Электростатический фильтр — устройство, предназначенное для очистки воздуха от самой мелкой пыли, аэрозолей, дыма, частиц сажи, копоти, т. е. любых механических и аэрозольных частиц. Оптимальное решение для удаления из воздуха твердых, жидких и биологических аэрозолей.
Принцип работы электростатического фильтра
Процесс улавливания механических частиц в электростатическом фильтре разделен на несколько стадий:
- зарядка взвешенных частиц электрическим полем;
- движение заряженных частиц к электродам;
- осаждение заряженных частиц на блоке осаждения.
Принцип действия электростатических фильтров основан на притяжении электрических зарядов разной полярности. Загрязненный воздух проходит через блок зарядки аэрозолей, в котором частицы приобретают электрический заряд. Значение этого заряда зависит от конструкции коронатора и размера частицы и может составлять от 10 до 500 зарядов-электрона. Заряженные частицы, находящиеся в воздушном потоке, в результате адсорбции на их поверхности ионов и под влиянием сил электростатического поля движутся с потоком воздуха и оседают на токопроводящих пластинах противоположной полярности.
В процессе работы любого электростатического фильтра всегда образуется озон. Именно озон является источником запаха от электростатических фильтров, который принято называть «воздух, как после грозы». Необходимо отметить, что озон — сильнейший окислитель и даже в небольших количествах является ядом и канцерогеном. В коронаторах, работающих при электростатическом напряжении больше 15 кВ, происходит разрушение прочных молекул N 2 и образуются окислы азота (NO Х).
Профессиональные воздухоочистители Аэролайф
В системах очистки воздуха Аэролайф используются электростатические фильтры, совмещенные с барьерным НЕРА-фильтром. Такая комбинация не дает возможности для вторичного уноса частиц пыли, т. е. все частицы остаются в пылевом фильтре, при этом загрязнители оседают по всему объему фильтрующего элемента, а любые типы микроорганизмов инактивируются.
Преимущества и недостатки технологии:
- С высокой эффективностью удаляет из воздуха твердые и жидкие аэрозоли. Минимальный размер улавливаемых частиц 0,01 мкм.
- Не требует затрат на сменные элементы и расходные материалы.
- Длительный срок эксплуатации при минимальных начальных капиталовложениях.
- Газообразные химические загрязнители не улавливаются электростатическим фильтром.
- Загрязнители накапливаются на осадительных пластинах, которые, в свою очередь, требуют сервисного обслуживания.
- На эффективность фильтрации сильно влияют параметры улавливаемых частиц (слипаемость, химический состав, сыпучесть), а также содержание воды в капельной фазе в обрабатываемом воздушном потоке.
- В процессе работы электростатического фильтра в воздух попадают озон и окислы азота — крайне ядовитые вещества.
Электростатический фильтр для очистки воздуха от пыли и неприятных запахов относится к области электротехники, а именно, к электростатическому разделению материалов, к выделению дисперсных частиц и частиц пахучих веществ из воздуха с использованием электростатического эффекта и дезодорации, конкретно, к аппаратам очистки воздуха от аэрозольных частиц и неприятно пахнущих веществ в системах кондиционирования и вентиляции. Электростатический фильтр содержит: коро6, заземленные электрические электроды, потенциальные диэлектрические электроды, слой замасливателя на потенциальных и заземленных диэлектрических электродах на основе лавандового масла, источник питания. Осаждение частиц в фильтре происходит за счет сил электрического поля межэлектродного промежутка. Замасливатель усиливает эффект осаждения пылевых частиц на пластинах благодаря силам адгезии, а также снижает вероятность вторичного уноса частиц. Наличие замасливателя совместно с пластинами создает двухслойный диэлектрик, также способствующий увеличению эффекта осаждения за счет увеличения напряженности электрического поля. Таким образом лавандовое масло, используемое в электростатическом фильтре, усиливает эффект осаждения дисперсных частиц, содержащихся в воздухе и за счет дезодорирующих свойств обеспечивает очистку проходящего через фильтр воздуха от неприятных запахов.
Электростатический фильтр для очистки воздуха от пыли и запахов
относится к области электротехники, а именно, к электростатическому разделению материалов, к выделению дисперсных частиц и частиц пахучих веществ из воздуха с использованием электростатического эффекта и дезодорации, конкретно, к аппаратам очистки воздуха от аэрозольных частиц и неприятно пахнущих веществ в системах кондиционирования и вентиляции.
Известно устройство для очистки воздуха в помещении, содержащее корпус, размещенный в нем ионизатор, кювету с водой и вентилятор (RU 2172897 C1, МПК F 24 F 3/16).
Техническим результатом является повышение степени очистки воздуха, устранение запаха в помещении, осуществлении частичной стерилизации воздуха.
Недостатком данного устройства является то, что в известном устройстве при его работе выделяется озон, что может негативно сказываться на здоровье человека при превышении концентрации озона в воздухе выше допустимой. Кроме того, использование известного устройства связано с опасностью поражения электрическим током, т.к. в одном корпусе расположены озонатор (т.е. имеется повышенное напряжение) и открытая кювета с водой,
Известен нейтрализатор запаха в туалетной комнате, включающий корпус, в котором расположен излучатель в качестве которого используется безэлектродная кварцевая ртутная лампа, схема возбуждения излучателя, сетевой фильтр, имеющий встроенный вентилятор с воздуховодом для выдува озона в помещение (RU 23096 U1, МПК F 24 F 3/16, A 61 L 2/10).
Техническим результатом является выдув озона в помещение туалетной комнаты, который в свою очередь распадаясь на молекулярный
и атомарный кислород, обогащает замкнутое пространство помещение туалетной комнаты кислородом и нейтрализует запах аммиака.
Недостатком указанного устройства, как и у первого аналога, является то, что в известном устройстве при его работе выделяется озон, что может негативно сказываться на здоровье человека при превышении концентрации озона в воздухе выше допустимой.
Наиболее близким устройством того же назначения к заявляемой полезной модели по совокупности признаков является устройство -электростатический фильтр с увеличенной площадью осаждения, включающее в себя систему питания, систему контактов, чередующиеся между собой потенциальные и заземленные пластинчатые электроды установленные в коробчатом корпусе, вертикально относительно него и параллельно воздушному потоку и механически закрепленному в нем. Электроды выполнены из диэлектрического материала и между ними установлены нейтральные электроды, которые параллельны пластинчатым электродам, равны им и установлены на одинаковом расстоянии от двух соседних.
В данном устройстве частицы аэрозоля имея биполярный электрический естественный заряд, попадают в межэлектродный промежуток, поляризуются и осаждаются на том или ином осадительном электроде в зависимости от знака заряда частицы.
Недостатком данного устройства, принятого за прототип, является то, что в известном устройстве отсутствует эффект дезодорации воздуха (очистки воздуха от неприятных запахов), тем самым эффект очистки воздуха не достаточно полный.
Задачей, на решение которой направлено заявляемое техническое решение — улучшение очистки воздуха, конкретно очистки воздуха от неприятнопахнущих веществ.
При осуществлении технического решения повышается качество очистки воздуха.
