности не могут проникнуть в металл. По-другому: заряды в толще проводника перераспределяются, пока не нейтрализуют полностью внешнее поле.
В результате на поверхности иглы индуцируется заряд. Линии напряженности поля замыкаются на нем, одновременно сходясь отовсюду, как показано на рисунке. Разница потенциалов неизмеримо вырастает, вызывается ионизация воздуха. Она умеренная, при работе машины Вимхерста на щетках, как правило, нет искрения.
Вместо заключения
Индукционные нейтрализаторы возможно использовать иным способом — снимая заряд с жидких диэлектриков. К примеру, нефти. На производстве любая искра вызовет негативные последствия. Достаточно вспомнить о взрыве на скважине в Мексиканском заливе.
Таким образом, гребенка способна скользить по диску. В ранних конструкциях изготавливался единым, без секторов, однородным и из плотного материала (см. рис.). Работал без алюминиевых конденсаторов. Физики, хорошо разобравшиеся с машиной, смогли ее усовершенствовать.
Благодарности
Авторы сердечно благодарят заморского товарища Релаторио Финала за понятные и наглядные рисунки и фото. Оригинал работы выложен на всеобщее обозрение по адресу: ifi.unicamp.br/~lunazzi/F530_F590_F690_F809_F895/F809/F609_2013_sem1/AlexandreD-Mauro_RF2.pdf.
Очень прошу — если не прочитали не комментировать.
По причине отсутствия свободных средств и времени я как то особенно не планировал заниматься экспериментами в области сверхединичных устройств, но состояние дел в этой области отслеживал рассчитывая, на то, что кто то выполнит всю черную работу за меня и останется только скопировать готовое изделие:о)
Но обстоятельства жизни начали складываться таким образом, что часть мозга, отвечающая за генерацию идей оказалась совершенно не востребованной
. В результате я сам был поражен сколь криминально ориентированы у меня мозги — они просто фонтанировали идеями, способными осчастливить на долгое время не одного писателя детективов или заставить поседеть руководителя службы безопасности какой либо крупной организации
— благо, что эти идеи во мне благополучно и подыхали:о) Впрочем, возможно, каждый человек, столкнувшись с каким — либо запретом, автоматически начинает изобретать способы его обхода — отсюда и «криминальность мышления».
И вот, в самый разгар этого одурения, один очень хороший человек дарит мне школьную электрофорную машину…
Сделанная в 1951 году из дерева и чугуна она, как и все ее школьно — лабораторные сородичи изрядно пострадала от самой любимой всеми учительницами физики смазки — подсолнечного масла, но возможно этот факт как то поспособствовал тому, что сей девайс дожил до столь преклонного возраста. Отсутствовали пассики и ручка, приводящая устройство во вращение, но это были мелочи — главное, что «в падлу изготавливаемый» скелет машинки был жив…
Разобрал бедолагу до винтика и промыл каждую часть «до скрипа». Сетуя на отсутствие какой — нибудь углеродной нити или тряпочки, по старинке сделал новые щетки из провода от щеток электродвигателя. Не совсем подходящие по размеру, но вполне пригодные пассики купил на рынке сантехники. Париться с восстановлением штатных конденсаторов не стал т.к. в дальнейшем предполагал их заменить — просто хорошенько их отмыл и обложил пищевой алюминиевой фольгой
. Несколько расстроило полное отсутствие подшипников
— если эксперименты дадут сколь — нибудь значимые результаты — доработаю машинку подшипниками.
С целью увеличения емкости и механической стойкости планирую заменить нарисованные серебрянкой на дисках сектора на металлические, но этот процесс пока застопорился в связи с отсутствием медного или латунного листа, а наклеивать вместо штатных металлизированный скотч как то не хочется.
По мере сборки начинаю изучать возможности машинки..
Изучение.
После установки дисков и нейтрализаторов попробовал по вращать диски — машинка на удивление легко возбудилась — даже щетки нейтрализаторов не потребовалось вводить в контакт с дисками. В темноте эффект был вообще потрясающий — искры сыпались во все стороны — разряды прошивали и между сегментами и между дисками и рукам доставалось…
Отметил, заметное увеличение сопротивления вращению после возбуждения.
После установки токосъемников устройство вообще отказалось работать. Причина была в слишком близком расположении щеток токосъемников к поверхности диска. После подрезания счеток все заработало, но уже не так эффектно. Вообще было замечено, что каждая дополнительная железяка, навешиваемая на машинку, заметно снижала ее эффективность что впрочем естественно т.к. устройство работает на микротоках. Впрочем — искры между шарами разрядника достигали 100мм и более. Конденсаторы я пока не устанавливал и искры были «беспонтовыми» и ощущались пальцем даже не как покалывание, а как легкое прикосновение. Т.е. палец, как измерительный инструмент показал что токи в искре не превышают десятков микроампер:о)
Одна искра проскакивала при прохождении одного сегмента через токосъемник, ее длина (считай мощность) не зависела от скорости вращения дисков — их можно было вращать сколь угодно медленно…
Установка конденсаторов сделала агрегат совсем трудно запускаемым — отодвинул щетки токосъемников еще дальше — после начальной инициализации (потерся волосами на руке о диск:о) все заработало, но начало сказываться отсутствие ручки т.к. заряжая конденсатор до напряжения пробоя, диски должны совершить достаточно большое количество оборотов и вращать диски держась за чугунное колесо стало не комфортно — на досуге попробую сообразить их какой — нибудь железяки ручку или даже пороюсь в дачном барахле на предмет подходящего электродвигателя…
Выводы.
В последний раз с электрофорной машиной я сталкивался в 9 м классе, ремонтируя оную для кабинета физики. Тогда она произвела на меня неизгладимое впечатление
. Затем все мои знания о ней были подчерпнуты из разнообразных Интернет — источников, которые почти все, как один заявляли, что это самый что ни на есть аномальный источник энергии в принципе действия которого предстоит разобраться…
Естественно, что как только в моем распоряжении оказался данный девайс, я сразу решил попробовать преобразовать высокое постоянное или пульсирующее напряжение на выходе устройства в переменное высокое, а затем, понизив его до приемлемых величин, запитать от него лампочку или моторчик… Щас… Суровая действительность быстро внесла коррективы в мои планы. Микроамперы, даже умноженные на сотни тысяч вольт давали в лучшем случае милливатты… Можно было несколько увеличить выходную мощность устройства увеличением площади проводящих сегментов на дисках и уменьшением зазора между дисками, но такое увеличение дало бы прирост мощности лишь в разы, а не на порядки… Кроме того такая доработка привела бы к пропорциональному увеличению силы сопротивления вращению и при мощности в несколько ватт для привода потребовалось бы использовать зубчатые передачи т.к. пассики тут просто начали бы проскальзывать:о)
А выводы из всего этого очень просты:
- Секрет Тестатики кроется не в особой доработке электрофорной машины.
- Энергию в Тестатике вырабатывает нечто другое.
- «Нечто», вырабатывающее энергию нуждается в высоком опорном напряжении при незначительных токах
. - Это «нечто» скорее всего замаскировано под какой то элемент конструкции, назначение которого ни у кого не вызывает сомнений ибо «многократно описан и обсужден». Для «слишком догадливых» в конструкцию Тестатики должно быть внесено что то сильно загадочное, предназначенное для отвлечения внимания.
- Т.к. электрофорная машина обратима и при подаче на нее высокого напряжения работает как электростатический двигатель то, часть выработанной «нечто» энергии можно подать на повышающее напряжение устройство и зарядить от него конденсаторы электростатической машины чтобы ее диски эффектно вращались, а заодно и получить высокое опорное напряжение, необходимое для генерации. Впрочем — трение в электростатической машине может сильно осложнить ее использование в качестве двигателя и поэтому крутить ее могут и от обыкновенного электрического двигателя.
- Возможно, что это самое «нечто» присутствует в других сверхединичных устройствах, требующих для своей работы высоких опорных напряжений и это «нечто» можно поискать методом сравнения конструкций.
- Возможно существование аналогов этого «нечто», требующих магнитной, гравитационной и проч. подпиток. Т.е. можно попробовать сравнивать не только схемотехнические, но и прочие сверхединичные устройства отыскивая параллели.
- Возможно, что «изюминкой», необходимой для запуска множества схемотехнических сверхединичных генераторов, например TPU Стивена Марка является наличие в какой то точке устройства высокого электрического потенциала.
Есть такой старый советский фильм «Начальник Чукотки» — в нем есть такой замечательный фрагмент когда чукчи покупают у купцов трубы от граммофона, считая что именно они играют музыку, а на граммофон, к которому эти самые трубы подключают не обращают никакого внимания. Это я к тому, что, по моему мнению, вращение колеса Тестатики вовсе и не обязательно с точки зрения функциональности машины, но крайне необходимо для создания «эффекта граммофонной трубы» из фильма.
Дальше.
В принципе я наметил парочку кандидатов на роль этого самого «нечто»
и попробую поэкспериментировать на эту тему, но, блин, как то дорого все это в наше время — то, что в застойные годы добывалось «на халяву» или «за пол литра» сейчас покупается за вполне реальные деньги (например за метровый кусок толстой медной трубы на рынке запросили 500руб., латунная пластина в «ОБИ» стоит 1900руб., катушка провода в «Чип и Дип» стоит 420руб. и т.д. и т.п.). И самое обидное, что деньги тратятся на эксперименты без гарантированного результата…
Ну это я так — поплакался, а вообще то, после приобретения необходимых материалов, продолжение следует.
28.07.2010
Задолбался уже ждать когда из «Чип и Дип» доставят заказанное — много им звонил, согласовывал, а курьером так и не пахнет, а прошло практически две недели. Не нравятся мне они — следующий заказ сделаю в каком — нибудь западном магазине — там ждать всего месяц:о)
07.09.2010
Результатом моего общения с «Чип и Дип» было просто потраченное время — в результате серии последовательных телефонных звонков из их службы доставки от заказанных двух десятков позиций осталось только 5 и те не существенные:о(. Т.к. июль — август для моих основных занятий месяцы «гнилые» т.е. предполагающие малые доходы и крупные траты то предварительно выделенная мной из домашнего бюджета сумма,
была «вычислена» домашними и благополучно потрачена…
Сей прискорбный факт заметно отодвинул нашу семью от момента получения «энергетический независимости», но позволил более или менее достойно продержаться эти месяцы:о)
Что делать — откопав на даче ящик с древними радиодеталями и вооружившись паяльником, я немного доработал старый офисный воздухоочиститель получив из него более практичную временную замену электрофорки для экспериментов. На этом все встало…
От безделья решил поизучать мысль Власова В.Н.
, что вращающиеся диски электрофорки — это «короткозамкнутая катушка с нулевым внутренним сопротивлением в которой текут очень большие токи, порождающие мощное магнитное поле». Вот это «мощное магнитное поле» я и решил поискать…
Аллюминиевый скотч
, который использовался для увеличения площади сегментов оказался уже желаемого и поэтому получилось несколько не эстетично из за торчащих краев старых сегментов, что вообще то и не принципиально.
Ожесточение, с которым кто то спамит эту страничку и «бомбит» этот, в общем совершенно не интересный для хакеров сайт показывает, что какая то часть моих рассуждений правильна. С «упырем» пока не борюсь — я у него учусь:о)
26.12.2010 Про денежки.
Вполне вероятно, что кому то подумалось: «Ну вот — написал чел. какую то откровенную «шнягу» и теперь пытается еще с этого и денег снять»…
Действительно — как то неудобно получилось:о(Но т.к. денежки мне нужны на приобретение различных материалов, а не сами по себе то попробую попросить у общества «помощи натурой» :о) Размещаю краткий список требуемых материалов и инструментов , которые предполагал использовать для дальнейших опытов. Список будет регулярно правиться «в живую».
P.S. Благодарю тех кто уже откликнулся и предложил свою помошь, обещаю предоставить доступ к закрытой части в случае, если получится что то «интересненькое».
05.02.2011 Обсуждение источника «сверхединичности» Тестатики.
Обсуждение источника «сверхединичности» Тестатики вынес на отдельную страницу. Интересующиеся кликают сюда .
Много раз видел, но как то не обращал внимания на следующую фразу:
«Вращающийся наэлектризованный диск генератора Вимшурста – это замкнутый виток мощного тока. Пусть заряд диска равен 1 кулону, при частоте вращения 1000 оборотов в секунду это породит ток в 1000 ампер.»
Сегодня по случаю опять на нее наткнулся в одном из писем и чуть со стула от смеха не упал… Что здесь смешного? Смотрим и тоже радуемся:
Допустим напряжение на выходе электрофорки 20000-30000 вольт — в принципе это неважно — главное что большое.
Кулон равен количеству электричества, проходящего через поперечное сечение проводника при силе тока 1 ампер за время в 1 секунду.
Т.е. согласно приведенной выше фразе, раскрутив ручку электрофорки до 60 оборотов в минуту и сняв при этом большую часть заряда мы получим мощность 1ампер * 20000 вольт = 20000 вт. Т.е. согласно мечтаниям автора данного перла, схватившись за электроды электрофорки без конденсаторов, раскрученной до 60 оборотов с минуту мы рискуем мгновенно превратиться в головешку — сам то он это пробовал:о)
Второй смешной момент 9*10 9 (Н*м 2 /Кл 2) * (1Кл * 1Кл)/(0.01м * 0.01м) = 9*10 13 H — чем «перлописатель» собрался раскручивать заряженные по 1 кулону диски, находящиеся на расстоянии менее сантиметра — где он возьмет такую мощную машину и сколько потратит энергии на ее запуск. Впрочем ему вряд ли удалось бы найти пластик, выдерживающий такую нагрузку.
Так что нам бы очень хотелось чтобы заряд диска электрофорки был действительно равен одному кулону (и даже тысячная кулона нас все равно бы устроила:о), но увы…
20.03.2017 Re. Всем, кто хочет продолжения.
Надо отметить, что любые эксперименты в этой области стали довольно накладными для моего скудного бюджета и покупка, к примеру крупных магнитов коих для «серьезного» устройства надо аж 7 штук или полтора десятка крупных ферритовых колец похоже стали несбыточной мечтой…. Оно как бы вроде и можно напрячься и накопить, но осознание того, что это всего лишь для нескольких экспериментов, которые могут ничем ни окончиться и деньги будут потрачены впустую, явно не способствует совершению таких глупостей. :о)
Те же магниты. Для экспериментов с генератором Ганса Колера их надо не менее 6 штук. 6 круглых магнитных прутков длиной около 150 мм. Самое доступное и не совсем подходящее, что сейчас можно купить это пруток 100 мм длиной по цене чуть больше 2000 рублей за штуку, т.е. 12000 за комплект. Если в результате экспериментов выяснится, что нужны прутки не продольной, а , то это еще хрен знает сколько рублей за . Ну и всяко — разное по мелочам, многое из которого никогда больше не пригодится… Дороговато как то эксперименты обходятся, особенно когда результат не гарантирован…
Поэтому в последнее время я действую по принципу: «предоставилась возможность — делаю, не предоставилась — пусть делают другие»…. Вот только «другие» почему-то практически всегда при репликации совершают одну или несколько ма-а-лю-сеньких ошибки, которые делают изделие изначально не работоспособным, и это напрягает…
Вот поэтому, отвечая всем, кто «хочет продолжения» я пишу: «У меня сейчас тупо нет на это денег, но нажав на , Вы можете помочь мне возобновить эксперименты в этом направлении».
К о м м е н т а р и и
Один незначительный совет. В качестве щёток можете использовать строительный алюминиевый скотч, а для того чтобы эта щётка была крепкой и износостойкой,алюминиевым скотчем оклеиваете им обе стороны обычного скотча (ну или любой полиэтилен) , в результате получается токопроводящая гибкая лента с крепкой основой, не портящая сегменты диска.Потому как любая мягкая медь всё же трёт сегменты и мало того происходит от незначительной влажности окисление двух металлов. Сам с этим мучился долго,надоело и придумал такие.
Да забыл,можете вот скачать файлы по моим опытам,может пригодится.
http://narod.ru/disk/10361448000/%D0%9C%D0%9E%D0%98%20%D0%AD%D0%9A%D0%A1%D0%9F%D0%95%D0%A0%D0%95%D0%9C%D0%95%D0%9D%D0%A2%D0%90%D0%9B%D0%AC%D0%9D%D0%AB%D0%95%20%D0%9C%D0%9E%D0%94%D0%95%D0%9B%D0%98%20%D0%A2%D0%95%D0%A1%D0%A2%D0%90%D0%A2%D0%98%D0%9A%D0%98.docx.html «>МОИ ЭКСПЕРЕМЕНТАЛЬНЫЕ МОДЕЛИ ТЕСТАТИКИ.docx
Великолепная реализация электрофорной машины — уважаю:о)
На фото из Ваших ссылок видно, что Вы в своих экспериментах пошли дальше изготовления элетрофорной машины. Получилось ли у Вас получить сколь — нибудь значимую мощность, например достаточную для зажигания лампочки от фонарика?
