Электронная нагрузка своими руками Сообщество ВК транзисторы irf резисторы 5 ватт 0. Guest Login Sign Up Site settings. Go to:. Uploaded By: Myvideo.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Самодельная электронная нагрузка, и как ею проверить блок питания на силу тока и падение напряжения
Easyelectronics.ru
Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими. Также у нас есть DIY сообщество , где приветствуются обзоры вещей, сделанных своими руками.
Продолжаем обслуживать старый хьюлет. Идеальный номер два? Зарегистрироваться Логин или эл. Напомнить пароль Пароль. Войти Запомнить меня. Войти или Зарегистрироваться. Добавить обзор. Блог Магазины Китая. RSS блога Подписка. Время от времени у радиолюбителей возникает необходимость в электронной нагрузке. Что такое электронная нагрузка? Ну, если по простому, это такой прибор, который позволяет нагрузить блок питания или другой источник стабильным током, который естественно регулируется.
Как видим, они отлично сочетаются по заявленным параметрам. Итак, нагрузка. Платка красивая, края фрезерованы, пайка ровная, флюс отмыт. На плате есть два силовых разъема для подключения собственно нагрузки, разъемы для подключения потенциометра 3-контактный , питания 2-контактный , вентилятора 3-контактный и три контакта для подключения прибора.
Тут я хочу обратить ваше внимание, что как правило черный тонкий провод от измерительного прибора использоваться не будет! В частности, в моём случае, с вышеописанным прибором см.
На просторах интернета была найдена схема : Скажу честно — всю схему досконально не перепроверял, но беглое схемы с платой сравнение показало что вроде как всё сходится. Собственно, больше о самой нагрузке рассказывать-то и нечего.
Схема довольно простая и не работать вообще говоря не может. Да и интерес в данном случае представляет скорее её работа под нагрузкой в составе готового устройства, в частности — температура радиатора. Долго думал из чего сделать корпус. Радиатор нашел в ящике, вентилятор там же, клеммы и выключатель купил в оффлайне, а бананы и сетевой разъем выколупал из чего-то старого на чердаке ; Забегая вперед скажу, что я лоханулся, и тот трансформатор который я использовал в комплекте с выпрямительным мостиком, конечно — не потянул данный девайс по причине высокого потребляемого вентилятором тока.
Буду заказывать такой , должен как раз вписаться по габаритам. Как вариант — можно использовать и внешний 12В блок питания, коих тоже полно и на бэнге и в арсенале любого радиолюбителя. Питать нагрузку от исследуемого блока питания крайне нежелательно, не говоря уже о диапазоне напряжений. Кроме того нам понадобится потенциометр на 10кОм для регулировки тока.
Я рекомендую ставить многооборотистые потенциометры, например такие или такие. И там и там есть нюансы. У меня были в наличии потенцы второго типа, так что я не запаривался по этому поводу, хотя надо бы и первых прикупить для коллекции. Для потенциометра нужна ручка — для эстетики и удобства. Вроде как для потенциометров первого типа должны подойти такие вот ручки, во всяком случае они с фиксирующим винтом и будут нормально держаться на гладком валу.
Я же использовал то что было в наличии, натянув пару слоёв термоусадки и капнув суперклеем для фиксации термоусадки на валу. Метод проверенный — я его использовать еще для блока питания, пока всё работает, уж пару лет. Далее были муки компоновки, которые показали что фактически единственно возможным решением является то, что я приведу ниже.
К сожалению, данное решение требует подрезания корпуса, ибо из-за ребер жесткости не входит плата, а выключатель и регулятор не входят из-за того что я их старался разместить в центре выемок на корпусе, а они в итоге упёрлись в толстую стенку внутри. Итак, размечаемся и делаем отверстия под сетевой разъем, транзистор и радиатор на задней стенке: Теперь передняя панель.
Отверстие под прибор это просто правда, как я писал в предыдущем обзоре, защелки у него дурацкие, и я от греха подальше предпочел вначале защелкнуть в корпус устройства корпус прибора, а потом уже вщелкнуть в него внутренности прибора. Отверстия под выключатель и регулятор — тоже относительно просто, хотя и пришлось на фрезерном станке выбрать пазы на стенках.
Но я приклеил кусочек черного пластика и просверлил отверстия прямо в нем. Получилось и красиво и аккуратно. Теперь нюансик.