Указанный технический результат при осуществлении полезной модели достигается тем, что в известном устройстве, содержащем систему питания, систему контактов, чередующиеся между собой пластинчатые электроды, установленные в коробчатом корпусе, выполненные из диэлектрического материала толщиной не менее 0,5 мм, на которые нанесен слой замасливателя на основе лавандового масла.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявляемой полезной модели, позволил установить, что не обнаружен аналог, характеризующийся признаками заявляемой полезной модели. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности существенных признаков аналога, позволил выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявляемом электростатическом фильтре для очистки воздуха от пыли и запахов, изложенных в формуле полезной модели. Следовательно, заявляемая полезная модель соответствует критерию «новизна».
Заявляемая полезная модель иллюстрируется чертежом.
На фиг.1 представлен электростатический фильтр для очистки воздуха от аэрозольных частиц и неприятных запахов.
Предлагаемый электростатический фильтр содержит: короб 1, заземленные электрические электроды 2, потенциальные диэлектрические электроды 3, слой замасливателя на потенциальных и заземленных диэлектрических электродах 4, источник питания 5.
Выполнение плоских электродов предлагаемого электростатического фильтра из диэлектрического материала толщиной не менее 0,5 мм, обеспечивает жесткость пластин, дает возможность выполнить пластинчатые электроды и установить их параллельно друг другу и боковым стенкам корпуса.
Предлагаемый электростатический фильтр работает следующим образом: частицы аэрозоля и неприятного запаха, имея биполярный электрический заряд, попадают в межэлектродный промежуток, поляризуются и осаждаются на том или ином осадительном электроде 2,3 в слое замасливателя 4, в зависимости от знака частицы.
Осаждение частиц в фильтре происходит за счет сил электрического поля межэлектродного промежутка. Замасливатель 4 усиливает эффект осаждения пылевых частиц на пластинах 2,3 благодаря силам адгезии, а также снижает вероятность вторичного уноса частиц. Наличие замасливателя 4 совместно с пластинами 2,3 создает двухслойный диэлектрик, также способствующий увеличению эффекта осаждения за счет увеличения напряженности электрического поля.
Таким образом лавандовое масло, используемое в электростатическом фильтре, усиливает эффект осаждения дисперсных частиц, содержащихся в воздухе и за счет дезодорирующих свойств обеспечивает очистку проходящего через фильтр воздуха от неприятных запахов. По сравнению с прототипом, предлагаемый электростатический фильтр позволяет улучшить качество очистки воздуха.
1. Электростатический фильтр, содержащий систему питания, систему контактов, чередующиеся между собой потенциальные и заземленные пластинчатые электроды, установленные вертикально в корпусе, параллельно воздушному потоку и закрепленные в нем, выполненные из диэлектрического материала, отличающийся тем, что на пластинчатые электроды нанесен слой замасливателя.
2. Устройство по п.1, отличающийся тем, что замасливатель изготовлен на основе лавандового масла.
Электростатический фильтр своими руками. Вряд ли кто-то удивиться, если сказать человеку, что воздух в городах и на некотором расстоянии от них является грязным и вредным для человека. Хотя существуют установленные нормы загрязнения воздуха, совокупность существующих производств нередко превышают эти нормы, а в особых случаях управляющие предприятиями заведомо не соблюдают законодательные акты. К этому их могут принудить сотрудники санэпидемстанции.
Но даже без этого концентрация вредных веществ в воздухе может быть катастрофически большой. Чтобы как-то снизить воздействие вредных веществ, создаются специальные очистительные устройства. Одним из таких устройств является плазменный ионизатор или по-другому — статическ ий фильтр, который защищает от пыли и мелких частиц вплоть до 0.01мкм. Его применяют в промышленности, как признанные самыми эффективными.
Каким принципом действия обладает электрический статическ ий фильтр
Принцип действия основан на ионизировании частиц пыли при помощи магнитного поля и притягивании, этих частиц, к специальным пластинам. Этому методу уже более 100 лет, хотя, конечно же, мощность данных установок с тех пор многократно возросла. Со временем электрический статическ ий фильтр скапливает большое количество пыли, в результате чего необходимо поменять или отчистить фильтр. В бытовых установках это необходимо делать вручную, а в промышленных вариантах применяются специальные автоматические установки.
Область применения данных фильтров широка, как никогда начиная от мелкобытовых устройств и заканчивая огромными заводами и другими промышленными предприятиями. Например, широко применяется электрический статическ ий фильтр на ТЭЦ где необходимо сжигать уголь или на химических предприятиях, где побочным продуктом производства могут оказаться вредные газы. На ТЭЦ из-за сжигания угля, всегда присутствует повышенное содержание золы.
В целом если смотреть шире, то практически на всех предприятиях, работающих по принципу сжигания каких-либо материалов (мусоросжигающие или мазутосжигающие) устанавливают электростатическ ие фильтры. Дело в том, что во время горения в атмосферу выделяется огромное количество вредных веществ. Чтобы атмосфера не загрязнялась необходимо проводить фильтрацию. В химическом производстве фильтры используются несколько иначе.
Конечно, они продолжают выполнять охранительную функцию, но также они улавливают полезные в производстве вещества для возврата их в цепь производства.
Достоинства и недостатки плазменного ионизатора.
Хотя может показаться, что очистка до 65% воздуха является плохим показателем среди всех остальных форм очистки, он является очень высоким при относительной дешевизне. Огромным достоинством является легкое обслуживание, что положительно влияет на снижение расходов. Следующим положительным качеством является возможность очистки очень маленьких частиц, в связи с чем, область и назначение применения весьма широки.
Главный же недостаток установки: при работе он генерирует озон. Хотя это неопасно в малых количествах в случае превышения норм необходимо его заменить. Вторым недостатком можно назвать неполную очистку, в связи, с чем необходимо подходить к очистительным мероприятия ответственно и создавать многоступенчатые системы.
На данный момент — это один из наиболее перспективных методов очистки и постоянно ведется работа над улучшением характеристик плазменных ионизаторов.
Любое жилище имеет огромное количество «генераторов» бытовой пыли, среди которых сам человек, мягкая мебель, книги и мягкие игрушки занимают первое место. И чтобы человек не придумывал, все равно пыль производится и ни чего с этим не поделаешь.
В процессе «технической революции» и наполнения наших домов электрическими приборами стали замечать, что некоторые электроприборы имеют свойство притягивать пыль. Исследуя эту особенность, учеными и был разработан электростатический воздухоочиститель. Этот достаточно простой и эффективный прибор стал очень популярен во всем мире и о нем пойдет речь в этой публикации.
Принцип действия и конструкция очистителя
Принцип работы электростатического очистителя воздуха достаточно прост: на электроде создается коронирующий заряд, который производит ионы с определенным зарядом. Заряженные ионы начинают двигаться в сторону противоположно заряженного электрода захватывая по пути молекулы воздуха, пыль, бактерии и пр. После чего все ионы и загрязнения, получившие заряд оседают на электроде, а очищенный воздух поступает обратно в комнату.
Конструктивно, такие очистители состоят из:
В некоторых моделях электростатических воздухоочистителей установлен вентилятор для повышения производительности и для прокачки воздушной смеси через дополнительные ступени фильтрации, если таковые предусмотрены.