Я пока приостановил опыты с электофоркой т.к. «фонтанирую» идеями на тему схожих элементов в различных схемотехнических безтопливных генераторах энергии — буду все по очереди перепроверять по мере приобретения необходимых материалов — в свое время все пораздавал — повыбрасывал, а сейчас элементарно денег не хватает. Как разживусь очередной порцией деньжат — выложу результаты очередного эксперимента.
Благодарю за ссылочки — я тоже на протяжении многих лет отслеживаю состояние вопроса и, естественно, читал в том числе и эти материалы:о)
Но не кажется ли Вам странным, что при 100% контроле сети силами, не заинтересованными в распространении информации о сверхединичных устройствах, эти статьи вот уже несколько лет висят в открытом доступе и их никто не трогает, а у тех, кто, руководствуясь этими статьями, начинает что то делать ничего не выходит?
Пока для себя, в качестве рабочей гипотезы, я принял идею, что во всех материалах о действительно изготовленных кем то сверхединичных изделиях, которые можно найти в сети, существуют «ядовитые закладки» — кусочки, которые уводят мысль репликаторов в неправильное русло. Параллельно в тематических конференциях сидят индивидуумы, корректирующие направление обсуждения. Исходя из этого предположения я стараюсь отслеживать «быстроубираемые» материалы и посты из конференций…
Но пока, как не самый плохой инженер — электронщик, я могу утверждать, что если Вы и получите избыточную энергию то точно не с «блинов» электростатической машины, а из какого-то устройства в ее обрамлении, а это, в свою очередь, будет означать, что электрофорная машина была использована создателями Тестатики по причине простоты получения с ее помощью высоких потенциалов, предположительно необходимых для работы основного устройства. Поэтому я, формально последовательно, буду изучать свойства всех кандидатов на это «основное устройство» (в т.ч. и многократно описанных и изученных) в надежде заметить что то необычное.
Что касается работ А.Б.Бережного в этом отношении у меня нет никаких сомнений.Вопрос не в том что-бы вникнуть в технологию,а в том что бы понять процессы которые происходят в природе и на основе понятого, реализовать данный процесс в любой форме- которая Вам будет угодна.
Что касается «блинов» . Именно в этом элементе заложены все эфиродинамические процессы(для Тестатики), именно в них вся «соль».Если хотите заниматся Тестатикой,то читайте внимательней Бережного и ищите с ним контакта.Имел честь с ним общатся и достало внутреннего чувствознания,чтобы понять что он знает о том,что говорит и человек он хороший. Но травлю на него и его творческий колектив,всё же устроили, вплоть до угроз семье.Дорогостоющую апаратура и рабочую устанеовку выкрали.Вот как то так.
С уважением Виталий.
Если травлю устроили — значит человек «ходит где то близко, но еще не попал в точку». С другой стороны — если он так хорошо разбирается в происходящих в Тестатике процессах — почему до сих пор не явил нам готовое изделие:о)
Кстати — Вы тоже год занимались элетрофорками, руководствуясь теорией Бережного — где результат? :о) А результата нет потому, что блины электрофорки — это «правая рука фокусника» — пока она отвлекает внимание — левая делает самое главное.
Хотите чтобы Ваша электрофорка дала Вам мощность — наплюйте на авторитеты и «открытые источники» — иначе только время потеряете.
Видите ли, уважаемый KSV , я не стану никому ничего доказывать,потому что это не имеет никакого значения. Делайте то что считаете нужным и принимайте только то что принимается.Ну и как говорится «Бог Вам в помощь».С уважением Виталий.
:о) Ну и напрасно Вы обиделись — мне очень интересно Ваше мнение, но только Ваше как человека, который хоть что то умеет и сделал своими руками, а не теоретиков, статьи которых годами висят в сети и которые так ничего нам и не явили.
А еще Вы один из немногих, кто умеет правильно спорить, не растрачивая свои силы и энергию на чужую упертость. Благодарю Вас.
KSV, согласен с вашими идеями относительно тестатики. Хотелось узнать ваше мнение о «катушко-конденсаторах»
Мнения пока нет — пока для меня это частный случай Тесловской бифилярки. Считаю, что теоретизировать можно сколь угодно долго, но значительно надежнее попробовать все своими руками, как, например, Виталий. Поэтому, дабы иметь какое то свое мнение, чисто формально поизучаю свойства доступных мне конструкций схемотехнических генераторов — точнее свойства, присутствующих во всех этих устройствах одинаковых элементов (просто потому, что эта одинаковость завораживает:о)
Но т.к. пока ничего реального не явил — смело считаю себя «начитанным болтуном» не имеющим права кому то что то советовать…
Спасибо Виталий за инфо. Какие результаты,выводы по устройству тестатики у Вас?
KSV,не хочу повторять «ошики» других, проще воспользоватья вначале уже полученными знаниями,чтобы возникло собственное понимание процессов. В книге «Энергия воды» В. Шаубергера есть сноска про машину Ж.Рено, наверное похожего принципа.
На № 00229: Полагаете у меня мало «знаний» по этому вопросу? :о)
Вывод однозначный: в Тестатик эфиродинамические процессы, в центре дисков «яма», на перефирии концентрация (электронный жгут)эфиро-ДИНАМИЧЕСКИЙ процесс.Задача основная -поднять потенциал выше определённого уровня там где начинается область чудес (любыми доступными Вам способами).Имейте в виду,синусоидальные (переменные токи)абсолютно не пригодны,токи должны быть постоянные положительные импульсы (выпрямленные тоже не годятся)Тесла однако,ГОПИ Тесла-генератор однонаправленных положительных импульсов.Почему не достиг результатов?Причина банальная — ограничение в средствах,живу я в деревенской глуши.
KSV .надеюсь Вы меня извините за размещение ссылки на другой форум, здесь тема Бережного на форуме Офтоп ру. он же Ной.Там же о ГОПИ.
http://offtop.ru/energy/v17_610478_1_.php
Если Вы против,удалите мой пост.
К примеру гравитационный двигатель Дмитриева-
http://www.sciteclibrary.ru/rus/catalog/pages/9367.html
работает на принципе однонаправленных механических импульсах, благодаря обгонным муфтам(диод в электротехнике)которые в свою очередь не позволяют проявления синусоидальных мех.колебаний (действие -противодействие,ЭДС-противоЭДС)-гасящих самих себя и балансирующих систему,третий закон Ньютона.
Все процессы в природе аналогичны, только разные технологические решения.С уважением.
Да забыл уточнить,Именно генератор Тесла ГОПИ,даст фору любому синусоидальному генератору.Ирония в том, что переменные токи внедрил Тесла, но во второй половине жизни понял ошибочность этого направления, но другие «заинтересованные лица» этого не пожелали принять.
Вам виднее — я тоже, когда повелся на мысль о вихре, создаваемым блинами Тестатики начал мечтать о приобретении или создании электрофорки, и стоило мне ее получить как тут же провел кучу опытов, имеющих целью если не подтвердить то хоть как то намекнуть на правильность этого предположения. Я не стал ничего выкладывать т.к. результаты в точности совпали с ожидаемыми и никаких аномалий не выявили. Впрочем — возможно я не так и не там смотрел, но надеюсь, что через некоторое время в этот раздел попадет кто то, способный высказать что то интересное, за что можно будет зацепиться…
В настоящий момент для меня тестатика состоит из следующих частей:
1. Нечто, извлекающее энергию и требующее создания для своей работы определенных условий (например высокой разности потенциалов)
2. Устройство, создающее эти условия (электрофорка?)
3. Устройство, преобразующее выработанную п.1 энергию в приемлемый вид (возможно совмещено с п.1) и выдающее ее в нагрузку
4. Устройство, преобразующее часть выработанной энергии в форму, пригодную для питания п.2
5. Балластные элементы странного вида, призванные «запудрить мозги» репликаторам устройства.
Если предположить, что в годы создания Тестатики особой альтернативы при получении высокой разницы потенциалов не было (правда в 90-е годы в прессе проскакивали сообщения о машинах, подобных Тестатике, выполненных на электретах) то использование электрофорки представляется логичным т.к. она обратима и для поддержания ее вращения достаточно просто отправлять часть вырабатываемой энергии на заряд ее конденсаторов. Кроме того такая схема способна стабилизировать работу всей системы если генерация основного устройства (п.2) по каким то причинам не устойчива.
Так что пока, на время изучения свойств составных частей, я заменю электрофорку более практичным высоковольтным генератором.
Такой датчик можно сделать очень плоским.
довайте подумаем по цепочки 1)жлектрофорка — роль высковольного генератора, далее 2) кондеры — накопление заряда, 3) индуктивности — эл. магнитный толчок, 4) трубка грея — высокий потенциал, 5)сеточки — премники именно этого «толчка» (опыты с тр. теслы: в поле катушки подносим металлический лист, цепляем один конец к тестеру — есть напруга горит лампочка) возможно имеется ешё что нибудь но я думаю основные эленты я перечислил… Жду ваших ответов
Вспомним историю:
Конец XIX и начало XX веков — первые самодвижущиеся экипажи с паровыми двигателями внутреннего сгорания и (ну, ну же) электрическими! Кстати, первыми рубеж скорости в 100км/ч преодолел именно электромобиль. Однако, тогда автомоили развивались быстрее и к началу 30-х годов электромобили были забыты.
Посмотрим в день сегодняшний. С 1988 года фирма Тойота выпускает авто-электромобиль (модель Приус). Суть такова: Вы садитесь машину, поворачиваете ключ, переводите рычаг управления в положение «Drive» и сразу (!) начинаете движение. На чем вы едете — вы не знаете. Обычно небольшие поездки происходят на электротяге. Когда машина «понимает», что аккумуляторы сели, она сама заводит бензиновый двигатель и заряжает АКБ. Предусмотрен и аварийный случай — если аккумуляторы сели, бензина нет — вы дергаете красную ручку в багажнике и (о, чудо!) аккумуляторы заряжены, можно ехать.
Подобную ситуацию мне описали в НАМИ, где уже 4 года такой гибридный мобиль изучают. Попадалась данная модель и на вторичном рынке авто (ориентировочно 8,5 тыс $ за 98 ? 99г.в.). Подобные разработки есть у GM , да и Европа имеет массу мелких (1-2-х местных) электро- гибридо- мобилей, используемых в зеленых зонах или, просто, на полях для гольфа.
Вернемся все же к доминирующей черте личности автора сайта — желание съэкономить.
Платить 8,5 тыс $за праворукое японское чудо — рука не поднимается, да и кошелек не позволяет, а сколько времени, сил и денег обойдется собрать самостоятельно ТС на электротяге в самом простом варианте:
Смета: 1.Кузов (на мостах, пластиковый, самодельный, с документами) — 1000 $. — обратите внимание на вес конструкции. Моя без двигателя и АКБ весит 350кг. Это важно. — Самодельный пластиковый автомобиль не такая большая редкость, как может показаться в начале. Совсем недавно — в начале августа в газете «Из рук в руки» в разделе «другие», продавался. Кто ищет, тот всегда найдет! (В конце концов — склеит).
2.Салон. Два передних сидения от автомобиля Порше-924, подушка заднего сидения от Тойоты Супра, 4м2 ковролина из магазина и все это пропущено через мастерскую по пошиву чехлов (все сидения б.у.) — 400 $. — Ваша фантазия может быть безгранична: в стране масса ценных пород дерева, прекрасных кож и очень дорогих акустических тканей.
3.Силовой агрегат (б.у.). Двигатель от списанного и почти полностью разоренного болгарского погрузчика (3,6 кВт, 84 В, 1400 об/мин, 24 Н·м) — 200 $. — Предпочел бы использовать двигатель 10 кВт, 120 В — 650 $ — новый, на гарантии. (любая контора, поставляющая запчасти для погрузчиков).
4.АКБ. Семь штук (12 В ? 200 Ач), стартерные, итальянские. В оптовой фирме — 2600 руб/шт, в магазине — 4000 руб/шт. — Не пытайтесь использовать отечественные АКБ — номинальную емкость вы получите только несколько первых раз ( свинец для АКБ должен быть из свежей руды, а не иэ переплавленных старых АКБ, а в нашей стране свинцовых руд нет, во всяком случае для производителей АКБ). — В идеале нужно использовать тяговые АКБ для погрузчиков, но цена выше в 3 раза! Почему для автомобиля АКБ стоит 80 $, а для погрузчика (равной емкости) — 250$, догадайтесь сами (не сложно).
5.Разное. Колеса шириной поменьше (трение качения надо сводить к min) впрочем, на колесе указана его стандартная нагрузочная спосбность, посчитайте, выберете с небольшим запасом. Блок управления двигателем. Варианты: 1)От погрузчика новый, релейный, на 6 скоростей — 400$. 2)Тиристорный с плавным регулированием — 1100$. 3)Огромный реостат — у дедушек на Митинском радиорнке (вы будете единственный, кому он понадобится) — несколько бутылок универсальной валюты.
5)Лично я, при 110% содействии друзей электронщиков, пытаюсь построить электронный блок управления. Получится — расскажу.
Фланец, соедняющий двигатель и трансмиссию (в моем случае — КПП ВАЗ 2101). Изготовил в правильном месте — фирма «Кардан-Баланс» — 70$. Эту штуку лучше делать у профессионалов, знающих автомобильную специфику — подскажут, можно ли обойтись резиновой муфтой или вставить крестовину или еще как…
План-шайба — соединение двигателя и КПП. Мне удалось изготовить ее самостоятельно, но соостность должна быть не хуже 0,2 мм, или устанете менять подшипник первичного вала КПП и подшипники двигателя.
Итого: Приблизительно потрачено 3000$.
300 часов рабочего времени одного средней квалификации инженера. Он же сварщик, он же слесарь, он же электрик. За эти деньги и время я имею: Машина 850 кг весом (4х местная), АКБ 84 В x 200 А·ч, Пробег 200 км. Скорость: 60 — 75 км/ч по прямой, до 90 км/ч кратковременно (для обгона) или под горку. 35 км/ч трогается и разгоняется до этой скорости в гору 12%.
Технико — Экономическое обоснование. Количество циклов перезаряда до полной емкости при правильном использовании — 800 раз (у передовых итальянских, за разумные деньги). 800 раз x 200 км = 160 000 км. Стоимость одной зарядки, приведенная к 1 км пути.
(200 А x 84 В)/(1000 n ) x С = 25 рублей n — КПД заряда = 60% (0,6) С — стоимость 1 кВт · ч (90 коп)
Итак: 12,5 коп/км. Стоимость АКБ, приведенная к 1 км пути. (2600 руб · 7 шт)/ 160 000 км = 11,4 коп/км. Всего 24 коп/км.
Прообраз ВАЗ 2101 с расходом 8 л/ 100 км, АИ 92 (10 руб/л) 80 руб/100 км = 80 коп/км.
Добавьте сюда регулярную замену масла, фильтров, регулировку карбюратора, зажигания клапанов, кап. ремонт двигателя, наконец … Сколько получилось? 1,2 руб/км и 24 коп/км.
В 5 (пять) раз дешевле, господа! В 5 раз!!!
Вопросы есть?
Один вопрос предвижу: «Куда девать съэкономленные деньги?»
Еще один прогмотический вопрос: что скажет ГАИ?
Ответ: Пока не знаю. Но в НАМИ электромобили есть, они ездили по дорогам. На АЗЛК электромобили также имеются (2 модели). ВАЗы как-то, лет 20 назад, катались по Москве аккумуляторные. УАЗы для военных госпиталей существовали с электромоторами. И даже был авто- (pardon) электропробег. Сейчас есть грузовик ЗИЛ электрический с очень неплохими параметрами. Были они, есть, ездят … Чем, собственно говоря, моя машина хуже?
* * *
Итак, Вы решились на постройку электромобиля. Можем поздравить Вас с таким наинанием.