Но зачем измерять температуру в корпусе, если можно прислонить его к радиатору? Это гораздо более полезная информация! А раз уж прибор всё равно разобран — ничто не мешает выпаять термодатчик и удлинить провода.
Отверстие вокруг транзистора заблаговременно сделал на несколько мм больше. При питании от кроны и соответственно с выключенным вентилятором имеем вот что: Провода от БП у меня тонкие, поэтому падение напряжения тут довольно значительное получилось, ну и при желании можно еще уменьшить количество переходных сопротивлений, припаявшись везде где можно и убрав клеммы.
Из плюсов могу отметить хорошее качество изготовления, а минус, пожалуй, один — отсутствие потенциометра и радиатора в комплекте, и это нужно обязательно иметь в виду — устройство придется доукомплектовывать, чтобы оно начало работать. Второй минус — отсутствие термоконтроля вентилятора. Но предохранитель это лишние контакты и лишние сопротивления в цепи, так что тут я пока не уверен совершенно. Например такая. Отличие обозреваемой — в заявленном входном напряжении, до В, тогда как в основном нагрузки рассчитаны на работу до 30В.
Ну и в данном случае у нас модульная конструкция, что лично меня весьма устраивает. Надоел прибор? Поставили поточнее или покрупнее, или еще чего. Не устраивает мощность? Поменяли транзистор или радиатор и т. Одним словом — я вполне доволен результатом ну только вот блок питания другой прикрутить — но это я сам дурак, а вы предупреждены , и вполне рекомендую к приобретению.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п. Фотополимер для изготовления штампов. По сути то же самое, что я когда то показывал в самодельном варианте. Ссылку сначала не заметил, просто увидел знакомую вещь : Кстати, ссылка ведет на обзор измерителя, а в комменте, на обзор нагрузки ;.
Bender 21 августа , 0. Резисторы в истоках полевиков необходимо вешать. В затворах. На самом деле для электронной нагрузки не так все просто, думаю Вы помните как мне пришлось подключать восемь полевиков параллельно? Bender 21 августа , Так нельзя делать, напряжение открывания транзисторов разное. Напряжение смещения, чтобы на минимуме транзисторы были гарантированно закрыты.
Да верно, спасибо за поправочку, в затворах. Вполне законный вопрос. Остальное замнем для ясности :. Здесь обсуждали этот вопрос, почитайте. Потому что нужно было ставить на каждый полевик свой ОУ. Не обязательно. Да, было бы очень интересно глянуть что там внутри, выложите хоть принципиалку с монтажкой и пару фото. Установил 3 мосфета, 2 рабочих, третий как ключ, для разрыва цепи. Защита передельного тока 20А , защита по температуре NTC. Программу управления пока допиливаю напильником.
Удобно тестировать аккумуляторы, блоки питания режим CC , драйверы светодиодов режим CV. Ждем обзор. Ссылку на индикатор который держит 20А. Китаец прорекламировал мне с полгода назад вот такой aliexpress. Благодарю :. Вы точно у меня хотели спросить? Спросите у автора обзора куда он его подключил. Выход компаратора задействован, подключен к выв. Судя по всему, для блокировки опорного напряжения на ОУ, вывод 3 , при отсутствии напряжения в силовой части. Нет, компаратор выполняет защитную функцию при обрыве в цепи нагрузки когда разомкнута петля ООС.
При этом полевик не остаётся полностью отпертым, так как подключение нагрузки вновь вызовет сильный бросок тока в этой цепи обратная связь тут не шибко быстрая. По существу вы stas , ksiman написали одно и тоже. И да, автор принципиальной схемы имхо немного попутал, а именно поменял местами входы компаратора 2 и 3. И соответственно в момент подключения крутого броска тока ожидать не следует. И величина напряжения стабилитрона имхо маловата, надо бы вольт на 6 с небольшим :.
ДИНАМИЧЕСКАЯ ЭЛЕКТРОННАЯ НАГРУЗКА
Данное устройство предназначено и применяется для проверки источников питания постоянного тока, напряжением до В. Устройство позволяет нагружать блоки питания током до 20А, при максимальной рассеиваемой мощности до Вт. Рисунок 1 — Принципиальная электрическая схема электронной нагрузки. Приведенная схема на рисунке 1 позволяет плавно регулировать нагрузку испытуемого блока питания. В качестве эквивалента нагрузочного сопротивления используются мощные полевые транзисторы T1-T6 включенные параллельно. Для точного задания и стабилизации тока нагрузки, в схеме применяется прецизионный операционный усилитель ОУ1 в качестве компаратора.