Достоинства и недостатки
Основным достоинством таких воздухоочистителей является эффективность очистки воздушных масс от загрязнений, размером менее 1 мкр., при минимальном расходе электроэнергии. Мощность бытовых электростатических очистителей воздуха редко когда превышает 25-45 Вт. Кроме этого, еще одним немаловажным фактором в поддержку использования таких очистителей, можно считать тот факт, что электростатический фильтр не нуждается в замене: время от времени его необходимо снимать и промывать в теплой воде. Воздухоочиститель без сменных фильтров значительно снижает затраты на его эксплуатацию. Если модель очистителя не оснащена вентилятором, то в ней нет движущихся частей, а это значит, что она полностью бесшумна. Это еще один большой плюс электростатическим очистителям.
Теперь немного о недостатках. Почему немного – потому что их действительно всего один, но достаточно серьезный. В процессе работы, такой аппарат производит не только ионы с определенным знаком заряда, а и озон, который является сильнейшим окислителем.
Этот газ в малой концентрации обладает потрясающими обеззараживающими свойствами. Неконтролируемое превращение кислорода в озон может привести к достаточно серьезным последствиям. Наиболее пагубное влияние озон оказывает на:
- Органы дыхания человека.
- Свойства холестерина, придавая ему нерастворимые формы.
- На систему размножения человека, убивая мужские половые клетки и препятствуя их образованию.
В нашей стране озон отнесет к вредным веществам с высшим классом опасности. ПДК содержания озона в воздухе для населенных пунктов составляет 0,03 мг/м 3 .
Правила выбора электростатического воздухоочистителя
В связи со сравнительной дороговизной этого прибора, многие наши соотечественники задают вопрос о том, как его сделать своими руками. Электростатический очиститель воздуха своими руками, конечно изготовить можно и в этом нет ничего сложного: если немного покопаться, в сети можно найти массу схем, инструкций и даже книг. (Одна из них называется «Домашний практик», выпуск 7)
Несмотря на высокое напряжение, можно избежать поражения электрическим токомни, выполняя элементарные требования по технике безопасности. Но, контролировать производство озона в домашних условиях очень сложно или даже практически невозможно. Ввиду высочайшей токсичности озона, мы не рекомендуем собирать электростатический воздухоочиститель своими силами.
Если производитель нее указывает данных по выделению озона, то на такой очиститель не стоит обращать внимание, каким бы привлекательным по стоимости оно ни было.
Каждый современный человек, ценящий свое здоровье, в конце концов, начинает задумываться о качестве воздуха, которым он дышит. Борьба с пылью, табачным шлейфом, а также иными побочными элементами, витающими в окружающей среде, невозможна без использования специального электростатического современного очистителя воздуха.
Все известные электростатические модели созданы для выполнения единой цели – очищение воздуха от пыли и вредных элементов. Однако, сколько существует разновидностей моделей, столько есть различных возможностей приборов.
Критерии выбора очистителей
Осуществляя покупку очистителя воздуха, следует тщательным образом изучить прилагаемую документацию и только после этого из приглянувшихся моделей отдать предпочтение наиболее подходящей. Для правильного и рационального приобретения прибора необходимо заранее знать площадь, кубатуру помещения, причину возникновения неприятного запаха.
Критерии отбора:
- Площадь обслуживания.
- Уровень шума. Чем ниже уровень шума, тем дольше можно оставлять рабочим прибор в самом помещении.
- Потребляемая мощность. В некоторых случаях для поддержания заданного качества воздуха необходимо постоянно держать включенным прибор. Мощность потребляемой энергии показывает, какое количество киловатт будет потрачено для обеспечения должного уровня.
- Степень очистки. Является самым важным техническим параметром. И количество таковых степеней является прямым показателем качества получаемого воздуха в помещении.
Принцип работы фильтра
Все очистители воздуха могут классифицироваться только в соответствии с используемой конструкцией и набором фильтров, которые для электростатических фильтров не заменяются, а подлежат чистке.
Фильтром в электростатических очистителях воздуха являются две или более пластины, на которые при воздействии преобразователя поступает заданное напряжение для образования устойчивого поля.
Пылинки, которые падают вместе с воздухом в область между пластинами, притягиваются к ним и оседают. Такое условие обязывает владельцев для получения качественной фильтрации воздуха периодически осуществлять чистку увлажнителя , рекомендуемая частота которой указана в технической документации.
Достоинства и недостатки электростатических очистителей
Достоинства приборов
- Способны уловить все частицы, которые имеют возможность приобретать заряд.
- Бесшумная работа.
- Низкий уровень энергопотребления.
Недостатки приборов
- Невысокая производительность.
- Очистители продуцируют озон. Высокая концентрация озона является токсичной для человека, которая проявляется в виде головной боли, повышенной утомляемости, приступов астмы и так далее.
- Плохо сконструированные или сломанные приборы могут образовать опасные соединения для здоровья человека.
В настоящее время на рынке представлено множество моделей электростатических очистителей, различающихся между собой функциональными возможностями, техническими характеристиками, производителями.
Наибольшую популярность относительно надежности и долговечности получили очистители следующих компаний: Daikin, Electrolux, Venta, Tree Air и Boneco.
Стоимость большинства моделей этих компаний находится в пределах от 50 до 250 долларов, в зависимости от производительности, сервисных функций и степеней очистки.
Человеческое здоровье напрямую зависит от воздуха, который поступает в легкие. В атмосфере витают химические элементы из-за выбросов предприятий, транспорта и других источников загрязнения. Чтобы дышать чистым воздухом, можно купить очиститель воздуха для дома или сделать его самостоятельно.
Все очистители работают одинаково. Они очищают воздух от мелких частиц пыли. В них используют фильтр, через который проходит загрязненный воздух. После фильтрации вентилятор выдувает чистый воздух наружу.
Популярные фильтры:
- водные,
- электростатические,
- угольные.
Имея два варианта, купить прибор или соорудить его своими руками, рассмотрим второй из них. Сделать многофункциональный очиститель в домашних условиях не получится, но соорудить простую модель можно.
Варианты исполнения самодельных приборов
Перед конструированием очистителя стоит учесть климатические условия в помещении, где его будут применять.
Например, для помещения с нормальной влажностью, но большим количеством пыли подойдет очиститель, для изготовления которого можно взять фильтр из автомобиля.
Устройства для сухих помещений
В помещениях с сухим воздухом для очистителя ставится дополнительная задача увлажнения. Для человека комфортная влажность составляет 40–60%.
Соорудить самодельный очиститель сможет даже новичок. Для этого нужен пластиковый контейнер и компьютерный кулер. Схема действий будет такая:
- В пластиковом контейнере вырежьте два отверстия. Они нужны для вентилятора и выхода очищенного воздуха.
- Прикрутите кулер к крышке пластикового контейнера. Для этого подойдут саморезы.
- Вентилятор подключите к блоку питания. Можно использовать блок на 5В или 12В. Чем больше мощность блока, тем обороты будут выше. От этого зависит КПД агрегата.