Но прежде, чем подбирать агрегаты для будующего э-мобиля, необходимо четко определиться с «техническим замыслом» э-мобиля. Этот замысел формируется из следующих пунктов:
-Кузов э-мобиля. Варианты:
— стандартный кузов от легкового автомобиля заводского изготовления. Плюсы: минимальное количество или полное отсутствие переделок в «жестяном» направлении; стандартный вид э-мобиляи соответственно — минимальное внимание сотрудников ГИБДД к Вашему э-мобилю; возможность постройки э-мобиля «одним лицом» за небольшой промежуток времени. Минусы: большая вероятность неудачной компоновки агрегатов внутри; более тяжелый вес.
— самодельный кузов. Плюсы: бескрайнее поле для творчества внешнего вида и компоновки э-мобиля; меньшая масса; возможность применения композитных материалов и нестандартных узлов для улучшения конструкции и ходовых качеств; неординарный вид, отличающийся от основного потока транспортных средств. Минусы: расширенный инструментарий, в большинстве случаев не распространенный в даже в продвинутых домашних мастерских; повышенные трудоемкость и требования к квалификации мастера; повышенное внимание сотрудников ГИБДД к э-мобилю и соотвественно — меньшая вероятность регистрации Вашего э-мобиля с выдачей номерных знаков.
-Силовой агрегат, Состоит из источника электроэнергии с регулятором потребления, электродвигателя и механической трансмиссии.
— источник электроэнергии. Варианты:
-аккумуляторные батареи. Следует учитывать предназначенных для них режим работы, рабочие температуры, ёмкость, стоимость, размеры и вес.
— Суперконденсаторы (ионисторы). Те же самые требования, что и к аккумуляторным батареям.
— Генераторы. Существует несколько видов генераторов электроэнергии. Основным отличием генераторов от других источников является получение электроэнергии способом, включающим механические преобразования энергии. На данный момент существуют бензиновые-дизельные-газовые (топливные) генераторы, тепловые генераторы в совокупности с элементами Пельтье, молекулярные двигатели и много других видов.
— Регулирующие потребление электроэнергии устройства. Под такими можно понимать регуляторы и преобразователи напряжения, регуляторы тока. Основные требуемые характеристики зависят от параметров электродигателя и других потребителей электроэнергии.
— Электродвигатели. Требуемые характеристики для каждого случая крайне индивидуальны. Единственное, что можно посоветовать — выбирать двигатель мощнее, чем необходимо (в пределах разумного: для э-мобиля массой до одной тонны для уверенного разгона с использоанием КПП и движением со скоростью до 100кмч вполне достаточно электродвигателя последовательного возбуждения мощностью в районе 7-8 кВт; для уверенного разгона без КПП — более 12кВт) Для выбора электодвигателя необходимо учитывать: тип электродвигателя, рабочее напряжение, мощность, потребляемый ток, тип возбуждения, номинальные обороты, крутящий момент, вес и размеры.
Существуют следующие виды электродвигателей:
— c параллельным возбуждением.
— с последовательным возбуждением.
— со смешанным возбуждением
— бесщеточные безколлектроные электродвигатели
— асинхронные, в т.ч. с векторным управлением.
— Механическая трансмиссия. В основном Вы можете выбирать между трансмиссией с КПП и трансмиссией без КПП. Наличие КПП, конечно, приводит к неудобствам в управлении э-мобилем и бОльшим механическим потерям, но тем не менее позволяет трогаться и уверенно двигаться в нестандартных условиях (трогание и движение на подъем, в глубоком снегу и грязи) использовать менее мощный электродвигатель. Про увеличениеуменьшение веса намеренно ничего не приводится, т.к. мощный двигатель с редуктором-дифференциалом может весить больше, чем менее мощный с КПП.
Также стоит принять на заметку, что использование мощного электродвигателя без КПП потребует от электродвигателя управлением крутящим моментом, а не оборотами (как это кажется на первый момент). Такое регулирование могут: частично безколлекторные двигатели и в полной мере — асинхронные с векторным управлением. Использование других типов электродвигателей без КПП можно посоветовать при очень легком э-мобиле.
***
«12 заповедей автомобилиста-самодельщика»
Эти 12 заповедей были опубликованы в 80-е годы в журнале «Моделист-Конструктор». Написал их автосамодельщик со стажем, в свое время своей нашумевший конструкцией автомобиля, как тогда говорили «вагонной компоновки» (сейчас они превратились в «минивэны») «Минимакс» — П.С. Зак.
Некоторые из советов относятся исключительно к постройке автомобиля «с нуля», некоторые несколько устарели, однако общий смысл этих «Заповедей» как нельзя лучше подходит для «первого взгляда» на строительство и 100%-й самоделки и киткара. Главное на первом этапе — это не внешний вид, мощность двигателя или проходимость, главное — оценить себя, способен ли ТЫ на это…
I. СВЕРХЗАДАЧА — ПРЕЖДЕ ВСЕГО!
Обычно начинают с ближайшей цели: хочу сделать «вот такую» машину! О своей сверхзадаче не задумываются. Но она рано или поздно выявится сама, чаще всего — на полпути, когда уже много сделано… Разобраться в себе поможет классификация «самодельщиков».
Упрощенец Обычно исходит из распространенного заблуждения, что сделать дешевле, чем купить. Чем раньше он осознает, что это действительно заблуждение, тем меньше средств и усилий затратит напрасно. Особая категория упрощенцев — чаще малоквалифицированных, — пытается сделать «настоящий» автомобиль (то есть неотличимый от промышленного); чем раньше они поймут, что ни по пригожести, ни по потребительским качествам машины автозавод не превзойдешь, тем дешевле обойдется им это заблуждение.
Максималист Так можно назвать тех, кто мечтает непременно поразить окружающих. Сделать такое, чтоб ни у кого… Престижную машину! Чтоб или по форме — суперспорт, или по содержанию — компьютерно-комплексно-автоматизированная. В крайнем случае хотя бы с убирающимися фарами, опускающимися стеклами, кондиционером и стереоцветомузыкальным центром!
Индивидуал Это тот, для кого выпускаемые промышленностью машины не подходят, кому нужна машина специального назначения: вездеход или амфибия, самоходная дача, городская мотоколяска или джип-трактор.
Творитель Это тот, кто не может не делать. Громадное удовлетворение получает он от самого процесса творчества. В пределе даже так: сделал, а ездить — ни к чему.
Так кто же ты? Не жалей себя в самоопределении. Это поможет тебе сэкономить свой труд и время.
II. ОЗАДАЧЬСЯ!
Наберись смелости и выплесни на бумагу основные характеристики своей мечты: назначение, вместимость и грузоподъемность, скорость, тип двигателя, компоновку, ходовую часть, габариты и вес. Проставь дату и отложи в недолгий ящик. Через недельку попробуй составить второй вариант. Третий… Седьмой…
При этом «выплескивать» рекомендуется, даже если поначалу нет ощущения, что готов к этому. Еще Д. И. Менделеев утверждал, что лучше любая гипотеза, чем никакая. Вместо ошибочной в конце концов появится другая, более правильная. Со временем проявится и ее ошибочность. Этот процесс бесконечный. Но каждая новая гипотеза, как правило, лучше предыдущей. И тут уж желаем разработчику здравого смысла, чтобы вовремя остановиться, ибо суть не в постоянном поиске, а в результате.
III. HE БЕРИ ТО, БЕЗ ЧЕГО МОЖНО ОБОЙТИСЬ
Что греха таить, чудеса всех увлекают. Но необыкновенными могут стать и такие основополагающие качества, как проходимость, вместимость или маневренность, либо второстепенные — например, автоматическое управление двигателем и коробкой передач, отоплением кузова или, скажем, дорожным просветом.
Не перегружай свой проект обилием «цацок», за ними может исчезнуть и основная концепция твоего автомобиля. Как только ощутишь признаки такой опасности, составь перечень того, что тебе хочется видеть в своем творении. А потом выпиши оттуда то, без чего никак не обойтись. Итогом этой работы должен стать проект транспортного средства, содержащего необходимый комплекс «чудес».
Остальное раздели на две части. Найди в себе силы забыть навсегда большую часть, оставив лишь то, что можно сделать потом, во вторую очередь, после того, как созданный тобой агрегат поедет. Движущаяся машина поставит новые, пока еще неведомые проблемы. Учитывая их, ты составишь в очередности теперь уже более определенный (по степени их важности) перечень доработок.
Вообще говоря, с сиденья завершенной машины все гораздо видней!
IV. ЕЩЕ РАЗ ПОДУМАЙ: ЕСЛИ МОЖЕШЬ НЕ ДЕЛАТЬ — НЕ ДЕЛАЙ!
Прежде чем браться за непосредственную работу над машиной, самое время еще раз прикинуть, стоит ли твое желание той гигантской работы, на которую ты себя обрекаешь. Да еще учти, сколько непредусмотренных огорчений ждет тебя на выбранном пути! А не лучше ли все же приобрести готовый автомобиль? Если тебе просто хочется повозиться с «железом», купи старенький «Москвич» или «Запорожец». Ну а если это не так, то от души желаем тебе успеха и мужества, ибо ты теперь вступаешь в вольное братство самодельщиков.
V. ЧЕРТИ НЕ МНОГО И НЕ МАЛО, А ПО НЕОБХОДИМОСТИ!
Одну крайность среди самодельщиков (прежде всего — инженеров различных специальностей) составляют «чертежники». Они рисуют общие виды, потом — варианты, разрабатывают конструкции чуть ли не всех узлов и деталей. Как правило, за этим — страх браться за ножовку и дрель, молоток и зубило.
Другую крайность (это обычно гуманитарии и шоферы) составляют «тяпальщики». Поставят мосты — передний и задний, положат на них профили-лонжероны и начинают варить поперечины. Потом обнаруживается, что двигатель туда не компонуется… Переделывать по нескольку раз «тяпальщики» не стесняются. Завершив половину работы, оказываются подчас перед неразрешимой проблемой — задуманная машина не получается. Еще хуже, когда приходится уже готовую ходовую часть «одевать» в «парадное верхнее одеяние» — кузов, сработанный не по «фигуре»… Вряд ли такая машина понравится ГАИ.
Приемлема, как обычно, разумная середина. Компоновка в масштабе 1:5, общий вид (в трех проекциях), плазовый чертеж (желательно в натуральную величину) и объемная модель в том же масштабе — вот первый исходный минимум. Причем модель необходима здесь в той же степени, что и чертеж. Ограничиваться лишь общим видом (и компоновкой) неосмотрительно.
При создании узлов все, что можно делать без чертежей, лучше делать по месту, при необходимости вырезая из картона шаблоны. Если без чертежей узлов не обойтись — выполняй их 1:1. Учти, что масштаб 1:2 — самый обманчивый, и привыкай обходиться лишь двумя — 1:5 и 1:1. Правда, общий вид можно рисовать и 1:10, и даже 1:20. Чертежи на детали есть смысл готовить, если только их придется где-то заказывать.
VI. И ДОМАШНЕМУ «АВТОЗАВОДУ» НУЖЕН ДИРЕКТОР!
Прежде всего «производству» необходимо подобрать помещение для работы над машиной: оно должно быть отдельным и… теплым — в холоде тоже не работа. Не жалей денег на инструменты. Главными станками «автозавода» должны стать верстак с большими тисками и электродрель. Неплохим подспорьем будет и электрический абразивный резак. Не бери пример с тех, кто со строительства машины переключается на коллекционирование всевозможных приспособлений, создавая своего рода музей инструмента… Как только обнаружится, что нужный ключ проще купить в магазине, чем найти в своих закромах, это будет означать, что инструментальное хозяйство превзошло «критическую массу», и его пора безжалостно сокращать. Но действующий инструмент держи в готовности: это не работа, когда нужно зубило, а оно тупое, берешь сверло, а оно щербатое.
Основные материалы — как профильные, так и листовые — надо заготовить заранее. Можно, конечно, и по ходу дела позволить себе прервать работу, чтобы раздобыть какой-то специальный материал или крепеж, но все же лучше рабочее время на это не тратить. Надо ценить трудовой ритм, не отвлекаться на «затыкание дыр» из-за организационных неурядиц. Если работаешь не один, а вдвоем-втроем, это еще важнее, ибо подготовка к работе идет чаще индивидуально, а коллективные простои обходятся много дороже.
VII. МОДЕЛИРУЙ! МАКЕТИРУЙ!
Внешний вид машины — великое дело. И по общему виду отработать его не слишком просто. А ведь твой автомобиль будет двигаться рядом со «Спутниками» и «Тавриями», над которыми работали не только конструкторы, но и дизайнеры. И делали при этом десятки моделей, в том числе в натуральную величину! Поэтому совсем неплохо было бы последовать их примеру. Закончив свою модель, посмотри на нее строгим посторонним взглядом. Покажи сведущим людям. Сделай второй вариант, может быть, и третий. Ведь внешний вид, по существу, можно отработать только на этой стадии. Потом, будет поздно.
Затем целесообразно взяться за макет в натуральную величину. В него можно вставлять готовые узлы, которые ты собираешься использовать: ходовую часть (подвески — переднюю и заднюю), двигатель с коробкой передач, рулевое управление, сиденье, переднее стекло и т. п. Кузов воспроизводится в дереве и картоне. Рейки имитируют профили, фанера и картон — облицовку.
Макет необходим для уточнения взаимного расположения узлов, размещения водителя и пассажиров, проверки удобства посадки и высадки через двери, подходов к обслуживанию двигателя и ходовой части. И вообще позволяет зримо ощутить свое будущее творение.
Макетирование служит могучим средством и в создании отдельных узлов. Их предварительно воспроизводят в виде профильных шаблонов, продольного и поперечного. Может хватить и одного, достаточно характерного, для примерки.
VIII. ЧЕТЫРЕ СТОЛПА АВТОКОНСТРУИРОВАНИЯ — КОНСТРУКЦИЯ, ТЕХНОЛОГИЯ, ГОТОВЫЕ УЗЛЫ, МАТЕРИАЛЫ
При создании любого узла можно, конечно, исходить из чисто конструктивных соображений: сделать его функциональным и прочным, минимальной массы и габаритов. И под эту конструкцию подбирать соответствующие технологию и материалы. Однако самодельщику в еще большей степени, чем конструктору автозавода, нужно предусмотреть возможность реализации своей задумки. Ведь он же сам себе отдел снабжения, сам себе технолог, рабочий. Поэтому критерий оптимальности конструкции у самодельщика особый.
Сложные в изготовлении детали не грех заимствовать. Например, пружины или рессоры подвески. А они сразу определят конструкцию всего узла. Можно во главу оптимизации поставить материал, который по какой-либо причине доступен. Например, для рамы машины очень выигрышны прямоугольные трубы.
«Четырехстолповая» устойчивость самодельщика — в гибкости использования того «столпа», который облегчает создание данного узла, перенося центр тяжести своей работы на самую сильную (в решении данной задачи) опору.
IX. ХОТЕТЬ — НЕ ДЕЛО; УМЕТЬ — ЧЕТВЕРТЬ ДЕЛА; МОЧЬ — ПОЛДЕЛА… НО ГЛАВНОЕ — ОБЛАДАТЬ ТАЛАНТОМ «ЗАВЕРШАТЕЛЯ»
Даже самое могучее желание — не сильнее неумелости. Но если слесарных навыков нет? Здесь два пути: попроще — собрать компанию, в которой специалисты дополняли бы друг друга. И потяжелее, но дающий тебе независимость, — обрести квалификацию, что лучше делать тоже под чьим-нибудь руководством или в компании.
Существует еще один фактор, не менее важный. Это — последовательность, характер, воля, заставляющие сделать над собой усилие, когда усталость, физическая и моральная, одолевает тебя. Сколько слабых духом бросили свое дело на полдороге… Но и какое удовлетворение дает преодоление временной слабости! Достигнув цели, ты получишь не только свой прямой результат, но и ощутишь радость победы над собой, и это, может быть, станет самой главной наградой.
X. ПОМНИ О ТЕХНИКЕ БЕЗОПАСНОСТИ И В РАБОТЕ, И НА ДОРОГЕ
В работе над своим творением придется осуществлять самые различные технологические операции. Некоторые небезопасны. На производстве есть специальная служба техники безопасности, а на домашнем «автозаводе» — только ты сам. Дисковая пила или абразивный резак могут и палец отхватить. Заточный станок — оставить без глаза, тяжелые агрегаты — придавить. А пожароопасность? Все это очень серьезно.
Не менее серьезны и элементы безопасности, необходимые в конструкции самоделки на случай дорожно-транспортного происшествия. Размещение бензобака, защита водителя и пассажиров конструкцией кузова от удара или при переворачивании машины — это вопросы так называемой пассивной безопасности. Но и такие факторы, как обзорность, тормоза, рулевое управление — тоже к безопасности имеют самое непосредственное отношение.