Электронная нагрузка для блока питания. Electronics Projects. Подробнее.. . all-audio.proлка от В для газа своими all-audio.proет ДОЛГО. — YouTube.
Самодельные имитаторы нагрузки для проверки компьютерных БП
Всем привет! Хотим поделиться схемой необычной электронной токовой нагрузкой , которая может принимать как постоянное, так и переменное значение. Так называемая динамическая нагрузка. С таким эквивалентом сопротивления нагрузки можно исследовать переходные характеристики блока питания, зарядного устройства и других приборов, что тестируются при настройке. Для простоты и хорошей повторяемости, схема разработана с использованием легко доступных компонентов. Особенности устройства:. Здесь один регулятор задаёт ток при постоянной нагрузке, а другой модулирует ток частотой примерно герц, подключаясь к генератору сигнала на элементе U1A. Более наглядно видно на следующих графиках:. Прототип был построен на двухсторонней плате и помещён в корпус из металла, для лучшего охлаждения. Транзисторы, которые создают низкое сопротивление — IRFZ20, они установлены на общем радиаторе через прокладки.
Простой регулируемый блок питания 0-30в
Электронная нагрузка предназначена для проверки блоков питания в линейном режиме. Имеет полуавтоматическое ограничение мощности порядка — Ватт. Имеет неплохую стабилизацию установленного тока нагрузки. Характеристики: Входное напряжение на нагрузку от 0 до 50 Вольт. В диапазоне от 0В до 30В максимальная сила тока нагрузки плавно уменьшается и в диапазоне от 30В до 50В максимальная сила тока нагрузки постоянна и составляет 4- 5 А.
При тестировании мощных блоков питания используется электронная нагрузка, например, для принудительной установки заданного тока. На практике часто применяются лампы накаливания что является плохим решением из-за низкого сопротивления холодной нити или резисторы.
Электронная нагрузка.
Электронная нагрузка Vladyslav Verbytskyi. Электронная нагрузка для блока питания своими руками Сделай так. Searches related to электронная нагрузка. Электронная нагрузка Олег Матюшенко. Простая электронная нагрузка своими руками,
Электронная нагрузка до 100В, до 10А, 50/75Вт
Новокузнецк, Кемеровская обл. Логин: Пароль Забыли? Электронная импульсная нагрузка на базе TL Практика Блоки питания. Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.
tenon, это не блок питания. это тестер для БП. Все хотел себе сделать, да руки не доходят, будет время — все . all-audio.pro Вот ещё вариант электронной нагрузки без мощных резисторов.
Набор для сборки простой электронной нагрузки 150 Ватт
Электронная нагрузка вещь очень полезная, предназначена для теста источников питания, в том числе и аккумуляторов. Например если имеется сомнительный блок питания и нужно выяснить его выходные параметры первым делом нужно его нагрузить, при этом каждый блок питания требует индивидуального расчета нагрузочного резистора и чем мощнее блок, тем мощнее должен быть нагрузочный резистор. Электронная нагрузка выполняет ту же функцию, только является универсальным вариантом для любых источников питания. Наш вариант очень простой и построен всего на одном операционном усилителе LM, но задействован всего один элемент ОУ.
Эквивалент нагрузки с цифровой индикацией. Активная нагрузка схемы
ВИДЕО ПО ТЕМЕ: Электронная нагрузка для блока питания своими руками
Введите электронную почту и получайте письма с новыми самоделками. Не более одного письма в день. Войти Чужой компьютер. В гостях у Самоделкина! Электронная нагрузка с плавной регулировкой тока.
Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку.
Эта простая схема электронной нагрузки может быть использована для тестирования различных видов блоков питания. Система ведет себя как резистивная нагрузка с возможностью регулирования. С помощью потенциометра мы можем зафиксировать любую нагрузку от 10мА до 20А, и такое значение будет поддерживаться независимо от падения напряжения. Величина тока непрерывно отображается на встроенном амперметре — поэтому нет необходимости для этой цели использовать сторонний мультиметр. Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя. Операционный усилитель LM делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. Потенциометр R2 предназначен для грубой подстройки, а R1 для точной.