- Внутри контейнера разместите кусочки ткани из микрофибры. Заменить ее можно любой тканью с большой плотностью. Чтобы поместить их внутрь очистителя, натяните леску в несколько рядов.
- Разместите ткань так, чтоб она не касалась стенок контейнера. Это необходимо для свободного перемещения воздуха к выходу. При прохождении воздуха через очиститель пыль будет оставаться на влажной ткани. Чтобы увеличить эффективность очищения, для развешивания ткани сделайте дополнительные отверстия на боковых стенках контейнера над уровнем воды.
Приборы для влажных помещений
Помещения с высоким уровнем влажности приносят неудобства своим хозяевам. Это среда для размножения микробов, грибков и бактерий. Высокая влажность воздуха портит имущество.
Особенно это касается мебели. Для борьбы с такой проблемой нужен прибор, который будет сушить воздух. Здесь нужна обычная поваренная соль.
Прежде чем использовать соль, просушите ее в духовке. Это поможет ей полностью выполнить свои функции.
В изготовлении очистителя для сушки и очистки воздуха испльзуйте те же инструкции, что и при конструировании очистителя для сухих помещений. За исключением вентилятора, мощность которого должна составить 5В. Иначе соль разлетится по контейнеру. Воду меняйте на слой соли 3–4 см.
Можно увеличить коэффициент полезного действия очистителя, если заменить соль на силикагель. Он лучше впитывает влагу. Силикагель не токсичен. Это вещество можно встретить в коробках с обувью.
Осторожно используйте силикагель, если в доме находится ребенок. Малыш может отравиться веществом.
Распространяют силикагель китайские интернет-магазины в разнообразной расфасовке. Главное преимущество заключается в использовании небольшого количества для получения того же эффекта.
Силикагель окрашивают в синий цвет, который работает как индикатор. Вещество меняет цвет на розовый, когда количество влаги достигает максимума. Кристаллы можно использовать повторно. Для этого силикагель просушивают в микроволновой печи в течение восьми минут. Мощность микроволновой печи в момент просушки должна быть минимальной.
Аппарат с угольным фильтром
В помещениях с запахом сигаретного дыма в качестве фильтра используют активированный уголь. Он удаляет из воздуха токсичные вещества. Чтобы сделать очиститель воздуха своими руками, следуйте алгоритму:
- Обрежьте канализационную трубу 200 мм до 77 мм. Труба, которая вставляется внутрь размером 150 мм должна быть до 75 мм. Со всех срезов уберите заусенцы.
- Толстую сторону трубы направьте вверх. Срежьте кантик для максимального прилегания к заглушке.
- Сделайте на внутренней трубе максимальное количество отверстий.
- На наружной трубе сделайте отверстия диаметром 30 мм.
- Отходы не выбрасывайте. Из них получатся распорки.
- Обтяните агроволокном обе трубы. Сшейте агроволокно для закрепления. Для надежности используйте капроновую нить.
- Обтяните наружную трубу малярной сеткой. Сшейте сетку, используя два хомута.
- Сшейте всю длину сетки.
- Излишки сетки и агроволокна уберите кусачками и ножницами.
- Внутреннюю трубу оберните агроволокном, но прежде оберните еще металлической сеткой.
- Закрепите края металлическим скотчем или паяльной лампой.
- В заглушку вставьте внутреннюю трубу и закрепите минеральной ватой или строительной пеной. Установите трубу строго по центру. Можно взять распорки.
- В наружную трубу вмонтируйте элементы внутренней трубы.
- Заправьте фильтр активированным углем. Можно использовать любой уголь.
- Очистите уголь от пыли. Для этого нужно просеять его через сито.
Засыпайте уголь так, чтоб не образовывались пустоты. Для заполнения фильтра понадобится 2 кг активированного угля. Чтоб равномерно заполнить конструкцию, встряхивайте ее периодически.
Закройте переходником трубку с углем. Переходник будет для него крышкой. Закройте герметиком образовавшуюся щель.
Когда герметик полностью высохнет, вмонтируйте в переходник канальный вентилятор. Вставьте его так, чтобы воздух втягивался в очиститель и проходил через устройство, выдуваясь обратно в помещение. В доме фильтр можно вмонтировать в приточный вентиляционный канал.
Чтобы сделать воздухоочиститель своими руками, ориентируйтесь на представленные устройства. Можно наполнить свою квартиру чистым воздухом, сэкокомив при этом средства. Достаточно иметь под рукой примитивные строительные материалы и желание сделать дом чище.
Любое жилище имеет огромное количество «генераторов» бытовой пыли, среди которых сам человек, мягкая мебель, книги и мягкие игрушки занимают первое место. И чтобы человек не придумывал, все равно пыль производится и ни чего с этим не поделаешь.
В процессе «технической революции» и наполнения наших домов электрическими приборами стали замечать, что некоторые электроприборы имеют свойство притягивать пыль. Исследуя эту особенность, учеными и был разработан электростатический воздухоочиститель. Этот достаточно простой и эффективный прибор стал очень популярен во всем мире и о нем пойдет речь в этой публикации.
Принцип действия и конструкция очистителя
Принцип работы электростатического очистителя воздуха достаточно прост: на электроде создается коронирующий заряд, который производит ионы с определенным зарядом. Заряженные ионы начинают двигаться в сторону противоположно заряженного электрода захватывая по пути молекулы воздуха, пыль, бактерии и пр. После чего все ионы и загрязнения, получившие заряд оседают на электроде, а очищенный воздух поступает обратно в комнату.
Конструктивно, такие очистители состоят из:
- Корпуса, в котором выполнены отверстия для забора загрязненного и вывода очищенного воздуха.
- Фильтра, картриджа или патрона, в котором воздух проходит ионизацию, попадая в поле высокого напряжения.
- Пылесборника, в котором находятся электроды с противоположным зарядом.
- Платы управления и блока питания.
- Органы дыхания человека.
- Свойства холестерина, придавая ему нерастворимые формы.
- На систему размножения человека, убивая мужские половые клетки и препятствуя их образованию.
В некоторых моделях электростатических воздухоочистителей установлен вентилятор для повышения производительности и для прокачки воздушной смеси через дополнительные ступени фильтрации, если таковые предусмотрены.
Достоинства и недостатки
Основным достоинством таких воздухоочистителей является эффективность очистки воздушных масс от загрязнений, размером менее 1 мкр., при минимальном расходе электроэнергии. Мощность бытовых электростатических очистителей воздуха редко когда превышает 25-45 Вт. Кроме этого, еще одним немаловажным фактором в поддержку использования таких очистителей, можно считать тот факт, что электростатический фильтр не нуждается в замене: время от времени его необходимо снимать и промывать в теплой воде. Воздухоочиститель без сменных фильтров значительно снижает затраты на его эксплуатацию. Если модель очистителя не оснащена вентилятором, то в ней нет движущихся частей, а это значит, что она полностью бесшумна. Это еще один большой плюс электростатическим очистителям.
Теперь немного о недостатках. Почему немного – потому что их действительно всего один, но достаточно серьезный. В процессе работы, такой аппарат производит не только ионы с определенным знаком заряда, а и озон, который является сильнейшим окислителем.