Учитывая жизненную важность этих вопросов, недостаточно держать их в уме. Сформулируй свои слабые места на бумаге. Найди в себе силы вовремя остеречься, если какие-то требования не выполняются, либо даже отказаться от схемы, компоновки или конструктивного решения, не обеспечивающих должной безопасности. В таком деле «авось» может плохо кончиться.
XI. «ЭПОКСИДКУ» УВАЖАЙ ДО ОПАСЕНИЯ…
Не все знают, что производство, где изделия выклеиваются из стеклоткани на эпоксидных смолах, относится к разряду особо вредных, и там обычно ведется специальный надзор за соблюдением техники безопасности: производственные участки оборудуются принудительной вытяжной вентиляцией, и приборы-автоматы с самописцами следят за содержанием в воздухе вредных и ядовитых газов.
Таких условий дома не создашь, да многие даже не подозревают об опасности тяжелых легочных заболеваний, вплоть до рака легких.
В то же время механические свойства некоторых аналогичных материалов — например, полиэфирных смол, не намного уступают коварной «эпоксидке». Вполне пригоден, кстати, и лак для паркета.
Со стеклотканью тоже надо быть осторожным, ибо мельчайшие частицы ее волокон внедряются в кожу рук и в дыхательные пути. Приемлемые заменители — хлопчатобумажные ткани, например, перкаль, брезент или достаточно прочная синтетика.
XII. ХУДЕТЬ НАДО НЕ ТОЛЬКО МОДНИЦАМ!
Уже в принципе самодельный автомобиль тяжелее покупного. Это неминуемо проявляется за счет того, что несущий кузов чересчур сложен для расчета на прочность. В автопромышленности отработка оптимального варианта дилеммы «прочность-легкость» производится экспериментально. Самодельщику это не по силам. Ему приходится либо разделять функции кузова и рамы (что ведет чуть ли не к удвоению массы этого комплекса), либо заведомо перетяжелять корпус. Уже по этой причине самодельный автомобиль будет на 20-30 % тяжелее аналогичного промышленного образца. Однако практика показывает, что если специально не следить за весом каждой детали, то самоделка оказывается в полтора раза (а порой и более!) тяжелее машины заводского изготовления аналогичного класса. А в этом — и повышенный расход горючего, и худшая динамика, и меньшая грузоподъемность, и…
***
Электрическими машинами называют электромеханические преобразователи, в которых электрическая энергия преобразуется в механическую или механическая — в электрическую энергию. В зависимости от рода отдаваемого или потребляемого тока электрические машины разделяются на машины переменного и постоянного тока, которые могут использоваться в качестве двигателей, генераторов или их комбинации.
По принципам создания вращающего момента электрические машины делятся на синхронные, асинхронные и постоянного тока.
В синхронных машинах частота вращения вала синхронизирована с частотой вращения электромагнитного поля, создающего вращающий момент. В синхронной машине поле возбуждения создается обмоткой, расположенной на роторе и питающейся постоянным током. Обмотка статора соединяется с сетью переменного тока. Обращенная схема, когда обмотка возбуждения расположена на статоре, встречается редко. В синхронной машине обмотка, в которой индуцируется ЭДС и протекает ток нагрузки, называется обмоткой якоря, а часть машины с этой обмоткой называется якорем. Часть машины, на которой расположена обмотка возбуждения, называется индуктором. Синхронные машины применяются в качестве генераторов и двигателей.
Условием работы асинхронной машины является неравенство частот вращения электромагнитного поля статора и ротора, что собственно и создает силы, приводящие в движение электрические машины. В асинхронной машине поле создается в обмотке статора и взаимодействует с током, наводимым в обмотке ротора. Среди асинхронных машин коллекторными являются однофазные двигатели малой мощности. Асинхронные машины применяются в основном в качестве двигателей.
Главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. Машина постоянного тока по своему конструктивному выполнению сходна с обращенной синхронной машиной, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Благодаря своим хорошим регулировочным свойствам двигатели постоянного тока нашли широкое распространение в промышленности. Они могут работать в качестве и генераторов и двигателей.
Классификация электрических машин
по мощности
Машины большой мощности:
коллекторные машины мощностью более 200 кВт;
синхронные генераторы мощностью более 100 кВт;
синхронные двигатели мощностью более 200 кВт;
асинхронные двигатели мощностью более 100 кВт при напряжении более 1000 В.
Машины средней мощности:
коллекторные машины мощностью 1… 200 кВт;
синхронные генераторы мощностью до 100 кВт, в том числе высокоскоростные мощностью до 200 кВт;
асинхронные двигатели мощностью 1… 200 кВт;
асинхронные машины мощностью 1… 400 кВт при напряжении до 1000 В, в том числе двигатели единых серий от 0,25 кВт.
К группе машин малой мощности относятся электрические машины, не входящие в первые две группы:
двигатели постоянного тока коллекторные и универсальные;
асинхронные двигатели, синхронные двигатели и др.
Основные понятия
Коэффициент полезного действия (КПД) — отношение полезной (отдаваемой) мощности и затраченной (подводимой):
для генераторов- отношение активной электрической мощности, отдаваемой в сеть, к затраченной механической мощности;
для электродвигателей- отношение полезной механической мощности на валу, кВт, к активной подводимой электрической мощности, кВт.
Коэффициент мощности (соs j) для машин переменного тока:
для генераторов- отношение отдаваемой активной электрической мощности, кВт, к полной отдаваемой электрической мощности, кВ×А;
для электродвигателей- отношение активной потребляемой электрической мощности, кВт, к полной потребляемой электрической мощности, кВ×A;
Пусковой ток (начальный пуск) — установившийся ток, потребляемый двигателем при неподвижном роторе и питании от сети с номинальными напряжением и частотой (Iп- пусковой ток).
Кратность начального пускового тока — отношение начального пускового тока к номинальному току.
Номинальный вращающий момент — вращающий момент на валу электродвигателя, соответствующий номинальной мощности и номинальной частоте вращения.
Начальный пусковой момент — вращающий момент, развиваемый двигателем при неподвижном роторе и начальном пусковом токе.
Минимальный вращающий момент — наименьшее значение вращающего момента, развиваемого двигателем при номинальных напряжении и частоте сети в диапазоне изменения частоты вращения от нуля до значения, соответствующего максимальному моменту.
Максимальный вращающий момент — наибольшее значение вращающего момента, развиваемого двигателем при номинальных напряжении и частоте сети.
Относительная продолжительность включения (ПВ) — отношение длительности работы двигателя при нагрузке, включая пуск, к длительности рабочего цикла, выраженное в процентах.
Конструктивное исполнение
Конструктивное исполнение — способ расположения составных частей машины относительно элементов крепления подшипников и конца вала.
Двигатель общего назначения — двигатель, удовлетворяющий техническим требованиям, общим для большинства случаев применения, и выполненный без учета специальных требований потребителя.
Основное исполнение двигателей — исполнение, соответствующее общетехническим требованиям по рабочим свойствам, условиям работы и применения. Основное исполнение является базой для разработки модификаций и специализированных исполнений.
Модификация — исполнение двигателя на базе основного исполнения, имеющее то же значение высот оси вращения, но отличающееся рабочими свойствами (механической характеристикой, диапазоном регулирования частот вращения и др.).
Специализированное исполнение — исполнение, удовлетворяющее повышенным требованиям потребителя в отношении условий применения. Различаются специализированные исполнения по условиям окружающей среды и по точности выполнения установочных и присоединительных размеров.
Узкоспециализированное исполнение — исполнение, предназначенное для работы в узкоспециализированной области.
Электронные самоделки, на сегодня, являются доступным способом изготовления полезных механизмов, способных облегчить жизнь и разнообразить досуг. Современные умельцы способны своими руками собирать как простые игрушки, так и сложные, многозадачные механизмы. О том, как просто и быстро сделать электронные игрушки, интересные и полезные электронные самоделки для дома и автомобиля своими руками – читайте ниже!
Простая электроника своими руками: делаем спиннер
Электротехника, сегодня, повсеместно используется для реализации как практических, так и развлекательных целей. Некоторые изобретения (такие, как например система “умный дом”) сделать новичку будет достаточно сложно. Они требуют опыта и углубленных знаний по физике. Другие же конструкции являются простыми и доступными для начинающих радиолюбителей. Так, например, своими руками можно сделать интересные игрушки – спиннеры, продажи которых невероятно возросли в этом году.
Чтобы собрать игрушку необходимо будет запастись:
- Деревянной заготовкой размером 9x4x1,2 см;
- Подшипником размером 2,2Х0,8х0,7 см (с резиновым уплотнителем);
- Двумя светодиодами RGB;
- Двумя батарейками и держателями CR2032;
- Болтом из нержавейки 0,8х2 см;
- Колпачковыми гайками М8.
После этого можно приступать к работе. Прежде всего, необходимо будет найти схему конструкции в интернете, и перенести ее на необработанный брусок – заготовку. Чтобы правильно наметить технологические отверстия (их будет три) понадобится линейка.
После чего следует:
- Посередине заготовки высверлить сквозное отверстие диаметром 2,2 см под подшипник;
- Просверлить по бокам заготовки два отверстия диаметром в 2,5 см и глубиной в 7,5 мм;
- При помощи сверла проделать посередине двух несквозных два отверстия диаметром по 6 мм под светодиоды;
- Обработать отверстия зенковкой;
- Придать игрушке закругленную форму при помощи электролобзика, ленточной пилы или лобзикового станка;
- Зашкурить заготовку наждачной бумагой, и покрыть ее лаком;
- Припаять светодиоды к батарейкодержателям;
- Проверить светодиоды, и установить их в посадочные отверстия, зафиксировав на супер-клей;
- Очистить подшипник, и обработать его внутренности WD 40;
- Отрезать шляпку болта, и закрепить ось в подшипнике с двух сторон гайками;
- Установить подшипник в посадочное отверстие.
Спиннер готов! Игрушка будет интересной не только для детей. Такую электронку смогут использовать и взрослые: прибор, вращаясь, поможет расслабиться или отвлечься.
Несложные схемы электронных самоделок: делаем электрозвонок
Достаточно просто и быстро своими руками можно сделать электрозвонок.
Такой звонок прослужит долго, и будет радовать ухо. Ведь, при нажатии, он сможет создавать сигналы различной частоты и тональности.
Так, электрозвонок может быть однотональным и многотональным.
На способность звонка воспроизводить звук в одной или нескольких тональностях будет влиять наличие в схеме радиоконструкции мультивибратора с двумя биполярными транзисторами. Рассмотрим подробно схему электронного звонка со сложным звуковым сигналом.
Так, электронная самодельная схема будет состоять из таких радиодеталей:
- Понижающего трансформатора серии ТА;
- Звонковой кнопки;
- Пяти сплавных кремниевых диодов;
- Электролитического конденсатора емкостью в 1000 микрофарад
- Двух электролитических конденсаторов емкостью в 10 микрофарад;
- Двух подстроечных резисторов с сопротивлением в 470 килоом;
- Двух МЛТ резисторов с сопротивлением 10 килоом;
- Двух МЛТ резисторов с сопротивлением 33 килоом;
- Резистора МЛТ на 1 килоом;
- Резистора МЛТ на 470 килоом;
- Трех кремниево-пленарных транзисторов типа 630Д
- Кремниево-планарного транзистора типа 630Г.
Принцип работы устройства прост. Нажатие кнопки будет открывать третий транзистор типа 630Д, давая проход тока к четвертому транзистору типа 630Г. Это создаст первичный сигнал. При открытии второго транзистора типа 630Д запрутся третий и четвертый транзисторы, создавая сигнал другой тональности.
Самоделки своими руками для автомобиля
Автоэлектроника, на сегодня, имеет огромный спрос. При этом, самодельная автоматика, зачастую, имеет простые схемы, легкое исполнение и монтаж. Какие же электросамоделки можно самостоятельно сделать для своего авто?
Так, своими руками для автомобиля можно сделать:
- Динамические поворотники, используя конструктор KIT DIY;
- Универсальное зарядное устройство из старой электроники;
- Кондиционер на основе водяного насоса;
- Дворники с подогревом и многое другое.
Проще всего будет сконструировать подсветку для замков ремней безопасности. Для этого необходимо будет демонтировать, и разобрать замки с помощью плоской отвертки. После чего, при помощи термоклея в замках необходимо закрепить светодиоды.
Каждый светодиод можно включить через свой токоограничивающий резистор: это продлит срок службы полупроводникового светоизлучающего прибора.
После этого следует собрать замки, а провода, питающие светодиоды, протянуть под сидениями к зажиганию или кнопке габаритов через прикуриватель. По желанию владельца автомобильная подсветка салона может быть дополнена лампами, сигнализирующими о том, что ремень безопасности не пристегнут.
Необычные электронные самоделки: бинарные часы своими руками
Своими руками можно сделать прикольные бинарные часы для дома. Для этого понадобиться платформа Ардуино. Электросхемы на этой платформе отличаются простотой и удобством, используются для изготовления большинства электронных самоделок.
Кроме того, чтобы сделать бинарные часы вам понадобятся:
- Модуль часов реального времени на микросхеме DS1302;
- Диффузные светодиоды с диаметром 1 см (20 штук);
- Резисторы с сопротивлением в 10 Ом (20 штук);
- Резисторы с сопротивлением в 10 килоом (2 штуки);
- Две тактовые кнопки;
- Корпус.
Корпус часов должен состоять из двух половинок, которые можно сделать из дерева, пластика, металла. Это зависит от того в каком стиле будут ваши часы. Прежде, чем изготавливать корпус, нужно будет собрать светодиодную матрицу.
При этом, каждый светодиод необходимо подключать через свой токоограничивающий резистор.
После этого выводы от светодиодов необходимо подключить к платформе. Сам контроллер нужно будет соединить с модулем часов реального времени. После этого контакты от Ардуино и модуля необходимо провести к тактовым кнопкам для настройки времени через резисторы номиналом в 10 килоом. Они будут служить нагрузочными. Под конец следует подключить к схеме кабель питания.
Полезные самоделки своими руками: как делаются бытовые весы
Сегодня, практически в каждом доме есть напольные или кухонные весы. Для того, чтобы самостоятельно сделать этот полезный измерительный прибор, необходимо разобраться с его устройством и принципом работы.
Так, к внешним составным частям весов относят:
- Весопроцессор;
- Корпус;
- Экран для показаний;
- Платформу;
- Ножки.
Принцип работы весов крайне прост. Груз, попадая на платформу, давит на нее за счет силы тяжести, активируя тензометрический датчик веса внутри прибора. Тензодатчик, в свою очередь, влияет на тензорезистор, меняя его сопротивление. Последний передает сигнал аналого-цифровому преобразователю. После этого АЦП переводит сигнал в цифровой и подает его на микроконтроллер, который делает выводы о массе груза на платформе, и выводит значения на экран.
При сборке схемы, необходимо обращать внимание на тип тензометрического датчика.
Так, для центрального расположения под платформой напольных, торговых и технических весов лучше выбирать одноточечный датчик. Для установки на изгиб используют блочный датчик. При этом, нужно следить за тем, чтобы тензодатчик имел надежное соединение с АЦП. Решить проблему подключения устройств поможет весопроцессор.
Радиосхемы своими руками для дома: делаем электронный замок
Электрика может служить и для защиты дома. Так, сегодня, сайты самодельщиков предлагают простые радиосхемы электронных замков для входной двери. Открыть такой замок, используя физический ключ, не получится.
Самая простая электросхема для изготовления замка, обычно, выполняется на основе четырехзначного счетчика Джонсона.
Эту схему можно реализовать в нескольких вариациях. Наиболее простая – с использованием микросхемы 4017. Принцип работы схемы достаточно прост: при вводе правильного кода, состоящего из четырех цифр, на входе микросхемы активируется логическая единица, которая открывает замок.
Рассмотрим работу устройства подробней:
- При нажатие неверных клавиш, схема перезапускается без срабатывания механизма через ввод RESET.
- Правильный сигнал, при нажатии клавиши, должен поступать на полевой транзистор VT1, который, после открытия, подает напряжение на соответствующий клавише вывод;
- После полного введения правильного кода, с выхода, соответствующего последней верной клавише, сигнал подается на подключенный к реле транзистор VT2;
- Транзистор активируется на время, которое определяет емкость конденсатора;
- Реле открывает исполнительное устройство (например, защелку).