Ваши права в разделе. Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете голосовать в опросах Вы не можете добавлять файлы Вы можете скачивать файлы. Решено Кто имел дело с магнитами? Нужен совет.
Простая и доступная электронная нагрузка своими руками. На Оу и Mosfet (PCBWay)
Электронная нагрузка для блока питания своими руками
Электронная нагрузка для блока питания своими руками
Самая простая электронная нагрузка своими руками.
Самая простая электронная нагрузка своими руками.
Loading…
Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.
По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.
На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.
Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного. Выбрать подходящий вольтметр можно в этом разделе

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.



Радиодетали для сборки электронной нагрузки
Транзистор Т1 TIP41, MJE13009, КТ819
Транзисторы Т2, Т3, Т4, Т5 TIP36C
Стабилизатор напряжения L7812CV
Конденсатор С1 1000 мкФ 35В
Диоды 1N4007
Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
Радиаторы 4 шт. размер 100х63х33 мм
Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее. Выбрать подешевле вольтметры и амперметры можно в этом разделе . Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Полезное видео по теме:
Автор: Сергей. sdelaitak24.ru
ADMIN-ЧЕК
Опубликована: 23.09.2019
Просмотров 1 219
Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.
По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.
На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.
Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.
В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.
Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.
С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.
Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.
Радиодетали для сборки
- Транзистор Т1 TIP41, MJE13009, КТ819
- Транзисторы Т2, Т3, Т4, Т5 TIP36C
- Стабилизатор напряжения L7812CV
- Конденсатор С1 1000 мкФ 35В
- Диоды 1N4007
- Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
- Радиаторы 4 шт. размер 100х63х33 мм
- Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
- Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания
Защита от КЗ для блока питания своими руками
Преобразователь напряжения с 12 на 220В своими руками
Как разобрать импульсный трансформатор
Нагреватель из микроволновки
Программа для рисования печатных плат Sprint Layout
Программа sPlan Русская версия с библиотеками радиоэлементов
70 comments on “ Электронная нагрузка для блока питания своими руками ”
- Иван18.05.2020 в 19:49
Добрый вечер.Сергей! Шунт с вольт амперметра надо вырезать а на его место подсоединить шунт на 50 А или как?С уважением Иван
- Сергей Автор записи 18.05.2020 в 21:09
Добрый вечер, Иван! Шунт вырезать не надо. Если амперметр рассчитан на 10А то и шунт должен стоять на 10А, при установке шунта на 50А показания прибору будут не правильными.
- Аноним19.05.2020 в 07:32
Спасибо -надо покупать.
- Сергей Автор записи 19.05.2020 в 20:37
- Иван20.05.2020 в 20:32
Добрый вечер Сергей!Собрал все по вашей схеме но при включении вылетают транзисторы TIP36-не было переменника на 1к поставил на 120 ОМ может из-за него?
- Сергей Автор записи 20.05.2020 в 23:01
Добрый вечер, Иван! Нет, переменник на 1К можно вообще не ставить без него будет работать. Что то не правильно собрано или транзисторы из Китая. У меня такое было прислали партию транзисторов все погорели. Китайцы брак делают. Десять Китайских транзисторов по мощности равны одному оригинальному. Теперь только в Чип и Дипе покупаю там нормальные детали продают.
Уважаемый автор, повторил Вашу конструкцию — за исключением блока питания для кулеров и вольтметра: использовал сетевой адаптер 12V/1A, но не думаю, что это принципиально. Проверял на линейном стабилизаторе L7812 от другого устройства — разницы никакой.
Как нагрузка для БП она работает — тут вопросов нет. Но я не могу разобраться — ток чего именно индицирует амперметр Вашего устройства. Все дело в том, что больше одного ампера с копейками Ваш тестер не показывает — ни при каких тестах: все реальные показатели можно видеть только на индикаторах тестируемого БП. А если придется тестировать, скажем, БП для светодиодной ленты (как у Вас на фото)? У меня, как назло, ничего такого под руками не оказалось.