Этот газ в малой концентрации обладает потрясающими обеззараживающими свойствами. Неконтролируемое превращение кислорода в озон может привести к достаточно серьезным последствиям. Наиболее пагубное влияние озон оказывает на:
В нашей стране озон отнесет к вредным веществам с высшим классом опасности. ПДК содержания озона в воздухе для населенных пунктов составляет 0,03 мг/м 3 .
Правила выбора электростатического воздухоочистителя
В связи со сравнительной дороговизной этого прибора, многие наши соотечественники задают вопрос о том, как его сделать своими руками. Электростатический очиститель воздуха своими руками, конечно изготовить можно и в этом нет ничего сложного: если немного покопаться, в сети можно найти массу схем, инструкций и даже книг. (Одна из них называется «Домашний практик», выпуск 7)
Несмотря на высокое напряжение, можно избежать поражения электрическим токомни, выполняя элементарные требования по технике безопасности. Но, контролировать производство озона в домашних условиях очень сложно или даже практически невозможно. Ввиду высочайшей токсичности озона, мы не рекомендуем собирать электростатический воздухоочиститель своими силами.
Если производитель нее указывает данных по выделению озона, то на такой очиститель не стоит обращать внимание, каким бы привлекательным по стоимости оно ни было.
Принцип работы воздухоочистителя для дома своими руками, который может сделать каждый желающий, такой же, как и коммерческого прибора — загрязнённый воздух проходит через прибор (систему фильтрации или одиночный фильтр) и происходит процесс очистки.
Некоторые фильтры могут использовать нетипичные, редкие дополнения к очистке — ионизация воздуха, обработка его инфракрасным излучением и прочие. Такие дополнения считаются унитарными (узкоспециализированными) и лишь частично усиливают эффект от очистки стандартным способом.
Варианты изготовления устройства своими руками
Изготовить фильтр для очистки воздуха своими руками — сможет каждый. Необходимо только заранее определиться с условиями, в которых он будет работать и выбрать подходящий для вас наполнитель для фильтрации.
Воздухоочиститель своими руками для сухих комнат. Сухие комнаты — помещения, влажность в которых равна менее 30%. Очень важно попытаться повысить общий уровень влажности, и ни в коем случае — не снизить его. Возьмите небольшой контейнер для воды и заполните его наполовину.
Разместите на одном конце тары компьютерный кулер или вентилятор, который работает на небольших оборотах. Закрепите «систему подачи воздуха» так, чтобы она не могла попасть в воду — это может привести к замыканию в электросети. Благодаря взаимодействую (проникновению) воздуха с водой происходит его очистка, также — происходит процесс повышения влажности. Можно заливать горячую воду в тару, таким образом, паром насытится всё помещение.
Для влажных комнат. Влажные помещения (уровень влажности больше 60 — 75%) лучше дополнительно не увлажнять. Для очистителя воздуха, вместо воды, как было описано выше, можно использовать стандартную кухонную соль.
Свойства соли позволяют ей впитывать влагу и производить очистку. Чтобы соль не разлеталась от потока воздуха, её следует накрывать марлей или любым другим материалом, который бы не позвонил ей распасться на мелкие крупинки.
С угольным фильтром. Очиститель с угольным фильтром своими руками можно сделать, если у вас есть достаточное количество активированного угля. Поместите уголь внутрь контейнера и проделайте в нём небольшие отверстия (можно использовать уголку).
«Вентилятор» следует размещать так, чтобы он выдувал воздух из контейнера, а не вдувал поток в него. Далее, необходимо накрыть контейнер тканью, чтобы «вентилятор» выдувал только тот воздух, который может поступать через небольшие отверстия, где и расположен уголь.
Важно!
Для большей эффективности такой очиститель можно приподнять, чтобы ему было легче забирать в себя воздух со дна тары. Уголь никак не влияет на влажность внутри помещения.
Правила использования прибора
- Прибор не должен слишком шумно работать; громкий шум свидетельствует о трудностях с подачей воздуха (мотор «задыхается» и начинает работать на повышенных оборотах). Также это может свидетельствовать о неудачном крепеже самого вентилятора.
- Наполнитель для фильтрации необходимо периодично менять; Не забывайте об этом! Самодельный фильтр не сможет самолично напомнить вам об этой процедуре! Рекомендуется поставить уведомление на свой мобильный телефон о дате замены фильтрующего вещества.
- Старайтесь не оставлять самодельные приборы для очистки воздуха без присмотра. Любой электроприбор (тем более самодельный) требует особой бдительности и внимательности при его эксплуатации и по возможности не должен оставаться без присмотра. Что касается самодельных очистителей для воздуха, — они должны быть под присмотром весь период их работы.
Экология потребления. Наука и техника: В какой-то момент времени во мне воспылал энтузиазм к постройке бытового электростатического очистителя воздуха (электрофильтра). Предлагаю познакомиться с принципами работы этих устройств.
В какой-то момент времени во мне воспылал энтузиазм к постройке бытового электростатического очистителя воздуха (электрофильтра). Предлагаю познакомиться с принципами работы этих устройств.
Зачем нужен очиститель
Содержащиеся в воздухе мелкие пылевые частицы PM10 и PM2.5 способны проникать в наш организм при дыхании: бронхи, легкие и даже попадать в кровоток.
По данным всемирной организации здравоохранения (ВОЗ) загрязнение воздуха такими частицами несет серьезную опасность для здоровья
: воздействие воздуха с высоким содержанием таких частиц (превышение по PM2.5 среднегодовой концентрации 10мкг/куб.м и среднесуточной 25мкг/куб.м; превышение по PM10 среднегодовой 20мкг/куб.м и среднесуточной 50мкг/куб.м) повышает риск возникновения респираторных заболеваний, заболеваний сердечнососудистой системы и некоторых онкологических заболеваний, загрязнение уже отнесено к 1 группе канцерогенов.
Высокотоксичные частицы (содержащие свинец, кадмий, мышьяк, бериллий, теллур, и др., а также радиоактивные соединения) представляют опасность даже при небольших концентрациях.
На фото коронный разряд, используемый в электростатических очистителях воздуха
Самый простой шаг к снижению негативного воздействия пыли на организм – установка эффективного очистителя воздуха в спальном помещении, где человек проводит около трети времени.
Источники пыли
Крупными природными поставщиками пыли являются извержения вулканов, океан (испарение брызг), природные пожары, эрозия почв (например, пыльные бури: г.Забол, Ирак), землетрясения и различные обвалы грунта, пыльца растений, споры грибов, процессы разложения биомассы и др.
К антропогенным источникам относятся процессы сжигания ископаемых (энергетика и промышленность), транспортирование хрупких/сыпучих материалов и погрузочные работы (см. порт «Восточный» г.Находка, порт «Ванино» Хабаровский кр.), дробление материалов (добыча ископаемых, производство стройматериалов, сельхоз промышленность), механическая обработка, химические процессы, термические операции (сварка, плавка), эксплуатация транспортных средств (выхлоп двигателей внутреннего сгорания, истирание шин и дорожного покрытия).