Для того, чтобы вскрыть такой замок понадобиться перебрать около десяти тысячи различных кодов. При этом, цифры на коде не должны повторяться. То есть, код 3355 будет невозможен, все цифровые значения должны быть разными.
Большинство электронных самоделок, которые изготавливают современные мастера, призваны выполнять обычные бытовые задачи быстрее и качественнее аутентичных приборов. Так, например, значительно ускорит процесс создания пряжи электропрялка. Быстро сделать электрическую прялку можно, поставив электродвижок на аутентичное устройство.
При этом, двигатель для электропрялки должен иметь мощность не менее 15 Вт.
В качестве двигателя можно будет использовать мотор от вентилятора, автоочистителя, проигрывателя. Для приведения двигателя в действие следует использовать педаль. Менять движения мотора можно будет, включив в схему тумблер ТП типа, обеспечивающий подключение конденсатора и сопротивления к разным обмоткам.
Полезной, простой в сборке и эксплуатации будет электромухобойка.
Для того, чтобы реализовать такой механизм нужно будет собрать стандартный блокинг-генератор. При этом, нужно будет не забыть изолировать ручку мухобойки.
Где найти радиолюбительские схемы и самоделки
Современные сайты радиолюбителей предлагают сделать не только полезные, но и необычные радиосамоделки. Так, например на сайте Мозгочины можно найти интересные радиоэлектронные схемы для изготовления напоминалок на холодильник, термометров, которые меняют цвет в зависимости от температуры и т. д.
Интересными и полезными будут электрические штучки для быта и поделки из подручных материалов для рыбалки с сайта “В гостях у Самоделкина”.
О том, как проектировать, отлаживать и изготавливать электронные механизмы в домашних условиях можно прочесть в книге “Занимательная радиоэлектроника”. Новинки среди радиосамоделок часто выкладывает сайт “Мастерская радиолюбителя”. Занятные и полезные технические материалы содержат новые выпуски журнала “Радиолюбители”.
Самоделки своими руками в домашних условиях (видео)
Радиолюбительские кружки пользуются, сегодня, популярностью как у школьников, так и взрослых. Мастер-классы и радиосхемы, представленные на различных сайтах, позволяют в домашних условиях собрать практически любые электроприборы. Главное – отыскать нужные схемы, четко следовать инструкциям, и придерживаться техники безопасности при работе с электричеством. И вы сможете собрать все, что захотите!
Если у вас где то завалялся низкочастотный динамик,то не плохо для него будет собрать не сложный усилитель для сабвуфера на tda7377
Автомагнитола из модуля с алиэкспресс
Литиевый АКБ своими руками 12 Вольт
Многие используют в составе некоторых устройств популярный свинцово-кислотный аккумулятор 12 В 7,2 Ач. Эту батарею можно найти во многих устройствах, от детских электромобилей до ИБП, или системах поддержки напряжения важных устройств, в случае сбоя питания. Почему он так популярен? Цена — это его главное преимущество и, наверное, единственное.
подключение вольтметра с алиэкспресс
Пришел мне по почте из Китая вольтметр с REM. Первым делом я проверил его работу дома при помощи компьютерного блока питания. И кстати скажу еще о кое чем. некоторые люди мне писали что REM на них не работает, и что вольтметр работает постоянно, даже при выключенном ГУ. Поначалу я тоже так подумал.
Бустер для запуска автомобиля своими руками
При приближении зимы, частая проблема водителей, в том что АКБ может не всегда завести автомобиль, он или подсажен,да и сам акб в мороз работает не очень.
Хорошим решением, будет так же создать бустер своими руками
.
Если простым языком, это такой же внешний аккумулятор(power bank) как для телефона,только в этот раз для нашего автомобиля.
Зарядка для автомобильного аккумулятора из модулей с Ali
С наступлением холодного времени года,все чаще приходится столкнуться автолюбителю, чем же зарядить аккумулятор для автомобиля.
В данной статье,нам понадобится не много, т.к соберем зарядное устройство своими руками из модулей
с известного всем сайта-Aliexpress.
Как подключить потребитель с напряжение питания 12в в сеть 24в
как подключить потребитель с напряжение питания 12в в сеть 24в
(преобразователь напряжения 24в-12в)
Известно,что в некоторых автомобилях, бортовая сеть составляет не 12 Вольт,что больше всего распространено,а 24 Вольта
.
И тут возникает некоторые сложности,а как же подключить тот же антирадар,или видеорегистратор
или другой потребитель работающий от 12 Вольт.
Для этого хорошо будет собрать преобразователь для автомобиля, который будет наши 24 Вольта,преобразовывать 12 Вольт.И можно на эти 12 Вольт установить прикуриватель,и туда уже включать наши потребители.
Наполнитель для короба в сабвуфер
Какой выбрать наполнитель для корпуса в сабвуфер.
При создании сабвуфера своими руками,стоит так же учесть, какой выбрать наполнитель для короба,и так же учесть такие правила как.
1) Материал ящика должен быть максимально глухим.(постучите по фанере 8ке и потом по 20ке и вы поймете о чем я)
2) Коробок должен быть максимально прочным. (стыки и соединения должны быть прочнее чем сам материал)
Подборка оригинальных и интересный схемотехнических решений и усовершенствований для различных типов автомобиля.
Автомат для зарядного устройства автомобиля
— Схема включает батарею на зарядку при понижении на ней напряжения до определенного уровня и отключает при достижении максимума.
Зарядное устройство для автомобиля на интегральной микросхема LM7815
— Основу схемы составляет интегральная микросхема LM7815 с системой защиты и цепями аналоговых индикаторов. Вольтметр и
амперметр добавленные в схему в качестве индикаторов обеспечивают контроль тока и напряжения во время заряда аккумулятора.
Автомат-переключатель полярности напряжения
для зарядного устройства — предназначен для зарядки двенадцативольтных автомобильных аккумуляторных батареи. Главная его особенность заключается в том, что оно допускает подключение батареи, при любой полярности.
Автоматическое зарядное устройство для автомобильных свинцово-кислотных аккумуляторов
Зарядное устройство для мощных автомобильных аккумуляторов
— на основе микросхемы IR2153 это самотактируемый полумостовой драйвер, который довольно часто используется в промышленных балластах для ламп дневного света
Датчик перегрева двигателя
. Чтобы не ожидать момента когда вода в радиаторе превратится в пар можно использовать конструкцию на термостате DS1821
Датчик гололеда
Как только температура воздуха опустится до 4 градусов Цельсия, светодиод закрепленный на приборном щитке автомобиля начнет мигать, при дальнейшем снижение температуры светодиод мигает с более высокой частотой. А если температура опустится до — 1 градуса или ниже, то светодиод будет гореть постоянно до — 6 градусов, а затем устройство автоматически отключается.
Датчик ремня безопасности
Если ездить с непристегнутыми ремнями безопасности, то можно получить травмы при ДТП, или нарваться на штраф. В арсенале радиолюбителя имеются специальные разработки, сигнализирующие водителю о том, что ремень не пристегнут
Сигнализатор уровня воды в радиаторе
. Прибор сигнализирующий об уменьшении уровня воды, что неизбежно приведет к перегреву мотора.
Индикатор напряжения в бортовой сети автомобиля
На большинстве автомобилей отсутствует прибор, по показаниям которого водитель мог бы судить о напряжении бортовой сети. Напряжение бортовой сети автомобиля изменяется в широких пределах, в зависимости от режима работы системы электропитания.
Схема предсонного сигнализатора состояния водителей
Как известно, до 25-30 % транспортных аварий обусловлены засыпанием водителей за рулем. Для оценки психофизиологического состояния водителя в процессе управления транспортным средством разработаны телеметрические системы контроля частоты мигания его век, регистрации биопотенциала, кожногальванической реакции, двигательной активности. Все вышеперечисленные методы так и не нашли широкого применения на практике из-за их сложности, дороговизны, необходимости фиксации на кожных покровах водителя различных датчиков
Радиолюбительская подборка на тему освещение в салоне автомобиля, а также самодельные конструкции от подсветки заднего номера до замены лампочек в щитке приборов: повторитель поворота на светодиодах
, автоматический противоослепляющий фонарь
, Ближний свет
схемы, конструкции и приспособления для фар, Стоп Сигнал
, его назначения и доработки, Схема задержки включения и выключения света в салоне автомобиля, Ходовые огни
схема автоматического управления на микроконтроллере и т.п
Изготовление датчика нейтралки
. Многие автолюбители знают, что автосигнализация с автозапуском на автомобиль с механической коробкой передач устанавливается достаточно сложно, а переключив сигнализацию на режим «автомат» можно получить неприятный результат. Но, чтоб решить эти проблемы можно сделать работу автозапуска более безопасной установив датчик нейтралки из геркона. Напомним, что у автозапуска с механической коробкой передач логическая нейтраль взятие автомобиля на сигнализацию и блокирование дверей можно осуществить только при работающим мотором и поднятым ручником. Если эти условия не выполняются, то автозапуск не возможен.
Имитатор противоугонного устройства
имитирует неисправности двигателя вашего автомобиля
Дистанционное противоугонное устройство на инфракрасных лучах
. Рассмотрены схемы дистанционных охранных устройств для автомобиля на ИК лучах, в которых писпользуется кодирование информации
Рекомендации по установке автосигнализаций
Что же можно сделать, чтобы воспрепятствовать угону автомобиля? Конечно же, поставить противоугонную систему. В настоящее время имеется много различных типов сигнализационных устройств. Множество фирм и станций установки могут предложить автовладельцу целый ряд способов защиты автомобиля от угона. Хорошая сигнализация не является гарантией полной безопасности. Необходима еще и грамотная, а порой и нестандартная установка сигнализации. Квалифицированный установщик знает наиболее распространенные методы, применяемые угонщиками, и использует эти знания при установке
Простая схема блокировки стартера
состоит всего из одного резистора и оптрона.
Схема простой велосипедной противоугонной системы
Данная конструкция для велосипеда сработает, стоит изменить его положение, либо если к нему прикоснуться. Тревожный звуковой сигнал длится 30 секунд, а через несколько секунд, происходит повтор и так до тех пор, пока велосипедное противоугонное устройство не будет отключено.
Беспроводная автосигнализация
— блокирует двигатель автомобиля с помощью любого мобильного телефона или смартфона
Статьи об изготовление инструментов и приспособлений по обслуживанию и ремонту автомобилей и их основных узлов своими руками: Обслуживание автомобильных аккумуляторов; схемы стробоскопов-тахометров; Толщиномер лакокрасочных покрытий автомобилей; Самодельный регрувер для нарезки протектора и другие оригинальные конструкции.
Предлагаем вниманию радиолюбителей схему электронного отключателя «массы», не
имеющего механических контактов и потому более надежного и долговечного. Кроме того, данное устройство может использоваться и как противоугонное.
| Схемы авто. Парктроник на цифровой микросхеме |
Парктроник — это специальное вспомогательное устройство, дающее дополнительное удобство, особенно начинающему автолюбителю, при парковке благодаря расчету расстояния до ближайших к автомобилю препятствий и сигнализирующее о приближении к ним звуковыми и визуальными знаками. Все парктроники работают как радар, т.е излучают ультразвуковые волны специальными ультразвуковыми датчиками и анализируют отраженный от препятствий звуковой сигнал
На дворе 21 век, а автомобильные спидометры в большинстве автомобилей все еще аналоговые, обрабатывающие сигналы, поступающие от обычного датчика скорости. Давайте исправим это недоразумение, нав в помощь, простая схема спидометра на микроконтроллере для изготовления своими руками
Конечно, это не профессиональный прибор, но и его скромные возможности позволят выявить степень концентрации алкоголя для самоконтроля водителя, чтобы предотвратить беду на дороге.
Думаю каждый автолюбитель не откажется иметь в автомобиле дополнительный сервисный разъём, адаптированный под USB или miniUSB. Такие адаптеры выручат во многих ситуациях, например, питания переферии ПК, зарядки мобильных телефонов или смартфонов, видеорегистраторов событий, да и всего, что питается от шины USB.
Датчики движения (ДД) можно использоват не только по прямому назначению для включения света или в качестве элемента охранной сигнализаци, но и в автомобилях. Например отпугнет кошку которая решила погреться под копотом вашего автомобиля, тем самым сохранит ей жизнь, а вас избавит от работы по очистке вашего двигателя от остатков бедного животного. Ведь инфракрасный ДД среагирует на любой движущийся биологический объект, имеющий «тепловой» фон.
В автомобиле немало узлов контролировать включение и исправность которых достаточно затруднительно, а для этих целей идеально подойдет звуковой сигнализатор, кроме того его применение во время движения задним ходом информирует окружающих пешеходов и других водителей о движении транспортного средства назад, что особенно актуально для больших грузовых автомобилях
Предлагаю на ваш суд, ознакомиться с простой схемой доводчика стекол автомобиля. Он выполняет роль подъема стекол в тот момент, когда автомобиль ставится на охранную сигнализацию. Остановка работы устройства стеклоподъемников осуществляется в результате возрастания протекающего тока в нагрузке в момент полного поднятия стекол.
Автомобильный электробензонасос устройство, принцип действия и ремонт. В качестве примера расмотрим устройство и принцип действия погружного электробензонасоса серии 0580254 фирмы BOSCH который используется во всех модификациях системы впрыска топлива «K-Jefronic»
Автомобильный сигнализатор
Он предназначен для имитации автомобильного гудка, и выполнено на составных транзисторах и тиристорах
У многих имеются переносные приемники и магнитофоны с 9 вольтовой батарейкой типа крона. В дороге их удобно питать от аккумулятора автомобиля, не расходуя ресурс дорогих батареек. Подключать такую радиоаппаратуру непосредственно к аккумулятору нельзя, так как его напряжение может меняться от 10 до 15 В. Кроме того, при работающем двигателе в бортовой сети автомобиля появляются импульсные помехи
Подборка простых схем для автолюбителей
: Звуковой сигнализатор антисон, сигнализаторы гололеда, Установка для очистки картерных газов, Девайс для быстрого запуска двигателя в любой мороз, Компрессометр, Анти-радар, Аэродинамическая насадка на выхлопную трубу и другие конструкции
Сборник электросхем на автомобили очень большая подборка.
Рассмотренные ниже схемы на микроконтроллерах выводят на двухразрядный цифровой индикатор с общим анадом показания от топливного датчика в 40л. Питание конструкций осуществляется от бортовой сети автомобиля. К входу «in» подсоединен родной автомобильный датчик в баке.
Наверное все водители хоть раз забывали отключить указатели поворотов после совершения маневра? Штатные щелчки из передней панели не всегда хорошо слышно, особенно если в салоне играет музыка, поэтому предлагаю дополнить ваш автомобиль простой схемой сигнализатора поворотников своими руками.
Прикуриватель – одна из немногих автомобильных фишек, которая за все время своего появления вот уже более 70 лет сохраняет свою перво начальную конструкцию. В результате этого и на раритетных авто, и на самых современных моделях применяется одна и та же конструкция. Конечно в старину это приспособление использовалось только ради одной функции, хотя сейча в современном «информационном мире» — оно выполняет разные функции, допустим разъема для зарядки различных цифровых гаджетов или даже пуска машины.
Радиолюбительские схемы сигнализаторов поворотов
предназначены для работы только со светодиодами в стоп-сигналах вашего автомобиля, если вы все еще используете обычные лампочки то сможете легко повторить конструкцию сигнализатора включения поворотов. Простая разработка «Стоп-сигналы
» — самодельное реле времени отключит последние если они горят более 40-60 секунд, а модернизация реле поворотов
495.3747 позволит ввести в стандартную комплектацию ВАЗ или ГАЗ светодиоды вместо ламп накаливания.
Предлагаемый первый вариант модернизации реле стеклоочистителя автомобиля имеет более высокую надежность работы, может обеспечить динамическое торможение двигателя. Никаких переделок штатной схемы электрооборудования при этом не требуется. Достаточно простые варианты модернизации реле стеклоочистителя позволят вам не отвлекаться на включение и выключение дворников. Кроме того многие старые автомобили имеют простой регулятор скорости работы двигателя стеклоочистителя —
на два положения «быстро-медленно» — не большая доработка просто необходима. А установите датчик влажности и водяные капли попавшие на него сами запустят схему.
Монитор для автомобиля с камерами заднего вида очень важный элемент в вашем автомобиле, т.к в современных городских реальностей надо быть мастером парковки, чтобы найти место куда припарковать автомобиль. Наглядно показан пример установка монитора в козырек автомобиля, что делает изображение оптимально расположенным для глаз водителя.