Словом, осталось непонятным соотношение между показателями ампеража на тестере и на тестируемых БП: как его расценивать. Например, вот этот китайский БП:
aliexpress.ru/item/32913030842.html?spm=a2g0s.9042311.0.0.274233edJzpZ3X
четко демонстрирует свои предельные параметры под нагрузкой Вашим тестером — 24V/6A, но видно их именно индикаторе VA, установленном там же, где и этот китайский БП, то есть в самодельном лабораторном БП (индикатор, кстати, точно такой же, как и на Вашем тестере). А на самом тестере в это время — меньше 1 A. Короче говоря, осталось непонятным: ток чего именно показывает тестер. Единственное, что более-менее соответствует, так это напряжение. Естественно, есть зависимость роста тока от напряжения, однако все в тех же указанных пределах. Проверял и такой же адаптер, которым запитал конструкцию: вольтаж 12V соответствует, но до номинального 1A даже близко не дотягивает: максимум 200mA. Проверял тот БП, где стоит L7812: раскачивается до 400mA, хотя этот линейный стабилизатор имеет максимум 1.5A. Нагрев ключей не измерял, но наощупь он где-то соответствует току.
Проверял Вашим тестером вот этот БП:
aliexpress.ru/item/4000125945816.html?spm=a2g0s.9042311.0.0.274233edhYLScD
Его можно «раскачать» тестером до предельных значений. Но опять же: при 30V/10 A на индикаторе тестера — аж 1,12 A. Наверное, я в чем-то не разобрался — помогите :).
- Сергей Автор записи 13.05.2020 в 22:04
Все дело в Китайских электронных вольтметрах. Если подключить к электронной нагрузке блок питания со встроенным Китайским вольтметром то показания двух приборов на БП и на ЭН будут отличаться в два раза. Выход из этой ситуации только в установке аналоговых стрелочных приборов на Электронную нагрузку или на время теста отключать вольтметр в тестируемом БП.
- Иван13.05.2020 в 23:50
Заказал стрелочник у китайцев на 10А: посмотрю, что получится. Но есть мысль, что причина в шунте: обычно их рассчитывают в пределах от 1:99 (скажем, для миллиамперметра) до 5-6 раз — как в нашем случае. Кроме того, в китайском цифровике свой шунт на 10А, поэтому львиная доля тока просто течет мимо индикатора — ведь на проверяемых БП точно такие же индикаторы показывают вполне достоверные цифры. Видимо, здесь требуется какой-то другой расчет шунта, учитывающий «растекание» по параллельным цепям. А так нагрузка очень даже удобная. В конце концов, никто ведь не запрещает последовательного включения амперметра в мультиметре: я так и сделал, получив вполне реальные цифры тока. Правда, мультиметры, позволяющие измерять более 20А, мне не попадались.
По ходу конструирования пришла мысль использовать систему охлаждения устройства для китайских резисторов 4Ом/100Вт, обычно используемых для проверки УНЧ. Электрически с основной схемой они не связаны — просто добавлены к радиаторам и кулерам. Поставил 4 шт., что дает возможность комбинировать нагрузку перемычками на клеммах: например, два канала по 8 Ом/50 Вт или 2 Ом/200 Вт — рекомендую облегчить себе жизнь :). Это резисторы такого вида: aliexpress.ru/item/33026780964.html?spm=a2g0s.9042311.0.0.264d33edl5qQU1
- Сергей Автор записи 14.05.2020 в 22:22
Стрелочный прибор намного точнее будет, особенно если класс точности 2,5. Резисторы с радиаторами очень мощные. В Китае стоят не дорого. В наших магазинах цены как на золото.
Здравствуйте. Проводом какого сечения следует перейти от транзисторов к клеммам для проверки БП? То есть какой ток протекает в цепи коллекторов транзисторов Т2-Т5? Если задействовать все 40 ампер, то вопрос становится актуальным. И желательно указать мощность резистора R3. Спасибо.
- Сергей Автор записи 07.05.2020 в 22:29
Добрый вечер! Сечение провода от связки транзисторов до БП должно быть 4 мм/кв. Ток будет протекать по 10А на каждый транзистор. Резистор R3 мощностью 0.25 Вт будет достаточно.
- Иван07.05.2020 в 22:33
- Сергей Автор записи 08.05.2020 в 22:29
Здравствуй Сергей! Я по поводу переделки Вашей схемы?! Как то попали ко мне транзисторы MJ11032_11033! Комплементпрная пара! Характеристики идеальные для создания электронной нагрузки. Правда они по схеме Дарлингтона! Но в Интернете я встречал схему электронной нагрузки на Дарлингтонах! По моему были собраны на КТ827, или КТ825!? Так вот вопрос тебе как Доку, можно ли применить из в электронной нагрузке. Все же по Datasheet, у него рассеиваемая мощность аж 300 Вт.