Наличие пылевых частиц в помещениях обусловлено поступлением загрязненного наружного воздуха, а также присутствием внутренних источников: разрушение материалов (одежда, белье, ковры, мебель, стройматериалы, книги), приготовление пищи, жизнедеятельность человека (частички эпидермиса, волосы), плесневелые грибы, клещи домашней пыли и др.
Доступные очистители воздуха
Для снижения концентрации частиц пыли (в том числе самых опасных – размером менее 10мкм) доступны бытовые приборы, работающие на следующих принципах:
- механическая фильтрация;
- ионизация воздуха;
- электростатическое осаждение (электрофильтры).
Метод механической фильтрации является самым распространенным. Принципы улавливания частиц этими фильтрами здесь уже были описаны. Для улавливания тонких твердых частиц используются высокоэффективные (более 85%) волокнистые фильтрующие элементы (стандарты EPA, HEPA). Такие устройства хорошо справляются со своей задачей, но имеют и некоторые недостатки:
- высокое гидравлическое сопротивление фильтрующего элемента;
- необходимость в частой замене дорогостоящего фильтрующего элемента.
Из-за высокого сопротивления разработчики таких очистителей вынуждены обеспечить большую площадь фильтрующего элемента, использовать мощные, но при этом малошумные вентиляторы, избавляться от щелей в корпусе устройства (так как даже небольшой подсос воздуха в обход фильтрующего элемента значительно снижает эффективность очистки прибора).
Ионизатор воздуха при работе электрически заряжает взвешенные в воздухе помещения частицы пыли, из-за чего последние под действием электрических сил осаждаются на пол, стены, потолок или предметы в помещении. Частицы остаются в помещении и могут вернуться во взвешенное состояние, поэтому решение не выглядит удовлетворительным. Кроме того, прибор значительно изменяет ионный состав воздуха, при этом воздействие такого воздуха на людей на данный момент изучено недостаточно.
Работа электростатического очистителя основана на том же принципе: поступающие внутрь прибора частицы сначала электрически заряжаются, затем притягиваются электрическими силами к специальным пластинам, заряженным противоположным зарядом (все это происходит внутри прибора). При накоплении слоя пыли на пластинах выполняется чистка. Эти очистители обладают высокой эффективностью (более 80%) улавливания частиц разных размеров, низким гидравлическим сопротивлением, и не требуют периодической замены расходных элементов. Имеются и недостатки: выработка некоторого количества токсичных газов (озон, оксиды азота), сложная конструкция (электродные сборки, высоковольтное электропитание), необходимость периодической чистки осадительных пластин.
Требования к очистителю воздуха
При применении рециркуляционного очистителя воздуха (такой очиститель засасывает воздух из помещения, фильтрует, а затем возвращает в помещение) обязательно должны учитываться характеристики прибора (однопроходная эффективность, объемная производительность) и объем целевого помещения, иначе прибор может оказаться бесполезным.
Американской организацией AHAM для этих целей был разработан показатель CADR, учитывающий однопроходную эффективность очистки и объемную производительность очистителя, а также способ вычисления необходимого CADR для заданного помещения. Здесь уже есть неплохое описание этого показателя.
AHAM рекомендует использовать очиститель со значением CADR большим или равным пятикратному обмену объема помещения в час. Например, для комнаты площадью 20 кв.м и высотой потолка 2,5м показатель CADR должен составлять 20 * 2.5 * 5 = 250 куб.м/час (или 147CFM) или более.
Также очиститель при работе не должен создавать какие-либо вредные факторы: превышение допустимых значений уровня шума, превышение допустимых концентраций вредных газов (в случае использования электрофильтра).
Однородное электрическое поле
Из курса физики мы помним, что вблизи тела, обладающего электрическим зарядом, образуется электрическое поле .
Силовой характеристикой поля является напряженность E [Вольт/м или кВ/см]. Напряженность электрического поля – векторная величина (имеет направление). Графически изображать напряженность принято силовыми линиями (касательные к точкам силовых кривых совпадают с направлением вектора напряженности в данных точках), величина напряженности характеризуется густотой этих линий (чем более густо расположены линии – тем большее значение принимает напряженность в этой области).
Рассмотрим простейшую систему электродов, представляющую из себя две параллельные металлические пластины, находящиеся друг от друга на расстоянии L, к пластинам приложена разность потенциалов напряжением U с источника высокого напряжения:
L= 11мм = 1.1см;
U = 11кВ (киловольт; 1киловольт = 1000вольт);
На рисунке показано примерное расположение силовых линий. По густоте линий видно, что в большей части пространства межэлектродного промежутка (за исключением области вблизи кромок пластин) напряженность имеет одинаковое значение. Такое равномерное электрическое поле называется однородным
. Значение напряженности в пространстве между пластинами для этой электродной системы можно вычислить из простого уравнения :
Значит, при напряжении 11кВ напряженность составит 10кВ/см. В данных условиях атмосферный воздух, заполняющий пространство между пластинами, является электрическим изолятором (диэлектриком), то есть не проводит электрический ток, поэтому в электродной системе ток протекать не будет. Проверим это на практике.
На самом деле воздух совсем немного проводит ток
Оборудование для экспериментов
Эксперимент #1
Две параллельные пластины, однородное электрическое поле;
L = 11мм = 1.1см;
U = 11…22кВ.
По показаниям микроамперметра видно, что электрический ток действительно отсутствует. Ничего не изменилось и при напряжении 22кВ, и даже при 25кВ (максимальном для моего источника высокого напряжения).
| U, кВ | E, кВ/см | I, мкА |
|---|---|---|
| 0 | 0 | 0 |
| 11 | 10 | 0 |
| 22 | 20 | 0 |
| 25 | 22.72 | 0 |
Электрический пробой воздушного промежутка
Сильное электрическое поле способно превратить воздушный промежуток в электрический проводник – для этого необходимо, чтобы его напряженность в промежутке превысила некоторую критическую (пробойную) величину. Когда это происходит, в воздухе с высокой интенсивностью начинают протекать ионизационные процессы: в основном ударная ионизация
и фотоионизация
, что приводит к лавинообразному росту количества свободных носителей зарядов – ионов и электронов. В какой-то момент времени образуется проводящий канал (заполненный носителями зарядов), перекрывающий межэлектродный промежуток, по которому начинает течь ток (явление называется электрическим пробоем или разрядом). В зоне протекания ионизационных процессов имеют место химические реакции (в том числе диссоциация молекул, входящих в состав воздуха), что приводит к выработке некоторого количества токсичных газов (озон, оксиды азота).
Ионизационные процессы
Ударная ионизация
Свободные электроны и ионы различных знаков, всегда имеющиеся в атмосферном воздухе в небольшом количестве, под действием электрического поля будут устремляться в направлении электрода противоположной полярности (электроны и отрицательные ионы – к положительному, положительные ионы–к отрицательному).
Некоторые из них будут по пути сталкиваться с атомами и молекулами воздуха.
В случае, если кинетическая энергия движущихся электронов/ионов оказывается достаточной (а она тем выше, чем выше напряженность поля), то при столкновениях из нейтральных атомов выбиваются электроны, в результате чего образуются новые свободные электроны и положительные ионы.