В наше время, как никогда остро, стоит вопрос учета и экономии энергоресурсов, в том числе топлива для автотранспорта. Из большого разнообразия приборов, учитывающих расход топлива, наибольшее распространение получили приборы с регистрирующим элементом датчика в виде крыльчатки. Датчики с иным принципом измерения, хотя и обладают достаточной точностью, но сложны в изготовлении и имеют недостатки. Практика показала, что датчики с крыльчаткой, выполненные с необходимой и достаточной
точностью, могут работать годами, не требуя ухода, с погрешностью в регистрации ниже допуска для подобного типа приборов
Система зажигания — это совокупность различных автомобильных приборов и устройств, обеспечивающих генерацию электрической искры для воспламенения топливовоздушной смеси в цилиндрах двигателя внутреннего сгорания в момент поворота ключа замка системы зажигания. На этой страницы вы сможете найти различные схемы подключения зажигания автомобилей ВАЗ. А также самодельные радиолюбительские варианты схемы электронного зажигания
Она имеет следующие преимущества: мощность искры увеличена, контакты прерывателя не обгорают; не нужен резистор в цепи катушки зажигания; при включенном зажигании, но незаведенном двигателе схема плавно без искры, отключается
В советском автопроме прерыватель указателей поворота типа РС57 был электромагнитного принципа действия и использовался для обеспечения мигания сигнальных ламп, что делает более видимым и заметным подачу сигнала поворота другим участникам движения. Прерыватель указателей поворота включен последовательно в цепь сигнальных ламп, сигнализирующих поворот. В рамках статьи рассмотрим варианты замены этого электромагнитного устройства, на его электронные аналоги.
Наверное каждый автолюбитель забывал в теплое время года, закрывать окна в машине, чтоб этого более не происходило предлагаю собрать схему предназначенную для автоматического закрытия всех окон в салоне машины при постановке на сигнализацию. Рассмотрим несколько возможных вариантов реализации конструкции от простых схем с реле, до автомата управления стеклоподъемниками на микроконтроллере.
Каждый водитель грузного автомобиля или автобуса с напряжением бортовой сети в 24 вольта сталкивался с проблемой, подключения потребителя 12 Вольт. В этой статье реализовано решение данной проблемы
Во всех современных автомобилях, когда температура двигателя подходит к критической отметки, срабатывает вентилятор охлаждения радиатора. Но есть масса негативных эффектов резкого старта, которая со временем сказывается на электрике средства передвижения. В данной статье описана схема варианта замены реле плавного включения вентилятора охлаждения.
| Устройство экономайзера карбюратора |
Карбюраторы, долгие годы устанавивались на автомобиле, пока постепенно не освободили свое место различным системам впрыска топлива. Но автомобильный век российских автомобилей долог, и все еще приходится сталкиваться с транспортными средствами, в которых еще имеется карбюратор. Ну а как известно его нормальная работа обеспечивается неоторыми устройствами, среди них основное это экономайзер топлива. Именно о нем мы и поговорим, а также расмотрим схему системы экономайзера принудительного холостого хода для автомобилей ВАЗ
Автомобильным стартером называется устройство обеспечивающее запуск двигателя после поворота при любых погодных обстоятельствах. Почти все стартеры по своей сути, являются обычными электродвигателями краткосрочного действия, но большой мощности. Пусковой цикл типового устройства состоит из трех попыток с 30 секундным интервалом между ними. Поскольку у авто имеется единственный источник электроэнергии (аккумуляторная батарея), то инженеры выбрали для стартеров электродвигатель постоянного тока.
Каждый автовладелец, сидевший за рулём бюджетного автомобиля знает, как долго приходиться ожидать поступления тепла от двигателя при его разогреве в зимнее время года, особенно если вы живете в северной части самой большой страны мира. Время набора комфортной температуры где-то минут 30, и так каждое утро. Наилучшей идеей решения этой проблемы на мой взгляд, является обогрев салона автомобиля тепловентилятором. Воплотить идею в жизнь, помог старый тостер и неисправный компьютерный блок питания.
В зимний период у многих российских водителей начинается время, когда для поездки на автомобиле требуется заранее прогретый двигатель. Решить эту проблему помогает схема подогрева тосола автомобиля. Первая рассмотренная достаточно проста для повторения.
Подогрев руля, наравне с обогревом сидений, зеркал, стёкол, это в наши дни не роскошь, а показатель уровня того, что человек живёт в цивилизованной стране. Все перечисленные параметры в личном автомобиле очень удобны, и помогаю водителю сосредоточиться лишь на управление транспортным средством, а не на своих промерзших пальцах рук.
Это конструкция предназначена для генерации звукового сигнала при движении грузовых автомобилей и автобусов назад, при этом в автоматическом режиме начинает генерироваться звуковой сигнал, предупреждающий об опасности.
Главным достоинством второй батареи является то, что расход накопленной энергии происходит через дополнительную АКБ, а первая стоит в запасе, то есть можно совсем не беспокоиться о заводе автомобиля после пикника в дали от цивилизации. Многие иномарки, уже имеют вторую аккумуляторную батарею под капотом. Недостаток у них состоит только в параллельном подключение 2-х АКБ
Эта радиолюбительская конструкция подойдет для зарядки большинства смартфонов и планшетов от 5 вольт даже при выключенном зажигания. Или позволит запитать видеорегистратор в течение 40 минут, в тот момент когда автомобиль ждет своего хозяина на стоянке. Основа схема микроконтроллер AVR Tiny13, прошивка к нему прилогается.
Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.
Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:
Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.
На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.
Самоделки для автомобилей
Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.
Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:
Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.
На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.
Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.
Простые обогреватели
В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:
- асбестовая труба;
- нихромовая проволока;
- вентилятор;
- выключатель.
Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.
Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.
От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

- вредность для организма от асбестовой трубы;
- шум от работающего вентилятора;
- запах от пыли, попадающей на нагретую спираль;
- пожароопасность.
Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.
Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.
Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:
- электролитический конденсатор большой емкости;
- транзистор типа p-n-p;
- электромагнитное реле;
- диод;
- переменный резистор;
- постоянные резисторы;
- источник постоянного тока.
Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.
База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.
Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.
Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, . На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.
Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы
. В этом случае хорошим помощником будет наш .
Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр
. Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, и тот же сварочный аппарат.
Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.
Когда все будет готово – инструменты собраны, запчасти подысканы и минимальные знания получены, можно переходить к сборке любительских электронных самоделок в домашних условиях. Тут-то как раз, наш небольшой справочник Вам и поможет. Каждая предоставленная инструкция включает в себя не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами, а также видео уроками, в которых наглядно показывается весь процесс изготовления. Если же Вы какой-то момент не поняли, то можете уточнить его под записью в комментариях. Наши специалисты постараются своевременно проконсультировать Вас!
Секция: естественно-гуманитарный цикл
Номинация: физика
Тема: Электрический двигатель своими руками.
Авторы: Каримов Рустэм, Ибрагимов Денис
МБОУ СОШ №116 г.Уфы
Научный руководитель: Буш А.Ф.
Учитель физики МБОУ СОШ №116
Актуально: коэффициент полезного действия мощных двигателей достигает 98%. Такого КПД не имеет никакой другой двигатель, так что выгодно перейти на переход к использованию от обычных двигателей электрическим.
Цель работы: показать, как изготовить из подручных материалов простейшие электрические двигатели.
Задачи: изучить строение и работу электрических двигателей и на основе этого самому сконструировать модель двигателя.
В ходе работы была полностью реализована цель и решены поставленные задачи. Изучая различные модели электродвигателей, создал своими руками новую модель двигателя.
Электрические двигатели обладают рядом преимуществ. При одинаковой мощности они имеют меньшие размеры, чем тепловые двигатели. При работе они не выделяют газов, дыма и пара, а значит, не загрязняют воздух. Им не нужен запас топлива и воды, их можно установить в удобном месте. Можно изготовить электродвигатели любой мощности.
Двигатели постоянного тока нашли особенно широкое применение в быту, на транспорте ( электровозы, трамваи, троллейбусы), на заводах и фабриках.
Просмотр содержимого документа
«Электрический двигатель своими руками»
Как сделать электрофорную машину своими руками
Электрофорная машина работает как непрерывный источник электрической энергии. Этот прибор используют зачастую как вспомогательный для демонстраций различных электрических явлений и эффектов. Но какова его конструкция и особенности?
Немного из истории изобретения
Электрофорная машина разработана в далеком тысяча восемьсот шестьдесят пятом году Августом Теплером, немецким физиком. Что любопытно, совершенно независимо другой ученый-экспериментатор Вильгельм Гольц изобрел подобную конструкцию, но даже более совершенную, так как его аппарат позволял получить большие значения разностей потенциалов и мог служить источником постоянного тока. К тому же гольцевская машина была намного более простой в конструкции. В конце девятнадцатого века английский экспериментатор в области электричества и механики Джеймс Вимшурст усовершенствовал агрегат. И по сегодняшний день именно его вариант (пусть и чуть более современный) используется для демонстраций электродинамических опытов благодаря способности создавать огромную разность потенциалов между коллекторами. Электрофорная машина была улучшена уже в сороковых годах двадцатого века ученым по фамилии Иоффе, который разработал новый тип электростатических генераторов для осуществления питания рентгеновской установки. Хотя машину Вимшурста сейчас не используют для непосредственной задачи добычи электрической энергии, она является историческим экспонатом, который иллюстрирует историю развития инженерной мысли и научно-технического прогресса.

Этот аппарат состоит из двух дисков, которые вращаются навстречу друг другу. Работа электрофорной машины как раз и заключается в осуществлении такого двойного обоюдного вращения. На дисках расположены токопроводящие изолированные друг от друга сегменты. С помощью обкладок сторон обоих дисков образовываются конденсаторы. Именно поэтому электрофорная машина иногда называется конденсаторной. На дисках расположены нейтрализаторы, которые отводят заряды от противоположных элементов дисков на землю с помощью щеток. Коллекторы находятся слева и справа. Именно на них поступают снятые гребенками с заднего и переднего дисков генерируемые сигналы.
Что такое банки Лейдена?
Во многих случаях заряды накапливаются на конденсаторах. Их называют банками Лейдена. После этого возможно воспроизведение намного более сильных разрядов и искр. Внутренние обкладки каждого конденсатора соединяются с кондукторами по отдельности. Щетки, которые касаются секторов дисков, объединены с внутренними обкладками банок Лейдена. Вся конструкция на сегодняшний день монтируется на пластмассовых стойках. Вместе с лейденовскими банками части машины закрепляются на подставке из дерева. Учитывая наглядность конструкции, электрофорная машина своими руками может быть сделана достаточно просто. Даже человек, который не имеет специального технического образования, может ее собрать и эксплуатировать в свое удовольствие.
На чем основана работа электрофорной машины?
Использование взаимного усилия обоих дисков – именно этот принцип является основным в данном устройстве. Эффект возникновения разности потенциалов, а затем разрядов и искр достигается правильным расположением секторов. Конечно, существуют разработки, использующие и чистые диски, но подобный коэффициент полезного действия они не выдают. Такие конструкции часто применяются в небольших учебных учреждениях. Расстояние между дисками у такого прибора, как электрофорная машина, играет важнейшую роль и оказывает существенное влияние на достижение необходимого напряжения на конденсаторах.

Электрофорная машина с момента ее изобретения (а это начало восемнадцатого века) пережила много изменений. Но основная идея осталась. Основой конструкции машины являются диски с наклеенными обкладками (металлическими полосами). Приложив определенную механическую силу с помощью ременной передачи, их можно вращать в разные стороны, противоположные друг другу. На обкладке одного диска возникает положительный заряд. Он притянет к себе другой заряд (отрицательный). Положительный уйдет через проводник со щетками (нейтрализатор), который касается противоположной обкладки. Поворачивая диски, получаем заряды, аналогичные исходным. Но они уже будут влиять на другие обкладки. Учитывая то, что диски вращаются в противоположные стороны, заряды стекаются к коллекторам. У такого демонстрационного аппарата, как электрофорная машина, принцип работы основан именно на этом моменте. На щетках обоих дисков, которые не касаются их поверхности и находятся по краям, заряды в какой-то момент становятся настолько огромными, что в воздушном пространстве возникает пробой, и проскакивает электрическая искра. Именно поэтому к коллекторам можно присоединять дополнительные конденсаторы разных емкостей, что придаст большую красоту эффекту возникновения разряда.
Техника — молодёжи 1964-03, страница 20
С Василием Лавровским я познакомился в Омске. Разговор начался с самых общих тем, а потом он вдруг спросил:
— Вы когда-нибудь видели электрогенераторы, которые не имеют ни одного метра провода, но могут давать ток мощностью в сотни тысяч киловатт? Думаете, невозможно? Так вот я вам сейчас расскажу про электрогенератор, который можно построить без меди, изоляционных материалов, с ничтожным количеством электротехнической стали, без повышающих трансформаторов для передачи тока на большие расстояния.
И я услышал историю, похожую на фантастическую повесть…
ДАВНО ЗАБЫТЫЕ
Впервые электричество получили трением. На этом принципе и былн построены электростатические машины. А затем эти машины почти перестали применяться — только некоторые разновидности их используются в ядерной физике, электронике и других областях. Дело в том, что хотя они и дают ток очень высокого напряжения, но сила тока при этом ничтожно мала.
А что, если этим высоковольтным машинам дать еще мощность? Ведь тогда получится генератор с неограниченными возможностями…
Но как? Многим такая задача казалась практически неразрешимой. Однако ученые не теряли надежды. «Мне представляются совершенно возможными, — писал академик А. Ф. Иоффе больше двадцати лет назад, — электростатические генераторы на тысячи и десятки тысяч киловатт…»
Между тем до снх пор электрический ток продолжали и продолжают получать с помощью сложных, дорогих генераторов, которые работают на принципе электромагнитной индукции. ,
ГЕНЕРАТОР ИЗ КОНДЕНСАТОРА
Разноименно заряженные пластины конденсатора взаимно притягиваются. Чтобы раздвинуть их в разные стороны, потребуется затратить механическую силу, которая должна превзойти силу электрического взаимодействия. Затраченная механическая энергия уйдет на повышение разности потенциалов на обкладках конденсатора. Емкость конденсатора уменьшится, а напряжение на его обкладках возрастет.
Вот этот принцип и послужил основой для создания емкостных генераторов Лавровского.
Если мы сделаем модель, на которой одна обкладка конденсатора остается неподвижной, а вторая будет вращаться по часовой стрелке, и присоединим к коллектору и неподвижным обкладкам возбудитель, то…
Посмотрите на рисунок. Можно убедиться, что при удалении обкладки «а» от обкладки «ж» и уменьшении емкости от Смакс.до С мин. напряжение возрастет во столько раз, во сколько Смаке. ОТНОСИТСЯ К Смнн. Так, если возбудитель дает 1 ООО в,
а отношение емкостей равно 50, то генератор отдаст на нагрузку 50 тыс. в.
Но… такие машины хороши будут разве что в космосе, нбо для их успешной работы нужен абсолютный вакуум. На земле мешает малая диэлектрическая постоянная воздуха. Между пластинками или кольцами происходит разряд, накопленные заряды исчезают.
В вакууме же пробивное напряжение достигает 100 млн. в на 1 см расстояния между обкладками. В этих условиях эа счет большого напряжения можно получать и удерживать большие заряды.
Чтобы раздвинуть обкладки конденсатора. надо приложить силу.
ГЕНЕРАТОР ВАСИЛИИ
Владимир СТРЕЛКОВ, наш спец. корреспондент Рис. И. КАЛЕДИНА
В земных условиях Лавровский предложил применить материал с высокой диэлектрической постоянной — титанат бария.
…Но опять помешал воздух, на этот раз уже из-за другой своей особенности. Самая ничтожная прослойка воздуха между ротором и статором из титаната бария сводила на нет чудесные свойства керамики: с одной стороны, иметь сверхвысокую диэлектрическую проницаемость, высокую поляризацию среды, .с другой — быть хорошим изолятором. Воздух почти не поляризовался, и генератор работал с ничтожным кпд. И все-таки Лавровский нашел выход.
ВЫРУЧАЕТ МИРНЫИ АТОМ…
Ионизированный газ — вот отличная среда для поляризации!
Еслн воздух в зазоре «ротор — статор» ионизировать, то он обретает высокую диэлектрическую проницаемость, достаточную для хорошей работы машины.
Для этого надо участки ротора и статора покрыть радиоактивным изотопом с альфа-распадом. Тогда в зазоре появится нужная поляризация. Частицы с альфа-распадом позволят отказаться от сложной и дорогой защиты.