- Сергей Автор записи 03.05.2020 в 20:32
Добрый вечер, Лестанбек! В электронной нагрузке работать будут.
Электронная нагрузка до 500 вт своими руками
Простая электронная нагрузка для начинающих
Автор: KomSoft
Опубликовано 11.02.2015
Создано при помощи КотоРед.
Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htm
Эта статья является предисловием к более сложному устройству и предназначена для тех, кто постоянно тасует мощные резисторы и лампочки, используемые как нагрузка, а знаниями (опытом, решимостью) для сборки сложных схем еще не обладает.
Начиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):
На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.
К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток. Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения. Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.
Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.
Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.
Вспомогательными элементами схемы являются:
- диод VD1 защищающий схему от неправильной подачи питания;
- интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
- светодиод HL1, индицирующий подачу питания;
- светодиод HL2, индицирующий опасно высокое входное напряжение.
Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.
Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):
Рисунок платы — в прилагаемом файле, зеркалить не нужно.
Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей. Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X). Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.
Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.
Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.
А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.
Мощная электронная нагрузка своими руками



Максимальное входное напряжение до 60В, можно и больше, все зависит от напряжения транзисторов.
Также электронная нагрузка имеет защиту от переполюсовки. Максимальная рассеиваемая мощность составляет порядка 1500-1600Вт. Такое устройство способно нагрузить практически любые источники питания, даже сварочные инверторы ему под силу, но тут важно не превысить максимальную мощность, а она тут, как уже было сказано выше, составляет 1600Вт. При этом стоит отметить, что все 1600Вт в данном случае пойдут на нагрев, так что это достаточно серьезный обогреватель.
Думаю, вы согласны с тем, что вышеприведенные характеристики действительно внушительные для линейной нагрузки. Токовые нагрузки с похожими параметрами стоят не мало, естественно наша версия будет без особых наворотов.
Внимание! Стоит сразу отметить несколько моментов во избежание дополнительных вопросов. Во-первых, схемы получилась довольно большой и скорее всего некоторые мелкие детали не будут видны. Схему в хорошем качестве вы найдете в архиве проекта. Также ссылка на скачивание архива находится в описании под оригинальным видеороликом автора.
Во-вторых, номиналы некоторых элементов схемы могут отличаться от тех что установлены на плате, но устройство будет работать в обоих случаях.
В-третьих, в схеме были применены наиболее предпочтительные транзисторы TIP142 , это составные ключи, которыми просто управлять и драйвер при этом нагреваться почти не будет, но общая мощность нагрузки с указанными на схеме ключами будет меньше, чем в данном случае, так как транзисторы тут применены гораздо более мощные.



Чем меньше значение данного сопротивления, тем больше ток. Указанный резистор необходимо подбирать.
Автор провел многочисленные эксперименты с получившимся устройством, чтобы выяснить какую мощность может рассеять транзистор в таком корпусе, максимальный ток коллектора, и как сильно будет нагружен управляющий драйвер при различных значениях тока на силовом транзисторе.
Испытания прошли успешно, ни один транзистор при этом не пострадал. Опытным путем стало ясно, что заявленные производителем 32А транзисторы держат. Корпус способен рассеять 150Вт, а при наличии вентилятора и все 200Вт.
Значение 200Вт с каждого транзистора, согласитесь, весьма неплохо. И того на каждый радиатор автор прикрутил, используя термопасту, 4 ключа. Таких радиаторов в данном случае 2 штуки.


Стоит отметить, что приведенная схема работает в линейном режиме, поэтому транзисторы в процессе открыты или закрыты частично, это зависит от выходного напряжения операционного усилителя.
Чем больше открыт силовой транзистор, тем больше ток в цепи и наоборот. Как уже было сказано выше, вся мощность выделяется в виде тепла на силовых транзисторах и датчиках тока, поэтому, если захотите повторить данный проект, в первую очередь позаботьтесь о хорошем охлаждении данных компонентов схемы. Автор использовал достаточно хорошие алюминиевые радиаторы в виде бруска.

Первый переменник используется для грубой регулировки, второй соответственно для более плавной. Плата управления нуждается в маломощном источнике питания. Например, ее можно запитать от батареек или аккумуляторов. Такое решение сделает нагрузку полностью автономной.