В свою очередь новые электроны и ионы будут также ускоряться электрическим полем и некоторые из них будут способны таким образом ионизировать другие атомы и молекулы. Так количество ионов и электронов в межэлектродном пространстве начинает лавинообразно увеличиваться.
Фотоионизация
Атомы или молекулы, получившие при столкновении недостаточное для ионизации количество энергии, испускают ее в виде фотонов (атом/молекула стремится вернуться в прежнее стабильное энергетическое состояние). Фотоны могут быть поглощены каким-либо атомом или молекулой, что может также привести к ионизации (если энергия фотона достаточна для отрыва электрона).
Для параллельных пластин в атмосферном воздухе критическую величину напряженности электрического поля можно вычислить из уравнения :
Для рассматриваемой электродной системы критическая напряженность (при нормальных атмосферных условиях) составляет около 30,6кВ/см, а напряжение пробоя –33,6кВ. К сожалению, мой источник высокого напряжения не может выдать более 25кВ, поэтому для наблюдения электрического пробоя воздуха пришлось уменьшить межэлектродное расстояние до 0,7см (критическая напряженность 32.1кВ/см; напряжение пробоя 22,5кВ).
Эксперимент #2
Наблюдение электрического пробоя воздушного промежутка. Будем повышать приложенную к электродам разность потенциалов до возникновения электрического пробоя.
L = 7мм = 0.7см;
U = 14…25кВ.
Пробой промежутка в виде искрового разряда наблюдался при напряжении 21,5кВ. Разряд испускал свет и звук (щелчок), стрелки измерителей тока отклонялись (значит, что электрический ток протекал). При этом в воздухе ощущался запах озона (такой же запах, например, возникает при работе УФ-ламп во время кварцевания помещений в больницах).
Вольт-амперная характеристика:
| U, кВ | E, кВ/см | I, мкА |
|---|---|---|
| 0 | 0 | 0 |
| 14 | 20 | 0 |
| 21 | 30 | 0 |
| 21.5 | 30.71 | пробой |
Неоднородное электрическое поле
Заменим в системе электродов положительный пластинчатый электрод на тонкий проволочный электрод диаметром 0.1мм (т.е. R1=0.05мм), также расположенный параллельно отрицательному пластинчатому электроду. В этом случае в пространстве межэлектродного промежутка при наличии разности потенциалов образуется неоднородное
электрическое поле: чем ближе точка пространства к проволочному электроду – тем выше значение напряженности электрического поля. На рисунке ниже представлена примерная картина распределения:
Для наглядности можно построить более точную картину распределения напряженности — проще это сделать для эквивалентной электродной системы, где пластинчатый электрод заменен на трубчатый электрод, расположенный коаксиально коронирующему электроду:
Для этой электродной системы значения напряженности в точках межэлектродного пространства можно определить из простого уравнения :
На рисунке ниже представлена рассчитанная картина для значений:
R1 = 0.05мм = 0.005см;
R2 = 11мм = 1.1см;
U = 5кВ;
Линии характеризуют значение напряженности на данном удалении; значения соседних линий отличаются на 1кВ/см.
Из картины распределения видно, что в большей части межэлектродного пространства напряженность изменяется незначительно, а вблизи проволочного электрода, по мере приближения к нему, резко возрастает.
Коронный разряд
В электродной системе провод-плоскость (или подобной, в которой радиус кривизны одного электрода существенно меньше межэлектродного расстояния), как мы увидели из картины распределения напряженности, возможно существование электрического поля со следующими особенностями:
- в небольшой области, приближенной к проволочному электроду, напряженность электрического поля может достигать высоких значений (значительно превышающих 30кВ/см), достаточных для возникновения интенсивных ионизационных процессов в воздухе;
- одновременно с этим, в большей части межэлектродного пространства напряженность электрического поля будет принимать невысокие значения – менее 10 кВ/см.
При такой конфигурации электрического поля образуется электрический пробой воздуха, локализованный в небольшой области вблизи провода и не перекрывающий межэлектродный промежуток (см. фото). Такой незавершенный электрический разряд называется коронным разрядом
, а электрод, вблизи которого он образуется – коронирующим электродом
.
В межэлектродном промежутке с коронным разрядом выделяется две зоны : зона ионизации(или чехол разряда)
и зона дрейфа
:
В зоне ионизации, как можно догадаться из названия, протекают ионизационные процессы – ударная ионизация и фотоионизация, и образуются ионы разных знаков и электроны. Электрическое поле, присутствующее в межэлектродном пространстве, воздействует на электроны и ионы, из-за чего электроны и отрицательные ионы (при наличии) устремляются к коронирующему электроду, а положительные ионы вытесняются из зоны ионизации и поступают в зону дрейфа.
В зоне дрейфа, на которую приходится основная часть межэлектродного промежутка (все пространство промежутка за исключением зоны ионизации), ионизационные процессы не протекают. Здесь распределяется множество дрейфующих под действием электрического поля (в основном в направлении пластинчатого электрода) положительных ионов.
За счет направленного движения зарядов (положительные ионы замыкают ток на пластинчатый электрод, а электроны и отрицательные ионы — на коронирующий электрод) в промежутке протекает электрический ток, ток коронного разряда
.
В атмосферном воздухе в зависимости от условий положительный коронный разряд может принимать одну из форм : лавинную
или стримерную
. Лавинная форма наблюдается в виде равномерного тонкого светящегося слоя, покрывающего гладкий электрод (например, провод), выше было фото. Стримерная форма наблюдается в виде тонких светящихся нитевидных каналов (стримеров), направленных от электрода и чаще возникает на электродах с острыми неровностями (зубья, шипы, иглы).
Как и в случае с искровым разрядом, побочным эффектом протекания любой формы коронного разряда в воздухе (из-за наличия ионизационных процессов) является выработка вредных газов – озона и оксидов азота.
Эксперимент #3
Наблюдение положительного лавинного коронного разряда. Коронирующий электрод – проволочный, положительное питание;
L = 11 мм = 1.1см;
R1 = 0.05 мм = 0.005см
Свечение разряда:
Процесс коронирования (появился электрический ток) начался при U = 6.5кВ, при этом поверхность проволочного электрода начала равномерно покрываться тонким слабосветящимся слоем и появился запах озона. В этой светящейся области (чехле коронного разряда) и сосредоточены ионизационные процессы. При увеличении напряжения наблюдалось увеличение интенсивности свечения и нелинейный рост тока, а при достижении U = 17.1кВ произошло перекрытие межэлектродного промежутка (коронный разряд перешел в искровой разряд).
Вольт-амперная характеристика:
| U, кВ | I, мкА |
|---|---|
| 0 | 0 |
| 6,5 | 1 |
| 7 | 2 |
| 8 | 20 |
| 9 | 40 |
| 10 | 60 |
| 11 | 110 |
| 12 | 180 |
| 13 | 220 |
| 14 | 300 |
| 15 | 350 |
| 16 | 420 |
| 17 | 520 |
| 17.1 | перекрытие |
Эксперимент #4
Наблюдение отрицательного коронного разряда. Поменяем местами провода электропитания электродной системы (отрицательный провод к проволочному электроду, положительный провод – к пластинчатому). Коронирующий электрод – проволочный, отрицательное питание;
L = 11 мм;
R1 = 0.05 мм = 0.005 см.