По мере разрежения воздуха количество ионизирующего изотопа, который надо применить в зазоре, будет сокращаться. И чтобы до предела уменьшить количество радиоактивных веществ и ‘вместе с тем повысить их эффективность, можно в зазоре использовать «грубый вакуум» — 5— 10 мм ртутного столба.
…ПЛЮС ПЛАСТМАССА
Но титанат бария — это керамика. Прочность ее значительно меньше стали. Ротору из титаната бария нельзя дать большое количество оборотов — он разлетится на куски.
вакуум 5″l(lft.
ВОЗБУДИТЕЛЬ
•МЕТААА.ПОКРЫТЫЙ И30ЩИ0ННЫЕ НАКЛМКИ РААШКШЫМ ШОПОМ НЗ ПЛАСТМАССЫ
А для генераторов, которые устанавливают на электростанциях, требуются скорости до 3 тыс. об/мин.
ВОЗБУДИТЕЛЬ
ТИТАНАТ БАРИЙ
НАГРУЗКА
Так может быть построена простейшая модель емкостного генератора для работы в космосе.
НАГРУЗКА
На помощь пришла керамика.
Оказалось, можно не вращать тяжелую керамику. «Бывший» керамический ротор делается неподвижным. Между ним и статором помещается металлическое н-олесо с пластмассовыми изоляционными вставками. Когда вставка во время движения находится против изолированных обкла-
До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.
Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.
Ионизатор USB, который является основным компонентом проекта, можно найти здесь:
Нам понадобятся:
- Ионизатор.
- Изолированная проволока.
- Термоусадочная трубка.
- Горячий клей.
- Припой и паяльник.
- Батарейки-кнопки на 1.5v.
- Изолента.
Шаг 1: Разбираем ионизатор
Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.
Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.
Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.
Шаг 4: Запитываем генератор
Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.
Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.
Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.
При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.
Немного из истории изобретения
Электрофорная машина разработана в далеком тысяча восемьсот шестьдесят пятом году Августом Теплером, немецким физиком. Что любопытно, совершенно независимо другой ученый-экспериментатор Вильгельм Гольц изобрел подобную конструкцию, но даже более совершенную, так как его аппарат позволял получить большие значения разностей потенциалов и мог служить источником постоянного тока. К тому же гольцевская машина была намного более простой в конструкции. В конце девятнадцатого века английский экспериментатор в области электричества и механики Джеймс Вимшурст усовершенствовал агрегат. И по сегодняшний день именно его вариант (пусть и чуть более современный) используется для демонстраций электродинамических опытов благодаря способности создавать огромную разность потенциалов между коллекторами. Электрофорная машина была улучшена уже в сороковых годах двадцатого века ученым по фамилии Иоффе, который разработал новый тип электростатических генераторов для осуществления питания рентгеновской установки. Хотя машину Вимшурста сейчас не используют для непосредственной задачи добычи электрической энергии, она является историческим экспонатом, который иллюстрирует историю развития инженерной мысли и научно-технического прогресса.
Каков принцип работы аппарата?
Электрофорная машина с момента ее изобретения (а это начало восемнадцатого века) пережила много изменений. Но основная идея осталась. Основой конструкции машины являются диски с наклеенными обкладками (металлическими полосами). Приложив определенную механическую силу с помощью ременной передачи, их можно вращать в разные стороны, противоположные друг другу. На обкладке одного диска возникает положительный заряд. Он притянет к себе другой заряд (отрицательный). Положительный уйдет через проводник со щетками (нейтрализатор), который касается противоположной обкладки. Поворачивая диски, получаем заряды, аналогичные исходным. Но они уже будут влиять на другие обкладки. Учитывая то, что диски вращаются в противоположные стороны, заряды стекаются к коллекторам. У такого демонстрационного аппарата, как электрофорная машина, принцип работы основан именно на этом моменте. На щетках обоих дисков, которые не касаются их поверхности и находятся по краям, заряды в какой-то момент становятся настолько огромными, что в воздушном пространстве возникает пробой, и проскакивает электрическая искра. Именно поэтому к коллекторам можно присоединять дополнительные конденсаторы разных емкостей, что придаст большую красоту эффекту возникновения разряда.
Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.
Как это работает — теория
Вращение дисков с металлическими секторами приводит к переносу электрического заряда внутри машины, который хранится в конденсаторах до момента возникновения искры или заряда утечки.
Самые важные части в электрофорном агрегате – нейтрализаторы. Это две перемычки со щетками установленные крестом. Если хотя бы одну из четырех щеток отодвинуть от сегментов, машинка перестает работать. Хотя казалось бы диски вращаются, электризуются трением о воздух и значит электричество вырабатывается.
Нейтрализатор делает следующее: он перетаскивает заряд с одной половинки диска на другую и диск оказывается не просто заряжен, а заряжен избирательно — не по всей плоскости.
Другими словами, диск собирает заряды из воздуха, а нейтрализаторы их перераспределяют. Заряд снимается щеткой, движется по проводнику к противоположной щетке и в тот момент когда напротив сегмента появится сегмент второго диска — перескакивает на него.
Далее этот сегмент подходит к щетке второго нейтрализатора и процесс повторяется, но уже на другом диске. Таким образом происходит кругооборот зарядов между дисками в процессе которого воздух между сегментами ионизируется и разделяется. В результате накачки увеличивается напряжение, кроме того в машинке работает эффект раздвигания обкладок конденсатора, что также способствует увеличению напряжения.
Миниатюрное устройство по созданию таких безвредных молний (но не для микроэлектроники) легко сделать своими руками.
Данный электростатический генератор способен генерировать более 20000 Вольт, но малый ток делает его безопасным для использования без специальных мер предосторожности.
Введение
История исследования и открытий в области электричества тесно связана с использованием разнообразных конструкций электрических машин устройств, для получения электрических зарядов, называемых также электростатическими машинами. Конструкция электростатических машин основана на принципе получения электрической энергии за счет механической работы, затрачиваемой при приведении в движение (вращение) подвижных частей машины, в первую очередь, на преодоление сил притяжения или отталкивания, действующих в каждый момент между разноименно и одноименно наэлектризованными движущимися частями машины.
Изучение принципов действия электростатических машин, подразделяемых на машины трения и электрофорные машины, способствовало лучшему пониманию природы электричества, поэтому они являлись не только устройствами для получения больших электрических зарядов, но и научно-исследовательскими стендами.
В отличие от машин трения действие электрофорных машин основано на возбуждении электричества благодаря явлению индукции, т.е. без непосредственного соприкосновения вызывающих электризацию частей машины.
В данной курсовой работе с помощью электрофорной машины я продемонстрирую изучение основ электродинамики и электростатики, характер распределения зарядов на поверхности проводника, введение понятия «электроёмкость» с помощью электрофорной машины.
Конструкция электрофорной машины
Первая электростатическая машина появилась около 1650 г. Ее сконструировал немецкий ученый, бургомистр Магдебурга Отто фон Герике. Работа этой машины основывалась на явлении электризации тел трением. В дальнейшем было создано большое количество разнообразных конструкций электрических машин трения, но все они имели общий существенный недостаток: работа с такими машинами требовала приложения очень больших физических усилий.
Электрофорная машина была создана в 1865 немецким физиком-экспериментатором Августом Теплером. Одновременно с Теплером и независимо от него электрофорную машину изобрёл другой немецкий физик Вильгельм Гольц (1836-1913). Машина Гольца по сравнению с машиной Теплера позволяла получать большую разность потенциалов и могла использоваться в качестве источника постоянного электрического тока. В то же время она имела более простую конструкцию. Между 1880 и 1883 годом её усовершенствовал английский изобретатель Джеймс Вимшурст. Используемые в настоящее время для демонстраций электрофорные машины представляют собой модификации машины Вимшурста.
Электростатика — раздел электродинамики изучающей взаимодействие неподвижных электрических зарядов. В процессе изучения этой науки в качестве демонстрационного вспомогательного прибора используют электрофорную машину или генератор Вимшурста. Она предназначена для получения больших зарядов и высоких разностей потенциалов. Используя явление электромагнитной индукции на полюсах машины накапливаются электрические заряды, а разность потенциалов на разрядниках достигает нескольких сотен тысяч вольт. Ее прототип был создан в 1865 году. Машина состоит и двух вращающихся в противоположные стороны дисков. На стойках двух лейденских банок. Внешние обкладки банок соединены между собой по средствам подвижной пластины расположенной между двумя зажимами, внутренние соединены с отдельными кондукторами. Ручки кондукторов изолированы во избежание удара током при изменении положение кондукторов относительно друг друга. На внешней стороне дисков нанесены аллюминивые секторы. В соприкосновение с ними входят счетки. Диски приводятся в движение непосредственно при помощи ременной передачи (рисунок 1). Все части машины смонтированы на пластмассовых стойках, которые вместе с лейденскими банками укреплены на общей деревянной подставке. При вращении дисков один из секторов несет некий положительный заряд, а противоположный ему сектор отрицательный. Когда секторы движутся в разные стороны их потенциалы растут за счет работы выполняемой против сил их электростатического притяжения. При вращении дисков происходит разделение заряда. Между кондукторами мы видим разряд и слышим треск. Сила тока зависит от быстроты вращения дисков. Она не велика, но напряжение огромно. Поэтому не допускается контакт с кондукторами.
Рисунок 1
Принцип действия электрофорной машины
Электрофорная машина двойного вращения состоит из двух встречно вращающихся дисков. На обоих дисках находятся проводящие сегменты, которые изолированы друг от друга. Две обкладки с обоих сторон дисков вместе образуют по одному конденсатору. Из-за этого ее еще иногда называют — конденсаторной машиной. На каждом диске находятся также по нейтрализатору, который отводит заряд щетками с двух противоположных сегментов диска на землю. С левой и правой стороны дисков находятся коллекторы. В них поступают сгенерированные заряды снятые гребенками с краев как переднего, так и заднего диска. В большинстве случаев заряды собираются в конденсаторы, такие как, например, Лейденская банка для произведения более сильных искр. Перед началом эксплуатации необходимо наэлектризовать оправы разноименными зарядами (например, р +, а р’ -). Эти оправы (полоски) в соответствии с явлением индукции будут действовать на вращающийся диск В (рисунок 2), а через него на гребенки О и О’, при этом р, обладая положительным зарядом, вызовет через влияние появление отрицательного заряда в части m диска В и притянет тот же заряд из гребенки О, который отложится в части m’ диска В.
Рисунок 2
Таким образом, диск В электризуется отрицательно на обеих своих сторонах в m и m’, в то время как гребенка О и кондуктор Сг заряжаются положительно. По мере вращения диска m и m’ перемещаются к окну F’, где поверхность m’ усиливает влияние полоски р’, притягивая из гребенки С’ положительный заряд, заряжая гребенку О’ и кондуктор С’г’ отрицательно. В свою очередь m, оказывая индуктивное воздействие на полоску р’, притягивает положительный заряд, поддерживая ее в отрицательном состоянии. Затем части m и m’ снова проходят перед окном F и т.д., повторяя последовательно описанный процесс.
Описание работы
Схема электрофорной машины Уимсхёрста
Машина состоит из двух соосных дисков (А и В) из изолирующего материала, на которые нанесены проводящие секторы (см. схему). Диски приводятся во встречное вращение с равной угловой скоростью. Предположим, что сектор A1 вначале несёт небольшой избыточный положительный заряд, а сектор B1 — отрицательный. Когда A1 движется влево, а B1 — вправо, их потенциалы растут за счёт работы, выполняемой против силы их электростатического притяжения.
Когда A1 достигает положения напротив сектора B2 пластины B, который в этот момент контактирует со щёткой Y, он будет под высоким положительным потенциалом и, таким образом, вызовет разделение заряда в проводнике, соединяющем Y и Y1, перенеся большой отрицательный заряд на B2 и большой положительный заряд на удалённый сектор, которого в этот момент касается щётка Y1.
Двигаясь дальше, A1 касается щётки Z и частично разряжается во внешнюю цепь (нагрузкой может быть, например, лейденская банка). При последующем вращении дисков, А1 касается щётки X, которая связана проводником со щёткой X1, и снова получает заряд, на этот раз отрицательный, который отталкивается отрицательно заряженным сектором B2 (находящимся в этот момент напротив сектора на диске А, контактирующего со щёткой X1). Таким образом, положительный заряд переносится справа налево верхней частью диска А, а отрицательный слева направо его нижней частью.
Схема работы электрофорной машины. Секторы представлены движущимися квадратами, контактные щётки — стрелками. Красным цветом обозначен положительный заряд, зелёным — отрицательный.
This entry was posted in Ремонт. Bookmark the <a href=»https://kabel-house.ru/remont/kak-sdelat-elektrofornuyu-mashinu-v-domashnih-usloviyah/» title=»Permalink to Как сделать электрофорную машину в домашних условиях» rel=»bookmark»>permalink</a>.
В наше время на дорогах все чаще появляются электрические виды транспорта. Многие крупные производители с мировым именем уже наладили производство серийных электрокаров, а в городах активно развиваются сети электрозаправочных станций. Но, как показывает практика, электромобиль – это не самое дешевое и доступное удовольствие, поэтому многие энтузиасты и любители создавать что-либо своими руками задумываются о том, как сделать электромобиль своими руками.
Что такое электромобиль

Прежде чем переходить к вопросам построения электрокара, следует понять, что это вообще такое. Электромобиль – это тот же автомобиль, но в движение его приводит электрический привод, а вместо бака для жидкого топлива в электрокарах установлены батареи, которые питают электрический мотор.
Но это лишь поверхностное представление. Ведь для работы электропривода используются соответствующие контроллеры и драйверы. Для регулировки заряда/разряда батареи также используются контроллеры. Также изменения касаются и самой конструкции кузова, шасси и многих других частей автомобиля.
Почему люди пытаются сделать электромобиль самостоятельно
Вопрос, почему кто-то решил сделать электромобиль своими руками, имеет множество ответов. Ведь у каждого могут быть свои мотивы. Кому-то просто интересно сделать что-то самостоятельно, другие пытаются сэкономить, третьи не доверяют производителям и так далее. Поэтому вопрос изготовления электрокара самостоятельно является сугубо личным.
При этом важно отметить один довольно важный фактор: современные электромобили, как правило, имеют стоимость приблизительно на 30% выше, чем альтернативная модель с двигателем внутреннего сгорания.
Завышенная стоимость объясняется тем, что в электрокары устанавливаются дорогие батареи, а также недешевое электрооборудование (силовая установка с контроллерами). Поэтому когда в гараже стоит довольно старая машина, которую в принципе уже и не жалко, многие решаются сделать из нее дешевый электромобиль, сэкономив значительную сумму на кузове и большинстве кузовных деталей, а также на шасси.
Стоит ли делать электрокар самостоятельно
Ответ на вопрос, стоит ли создавать самодельный электромобиль, зависит от наличия у вас свободного времени, свободных финансов, а также достаточной мотивации.
Как бы вы ни старались сэкономить, даже при наличии подходящего для переделки автомобиля вам потребуется серьёзно потратиться на покупку комплектующих (по большей части для электрической силовой установки)
И если есть заинтересованность и средства для данного мероприятия, то вполне возможно создать авто с электроприводом, с неплохим запасом хода и ходовыми характеристиками. Причем ходовые качества будут напрямую зависеть от выбранного «донора» (автомобиля для переделки).
Как сделать электрокар своими руками
Итак, прежде чем переходить к действиям, следует продумать их порядок. И в первую очередь, чтобы собрать электрокар в России своими руками, вам потребуется подготовить следующее:
- найти подходящие чертежи;
- подобрать подходящий кузов;
- приобрести соответствующий электропривод;
- определиться с трансмиссией (прямой привод от электромотора или установить редуктор);
- продумать салон;
- найти и подготовить запчасти;
- выбрать аккумулятор;
- приобрести узлы управления (контроллеры).
Кроме этого, следует определить, какие именно требования у вас будут к будущему электрокару, будет это авто для загородных поездок или мини-электромобиль, либо же вам нужна просто электрическая тележка для определенных целей.
Помимо всего прочего, для подобного мероприятия вам потребуются определенные навыки и знания об устройстве автомобиля и о его ремонте.
Итак, давайте рассмотрим все эти пункты подробнее. Ведь именно от этого будет зависеть и сам процесс, как сделать электромобиль самому.