Силовые диоды, о которых упоминалось в начале статьи, установлены на входе нагрузки. На них выполнена защита от переполюсовки. Обратное напряжение и ток диода стоит подбирать с двойным запасом. В дальнейшем автор планирует изменить защиту на другую, скорее всего на полевых транзисторах.



Вот так родился на свет еще один монстр, придумать другое название этому зверю довольно трудно, конские радиаторы и силовые ключи, зверская мощность, что ещё нужно для полного счастья. На сегодня это все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Поделки своими руками для автолюбителей
Токовая электронная нагрузка
Электронная нагрузка вещь очень полезная, предназначена для теста источников питания, в том числе и аккумуляторов.
Например если имеется сомнительный блок питания и нужно выяснить его выходные параметры первым делом нужно его нагрузить, при этом каждый блок питания требует индивидуального расчета нагрузочного резистора и чем мощнее блок, тем мощнее должен быть нагрузочный резистор.
Электронная нагрузка выполняет ту же функцию, только является универсальным вариантом для любых источников питания.
Наш вариант очень простой и построен всего на одном операционном усилителе LM358, но задействован всего один элемент ОУ.
Мощность рассеивается на транзисторах, поэтому чем больше их количество и ток коллектора каждого транзистора, тем больше может быть общая мощность рассеиваемая электронной нагрузкой.
В теории общий ток может доходить до 40 Ампер с учетом тока коллектора кт827, но в деле естественно все будет зависеть от напряжения тестируемого источника питания, если мощность превышает 250 ватт, транзисторам придет кирдык, уделите этому моменту должное внимание.
Мощные резисторы в этой схеме тоже рассеивают некоторую мощность (и не малую). Эмиттерные резисторы предназначены для выравнивания тока через транзисторы, мощный низкоомный шунт R12 служит датчиком тока, на нем будет рассеиваться колоссальная мощность, поэтому этот резистор подбираем с мощностью около 40 ватт.
Принцип работы довольно прост. При подключении нагрузки образуется падение напряжения на шунте R12 и нарушается баланс напряжений на входах операционного усилителя, последний будет стараться уравновесить это напряжение за счет изменения выходного напряжения, уменьшая или увеличивая его. Тем самым измениться напряжение на базах составных транзисторов, в следствии чего изменится и ток проходящий по ключам.
Переменными резисторами мы можем искусственным образом изменить напряжение на неинвертирующем входе ОУ, этим управляем током протекающий по транзисторам.
Трансформатор в схеме нужен только для питания операционного усилителя и блока индикаторов, поэтому он нужен маломощный. Вторичное напряжение трансформатора от 9 до 15 Вольт, все ровно потом это напряжение будет стабилизировано до уровня 12 Вольт.

Нынче КТ827 очень дороги, но уверяю, они являются наилучшим решением в этой схеме, знаю что появятся вопросы на счет внедрения полевых транзисторов и должен сказать, что пробовал и с ними. Проблема в том, что при больших токах полевики тупо коротят, я думаю в случае их использования не помешает отдельное управление.
А так можно использовать любые составные ключи, в том числе и кт829, естественно нужно учитывать, что ток этих транзисторов в несколько раз ниже, чем ток коллектора КТ827.
Кнопкой S1 меняем чувствительность ОУ, этим можем переключить нагрузку на более точных измерений малых токов.
Свою конструкцию я дополнил ваттметром, который имеет функцию измерения емкости и в итоге получил электронную нагрузку с функцией разряда аккумуляторов с целью выявления их емкости, притом система может разряжать аккумуляторы большим током (лично тестировал на токах до 20 Ампер, никаких нареканий).
Монтаж простенький, корпус позаимствован у лабораторного источника питания PS-1502.
Каждый транзистор установлен на свой радиатор, вся система дополнена активным охлаждение, притом имеется простенькая схема регулировки оборотов кулера.
В архиве находится печатная плата. А с вами был Ака Касьян, удачи в творчестве, до новых встреч!
Изготовление электронной нагрузки постоянного тока и мощности на Arduino
Одной из характеристик большого количества промышленных электронных нагрузок является способность рассеивать постоянную мощность. Постоянная мощность может быть полезной при измерении емкости батарей (Вт/час) или тестировании источников электропитания. Для выполнения данных задач я решил использовать микроконтроллер Arduino (ATmega328p).