Необходимые чертежи
Чертежи представляют собой схему подключения электрооборудования, контроллеров и прочих электронных частей к электроприводу, а также к элементам управления автомобилем. Придется произвести некоторые расчеты, которые будут учитывать вес выбранного кузова, максимальную скорость и подбор оптимальной мощности. Для этого существуют определенные формулы.
В наше время существуют готовые наборы, в комплект которых входит:
- электропривод (мощность можно выбрать самостоятельно);
- блок управления (контроллер) – они также бывают разными, и выбор будет зависеть от мощности привода и емкости батареи;
- АКБ – собранная из отдельных ячеек, подключенных к плате БМС (плата управления заряда/разряда – по сути, контроллер АКБ);
- элементы управления – педаль (или ручка) газа, тормозные рычаги (электронный тормоз), круиз-контроль, реверс (задний ход) и так далее. При этом обязательными являются только педаль газа и кнопка реверса. Все остальное – уже по желанию.
Чертежи по подключению таких наборов прилагаются в комплекте. Например:

Весь этот комплект можно подобрать и самостоятельно из отдельных комплектующих. Но важно понимать, что при покупке готового набора производитель предлагает оптимизированный комплект со схемой подключения, что избавляет вас от множества вычислений и возможных проблем.
Также потребуется переделать и сам кузов автомобиля, чтобы вместо двигателя внутреннего сгорания установить электрическую силовую установку, которая имеет другие размеры и способы крепления.
Выбираем кузов
При выборе кузова для переделки в электромобиль следует учитывать два важных параметра:
- вес – чем меньше вес, тем лучше;
- размеры – в этом вопросе важным является место для размещения батареи, которая будет питать электропривод. Батарея должна иметь довольно большую емкость и мощность, а это означает, что АКБ будет иметь серьезные габариты и вес.
Также не стоит забывать и об аэродинамических характеристиках. Чем лучше аэродинамика автомобиля, тем меньше сопротивляемость ветру, а следовательно, тем меньше автомобиль будет тратить мощности при езде.
Это, в свою очередь, влияет на запас хода. Как правило, в самодельных электромобилях батареи размещаются в багажнике, так как это наиболее оптимальный вариант, который не требует переделки салона. Но в этом случае меняется центр тяжести, а из-за большого веса батареи придется увеличить жесткость пружин подвески.
В остальном подойдет практически любой кузов, который придется немного доработать. И это будет зависеть от того, какой именно привод вы выберете, как именно он будет размещаться и так далее. Ведь есть разные варианты, вплоть до того, чтобы оставить ДВС на своем месте, а электропривод установить на задние колеса. К этому вопросу мы вернемся немного ниже.
Еще один немаловажный фактор заключается в том, чтобы подобрать машину с передним приводом в качестве «донора», чтобы не терять часть мощности на трущихся деталях в крестовине карданного вала.
В идеале вес «донора» должен быть в пределах 600-700 кг. Но такой вариант найти довольно сложно. И если даже автомобиль для переделки будет более тяжелым, стоит обратить внимание на модели с хорошим накатом.
Выбор электропривода
Наверное, самый важный вопрос – какой электродвигатель для электромобиля выбрать. И здесь имеется масса вариантов:
- прямой электропривод;
- привод через редуктор;
- мотор-колесо – двигателем являются сами колеса.
Также существует множество вариантов по мощности, от самых простых и слабых до весьма мощных, которые превосходят по мощности ДВС. И если у вас есть знания в этой области, вы вполне сможете сделать самодельный электродвигатель.
Но самостоятельно создать довольно мощный и при этом компактный двигатель довольно сложно, и для этого требуется наличие соответствующих комплектующих и знаний в электротехнике.
Если речь идет о мини-электромобиле, детском электрокаре или электрической тележке, то вполне может подойти двигатель от бытовой техники, например, от стиральной машинки.
Маленький и легкий мини-электромобиль вполне сможет передвигаться и с двигателем от стиральной машины. Конечно, важно понимать, что полноценный автомобиль с электротягой с таким приводом вы не сделаете, но для детской игрушки или для тележки для перевозки грузов этого будет вполне достаточно.
Еще одним довольно неплохим вариантов является мотор-колесо. В этом случае автомобиль будет подвержен минимальным переделкам. Более того, вы сможете даже оставить двигатель внутреннего сгорания, собрав настоящий гибрид. Причем здесь возможны два варианта:
- оставить ДВС для движения автомобиля при разряженной батарее;
- вместо ДВС установит электрогенератор, который будет питать электропривод и заряжать батарею.
В любом случае, какую бы компоновку вы ни выбрали, следует рассчитать оптимальную мощность двигателя. Для этого расчета имеется довольно сложная формула, которая учитывает:
- коэффициент аэродинамического сопротивления;
- площадь поперечного сечения;
- массу автомобиля;
- силу трения асфальта;
- максимальную скорость;
- угол наклона дорожного полотна и многое другое.
Это довольно сложно, да и не все показатели возможно найти. Ведь мы не сможем высчитать силу сопротивления аэродинамики, например, у советского автомобиля ВАЗ 2107.
Поэтому для упрощения вычислений вам нужно знать, что достаточной мощностью для каждой тонны веса автомобиля будет 7,5 кВт. Такая мощность позволит ездить со скоростью 60 км/ч.
Конечно же, лучше делать электрокар с запасом мощности, поэтому при полной массе авто (с учетом батареи, электрической силовой установки и так далее) в одну тонну стоит использовать электропривод минимум на 10 кВт. И это при условии подключения электромотора к КПП автомобиля через соответствующий переходник (ниже мы подробнее рассмотрим этот вопрос).
Если рассчитывать мощность электромотора по параметру лошадиных сил, то 0,75 кВт приравнивается к 1 л. с. Это означает, что для получения, например, 100 л. с. вам потребуется электромотор на 75 кВт.
При этом важно знать, что электропривод имеет более высокий крутящий момент, поэтому такая мощность не обязательна. Также стоит учитывать, что электрические двигатели бывают разных типов:
- синхронный;
- асинхронный.
Первый вариант работает от постоянного тока и имеет довольно высокую мощность. Но такие приводы устанавливаются через КПП, так как они имеют ограничения по количеству оборотов в минуту.
Асинхронные же приводы работают от переменного тока, и их скорость вращения значительно выше. Поэтому такие приводы можно использовать без КПП, посредством прямого привода.
В первом случае (синхронный мотор) должен иметь выходной вал со шлицами для присоединения к КПП. Кроме этого, любой электропривод должен иметь ребра для охлаждения, так как при высоких нагрузках они нагреваются.
Трансмиссия
Как уже было сказано выше, электропривод можно подключать к уже имеющейся коробке переключения передач автомобиля-«донора». В этом случае привод должен иметь вал со шлицами. Но даже при таком условии потребуется соответствующий переходник, посредством которого электромотор и будет соединяться с КПП.
Это один из наиболее простых и эффективных вариантов, так как потребуется минимум переделок. А задний ход будет включать сама коробка передач, управление которой остается неизменным (рычаг переключения передач в салоне).
Как правило, при использовании набора для переделки авто в электромобиль переходник для подключения электромотора к коробке передач прилагается в комплекте
Если же использовать прямой привод (без КПП), то придется предусмотреть кнопку реверса, при нажатии на которую двигатель будет крутиться в обратную сторону, тем самым обеспечивая задний ход.
Салон
Салон абсолютно не важен для переделки машины в электромобиль. Единственное, что потребуется переделать, – это место для вывода информации о состоянии батареи (напряжение, емкость и так далее).
Врезать информативные экраны можно как в приборную панель, так и отдельно в любом месте на торпеде. Также, если вы планируете расположить батарею в салоне, вам потребуется подходящее для этого место.
Поиск и покупка необходимых запчастей
Как уже говорилось выше, вы можете приобрести уже готовый набор для переделки. Найти такой довольно просто: в интернете достаточно магазинов, предлагающих подобные товары.
Если же вы решили самостоятельно собрать нужные детали, то потребуется найти оптимальный комплект, который состоит из:
- электродвигателя:
- блока управления.
- рычагов управления (педаль акселерометра и так далее).
Также потребуется переходник для подключения мотора к коробке передач, АКБ и контроллер заряда/разряда. Подобрать все это самостоятельно довольно сложно, так как комплектующие должны быть оптимизированы между собой.
Намного проще, быстрее и зачастую дешевле купить готовый набор, в котором производитель уже подобрал подходящие компоненты. Цены на такие комплекты могут довольно сильно варьироваться и зависят от производителя, а также от максимальной мощности. Например, комплект МОТОР SOLECTRIA AC42 с контроллером SOLECTRIA UMOC 440 с максимальной мощностью 80 кВт обойдет приблизительно в 360 000 рублей.
Относительно недавно в продаже появился KIT-комплект для электромобиля от Tesla Motors. Стоимость такого набора следует уточнять у продавца.
Существуют и менее дорогие альтернативы, например, китайские. Обойдутся они значительно дешевле. Но и по качеству, а также по мощности они хуже.
Подбор аккумулятора и зарядки
Аккумулятор для самодельного электромобиля является одним из важнейших компонентов. Ведь именно от АКБ зависит запас хода, а также частично – мощность привода. В первую очередь батарея должна соответствовать двум параметрам:
- напряжение должно соответствовать требованиям электромотора;
- АКБ должен выдавать большую силу тока, около 400 ампер.
Эти требования обязательны для того, чтобы система вообще смогла работать. А вот запас хода уже зависит от емкости аккумулятора, которая измеряется в кВт/ч. Чем больше кВт/ч (больше емкость), тем больший запас хода мы получим. Но при этом важно понимать, что увеличение емкости влечет за собой увеличение массы АКБ. Поэтому здесь важно соблюсти оптимальный баланс.
Кроме этого, существуют различные типы АКБ:
- Свинцово-щелочной – те АКБ, которые используются в обычных машинах. Они способны выдавать большую силу тока, но при этом довольно быстро расходуют свой заряд и имеют большую массу. Поэтому это не самый лучший выбор для электрокара.
- Li-ion – самые распространенные батареи, которые используются практически во всех областях – от фонариков до электромобилей. Именно такие батареи используются в автомобилях Tesla. Обычно это небольшие элементы (стандарта 18650), которые объединяются в группы, создавая большие батареи с нужной емкостью и напряжением.
- Гелиевые – относительно новый тип батарей. Они также подходят для электромобилей по своим техническим характеристикам, но стоят несколько дороже Литий-ионных. Поэтому применяются в данной области реже, и, как правило, только в детских электрокарах или в складской технике, где пробег не столь важен.
В наше время в электромобилях преимущественно используются Li-ion батареи. Благодаря небольшим размерам элементов появляется возможность собирать батареи с любым напряжением и емкостью.
Из школьной программы физики мы помним, что при последовательном соединении суммируется напряжение, а при параллельном – емкость. Таким образом, можно даже самостоятельно собрать батарею с необходимыми параметрами. Важно: для создания больших батарей из элементов 18650 потребуется точечная сварка.
Как уже говорилось выше, существует вариант электромобиля без батареи. По сути, это гибрид с питанием от генератора.
Что касается зарядки для АКБ, то независимо от того, какие батареи вы будете использовать, зарядное устройство (ЗУ) должно также соответствовать двум параметрам:
- напряжению;
- силе тока.
Для зарядки АКБ используется соответствующий контроллер, который управляет зарядом/разрядом каждой ячейки, выравнивания показатели к общему знаменателю. Именно этот контроллер и будет задавать параметры ЗУ – напряжение и максимальную силу тока.
Для подключения зарядки к электромобилю используются соответствующие коннекторы, которые способны выдерживать высокое напряжение и силу тока.
В самодельном варианте вы можете использовать эти же стандарты либо использовать любой другой вид разъема. Главное, чтобы он смог выдерживать большие токи.
Дополнительные комплектующие
Блок управления (он же контроллер) в электромобиле выполняет чуть ли не главную роль. Именно он контролирует работу электромотора, оценивает емкость батареи и запас хода, позволяет вам управлять оборотами двигателя и так далее.
Собрать контроллер своими руками в принципе возможно, имея соответствующие знания в радиоэлектронике. Но даже в этом случае сделать это крайне сложно. А так как от контроллера зависит ваша безопасность, то лучше приобрести уже готовый от производителя.
Блок управления должен быть совместим с выбранным электроприводом и отвечать всем техническим характеристикам (причем с запасом мощности).
Еще один важный элемент – контроллер заряда/разряда батареи. Без него существует высокий риск перегрева батареи и выхода ее из строя. Поэтому наличие такого контроллера обязательно.
Называется он BMS – плата защиты АКБ от перезаряда/переразряда) и стоит около 300 долларов США. При этом стоимость может варьироваться в зависимости от технических параметров, а также от того, какое количество ячеек вы будете использовать.
Сборка электрокара с асинхронным двигателем
Как уже говорилось выше, преимуществом асинхронных двигателей является высокое количество оборотов, благодаря чему можно избавиться от КПП полностью, сделав прямой привод на колеса. Кроме того, такие приводы имеют максимально простую конструкцию. Так как они работают от переменного тока, то используются в основном в гибридных транспортных средствах, где источником питания является бензиновый или дизельный генератор.
Однако все это сопровождается определенными трудностями. Так как батарея электромобиля выдает постоянный ток, при построении электромобиля с асинхронным двигателем вам придется дополнительно установить инвертор, который преобразует постоянный ток в переменный. А это влечёт дополнительные затраты.
Такой вариант будет актуален только в некоторых случаях. Например, если вы хотите создать машину с гибридной силовой установкой. Несмотря на все особенности асинхронного двигателя, его можно использовать и в стандартной компоновке, через КПП. Но в любом случае придется предусмотреть устройство для преобразования постоянного тока в переменный для работы привода.
Самодельная электротележка
Если вы хотите изготовить самодельную электрическую тележку для перевоза грузов, то задача значительно упрощается. Для этого достаточно сварить простую раму с платформой, на которую будет помещен груз, продумать крепеж колес и привод.
Мощный электромотор в этом случае не потребуется, вполне достаточно двигателя на 1-5 кВт. Самодельная электротележка нуждается во все тех же компонентах:
- электроприводе;
- блоке управления с рычагами (ручками управления);
- батарее;
- контроллере заряда/разряда (БМС плата).
Но, в отличие от электромобиля, в данном случае высокая мощность не нужна. Главное – придумать расположение всех этих элементов и вывод для рычагов управления, а также подключить все по определенной схеме.
Как рассчитать количество денег и времени для сборки
Рассчитать, сколько времени потребуется для сборки электромобиля, довольно сложно, ведь все зависит от личных умений и знаний. Опытный автомеханик при наличии нужных инструментов и запчастей способен переделать машину в электрокар за одну неделю. В гаражных условиях это время значительно увеличивается.
Рассчитать количество средств, которое потребуется для данного мероприятия, проще: всё упирается в стоимость запчастей и комплектующих. Выше мы уже приводили приблизительную стоимость комплекта для переоборудования, который может стоить около 360 000 рублей. Если вы самостоятельно подбираете каждый компонент, то все будет зависеть от выбранных деталей.
Самые большие затраты идут на батарею. И здесь все зависит от того, какой тип АКБ вы выбрали. Li-ion батарею можно собрать приблизительно за 1000-5000 долларов США (в зависимости от емкости батареи). К этой стоимости нужно добавить цену на BMS-плату, которая обойдется приблизительно в 300 долларов
Указать точные суммы нет возможности, так как в этом деле слишком много переменных. Все зависит от выбранного донора, комплектующих, мощности привода и так далее. Например, чтобы построить мини-электромобиль, уйдет меньше финансов, чем при сборке полноценного авто, так как потребуется меньше мощности силовой установки, а также меньше емкости батареи.
Подведем итоги
Указать точно, что потребуется для переоборудования авто в электромобиль, а также сколько денег на это потребуется, крайне сложно. Но с полной уверенностью можно сказать, что сделать это вполне реально, а конечный результат (при правильном подходе) будет иметь меньшую стоимость по сравнению с новым электромобилем от производителя.
Конечно, для этого нужны соответствующие знания в электротехнике, радиоэлектронике и автомеханике, а также достаточно свободного времени и средств. Стоит ли этим заниматься, зависит только от вас.
Это весьма кропотливое занятие, которое, возможно, лучше доверить опытным специалистам. Более того, в наше время электромобили пользуются все большим распространением, цены на них постепенно снижаются, делая их доступными.
Собираю Электро Оку за 1 видео. Электромобиль своими руками: Видео
Рейтинг: 




Загрузка…








