На рисунке ниже показана схема электронной нагрузки. Чтобы сильно не перегружать схему лишними элементами, я намеренно решил не использовать фильтрующие и развязывающие конденсаторы. Я также не показал на схеме цепи микроконтроллера, поскольку все выполняется стандартным способом. Все соединения к стандартной плате Arduino четко обозначены для удобного подключения. Исходный код программы для Arduino можно загрузить по сноске в конце статьи.
Для управления нагрузкой используется 6 транзисторов IRFP150N. Данные 6 MOSFET-ов разделяются на три группы: каждая группа состоит из двух MOSFET-транзисторов, которые размещаются параллельно друг другу с отдельными управляющими резисторами на затворе. Далее эти три группы управляются независимо с помощью трех операционных усилителей. Подобное схемное решение гарантирует равномерное распределение тока в нагрузке среди этих трех групп MOSFET-транзисторов. В данной конфигурации максимальная мощность электронной нагрузки может рассеивать, по скромной оценке, около 200 Ватт.
На представленной схеме усилитель IC1A образует повторитель напряжения, который буферизирует выход ЦАП и входы трех управляющих операционных усилителей. Усилитель LM324 используется здесь для трех операционных усилителей. Разумеется, выбор операционного усилителя не является критическим моментом, и вы можете заменить его на любой другой усилитель общего назначения. В схеме используется ЦАП MCP4921 от компании Microchip. MCP4921 сходен по характеристикам с MCP4821. Главная разница в том, что MCP4921 использует внешний источник опорного напряжения, в то время как MCP4821 имеет встроенный источник напряжением 2.048В. Это главная причина, почему использовался ЦАП MCP4921. При изменении внешнего опорного напряжения мы можем нарушить баланс между максимальным током, допустимым электронной нагрузкой, и разрешением регулировки тока.
В данном проекте опорное напряжение подается на ЦАП через резисторный делитель от источника опорного напряжения IC TL431. Внешний источник опорного напряжения для ЦАП сконфигурирован как буферизированный вход для высокого импеданса так, что вход опорного сигнала ЦАП не влияет на точность источника опорного напряжения, устанавливаемого резисторным делителем. Когда внешний источник опорного напряжения установлен в значение 0.5В, ток нагрузки может регулироваться до 15A (0.5 В / 0.1 Oм * 3). Выходное напряжение ЦАП MCP4921 может быть отрегулировано как 1 x Vref либо как 2 x Vref; таким образом, диапазон тока может быть удвоен через программную команду без необходимости изменения опорного напряжения. Если вам не нужен такой широкий диапазон тока, тогда вы можете понизить опорное напряжение. Это обеспечит наилучшее разрешение тока (Vref / 4096 на один шаг регулировки).
Для регулировки тока используется энкодер. По умолчанию, ток может быть отрегулирован с разрешением приблизительно 1мA/шаг. При нажатии кнопки энкодера, данное разрешение может быть изменено до 10мA/шаг и 100мA/шаг соответственно. Это позволит выполнить грубую регулировку.
Режим постоянной мощности достигается путем вычисления желаемого установленного значения тока через измеренное напряжение нагрузки.
На фотографиях ниже показана конструкция электронной нагрузки. В качестве радиатора используется большой алюминиевый блок. Размер радиатора действительно впечатляет, однако обеспечивает надежность работы устройства без использования принудительного воздушного охлаждения.
Вся схема собрана на макетной плате. Я использовал плату Arduino, изготовленную ранее, и разъемы для соединения с основной платой.
На фото ниже показана законченная плата контроллера:
Как упоминалось ранее, радиатор имеет огромный размер, на фото он отображается в перспективном виде:
На данной фотографии показана работа электронной нагрузки в режиме постоянной мощности, поглощая более 200 Ватт при напряжении более 60 вольт.
Поскольку в схеме использовался микроконтроллер, мы можем легко добавить новые функции. Все что не было добавлено в микропрограммный код, вы можете легко дополнить самостоятельно, например режим постоянного сопротивления. Также вы можете обеспечить регистрацию данных, путем записи значений тока и напряжения в определенные интервалы времени.
Видео ниже демонстрирует вкратце функциональные возможности электронной нагрузки





















