Свечение:
Коронирование началось при U = 7.5кВ. Характер свечения отрицательной короны существенно отличался от свечения положительной короны: теперь на коронирующем электроде возникали отдельные пульсирующие светящиеся равноудаленные друг от друга точки. При повышении приложенного напряжения возрастал ток разряда, а также увеличивалось количество светящихся точек и интенсивность их свечения. Запах озона ощущался сильней, чем при положительной короне. Искровой пробой промежутка произошел при U = 18.5кВ.
Вольт-амперная характеристика:
| U, кВ | I, мкА |
|---|---|
| 0 | 0 |
| 7.5 | 1 |
| 8 | 4 |
| 9 | 20 |
| 10 | 40 |
| 11 | 100 |
| 12 | 150 |
| 13 | 200 |
| 14 | 300 |
| 15 | 380 |
| 16 | 480 |
| 17 | 590 |
| 18 | 700 |
| 18.4 | 800 |
| 18.5 | перекрытие |
Эксперимент #5
Наблюдение положительного стримерного коронного разряда. Заменим в электродной системе проволочный электрод на пилообразный электрод и вернем полярность электропитания в исходное состояние. Коронирующий электрод – зубчатый, положительное питание;
L = 11 мм = 1.1см;
Свечение:
Процесс коронирования начался при U = 5.5кВ, при этом на остриях коронирующего электрода появились тонкие светящиеся каналы (стримеры), направленные в сторону пластинчатого электрода. По мере увеличения напряжения размер и интенсивность свечения этих каналов, а также коронный ток увеличивался. Запах озона ощущался примерно как при положительной лавинной короне. Переход коронного разряда в искровой разряд произошел при U = 13кВ.
Вольт-амперная характеристика:
| U, кВ | I, мкА |
|---|---|
| 0 | 0 |
| 5.5 | 1 |
| 6 | 3 |
| 7 | 10 |
| 8 | 20 |
| 9 | 35 |
| 10 | 60 |
| 11 | 150 |
| 12 | 300 |
| 12.9 | 410 |
| 13 | перекрытие |
Как было видно из экспериментов, геометрические параметры коронирующего электрода, а также полярность питания существенно влияют на закономерность изменения тока от напряжения, величину напряжения зажигания разряда, величину напряжения пробоя промежутка. Это не все факторы, влияющие на режим протекания коронного разряда, вот более полный список:
- геометрические параметры межэлектродного пространства:
- геометрические параметры коронирующего электрода;
- межэлектродное расстояние;
- геометрические параметры коронирующего электрода;
- полярность электропитания, подводимого к коронирующему электроду;
- параметры воздушной смеси, заполняющей межэлектродное пространство:
- химический состав;
- влажность;
- температура;
- давление;
- примеси (частицы аэрозолей, например: пыль, дым, туман)
- химический состав;
- в некоторых случаях материал (значение работы выхода электрона) отрицательного электрода, так как с поверхности металлического электрода при бомбардировке ионами и при облучении фотонами может происходить отрыв электронов.
Далее в статье будет идти речь только о положительном лавинном коронном разряде, так как такой разряд характеризуется относительно низким количеством вырабатываемых токсичных газов . Данная форма разряда менее эффективна для электрической очистки воздуха в сравнении с отрицательным коронным разрядом (отрицательная корона повсеместно применяется в промышленных аппаратах по очистке дымовых газов перед их выбросом в атмосферу).
Электрическая очистка воздуха: принцип работы
Принцип электрической очистки заключается в следующем: воздух с взвешенными частицами загрязнений (частицы пыли и/или дыма и/или тумана) пропускается со скоростью Vв.п. через межэлектродный промежуток, в котором поддерживается коронный разряд (в нашем случае положительный).
Частицы пыли сначала электрически заряжаются в поле коронного разряда (положительно), а затем притягиваются к отрицательно заряженным пластинчатым электродам за счет действия электрических сил.
Зарядка частиц
Дрейфующие положительные ионы, имеющиеся в большом количестве в межэлектродном коронирующем промежутке, сталкиваются с частицами пыли, из-за чего частицы приобретают положительный электрический заряд. Процесс зарядки выполняется в основном за счет двух механизмов – ударной зарядки
дрейфующими в электрическом поле ионами и диффузионной зарядки
ионами, участвующими в тепловом движении молекул. Оба механизма действуют одновременно, но первый более существенен для зарядки крупных частиц (размерами более микрометра), а второй – для более мелких частиц . Важно отметить, что при интенсивном коронном разряде скорость диффузионной зарядки значительно ниже ударной .
Процессы зарядки
Процесс ударной зарядки протекает в потоке ионов, движущихся от коронирующего электрода под действием электрического поля. Ионы, оказавшиеся слишком близко к частице, захватываются последней за счет молекулярных сил притяжения, действующих на коротких расстояниях (в том числе сила зеркального отображения, обусловленная взаимодействием заряда иона и наведенного за счет электростатической индукции противоположного заряда на поверхности частицы).
Механизм диффузионной зарядки выполняется ионами, участвующими в тепловом движении молекул. Ион, оказавшийся достаточно близко к поверхности частицы, захватываются последней за счет молекулярных сил притяжения (в том числе силой зеркального отображения), поэтому вблизи поверхности частицы образуется пустая область, где ионы отсутствуют:
Из-за образовавшейся разности концентраций возникает диффузия ионов к поверхности частицы (ионы стремятся занять пустую область), и в результате эти ионы оказываются захваченными.
При любом механизме по мере накопления частицей заряда, на находящиеся вблизи частицы ионы начинает действовать отталкивающая электрическая сила (заряд частицы и ионов одного знака), поэтому скорость зарядки будет со временем снижаться и в некоторый момент прекратится совсем . Этим объясняется существование предела зарядки частицы.
Величина заряда, полученного частицей в коронирующем промежутке, зависит от следующих факторов:
- способность частицы к зарядке (скорость зарядки и предельный заряд, больше которого частица зарядиться не может);
- время, отпущенное на процесс зарядки;
- электрические параметры области, в которой находится частица (напряженность электрического поля, концентрация и подвижность ионов)
Способность частицы к зарядке определяется параметрами частицы (в первую очередь размер, а также электрофизические характеристики). Электрические параметры в месте нахождения частицы определяются режимом коронного разряда и удаленностью частицы от коронирующего электрода .
Дрейф и осаждение частиц
В межэлектродном пространстве коронирующей электродной системы присутствует электрическое поле, поэтому на частицу, получившую какой-либо заряд, сразу начинает действовать сила Кулона Fк, из-за чего частица начинает смещаться в направлении осадительного электрода – возникает скорость дрейфа W:
Значение силы Кулона пропорционально заряду частицы и напряженности электрического поля в месте ее нахождения :
Из-за движения частицы в среде возникает сила сопротивления Fс, зависящая от размеров и формы частицы, скорости ее движения, а также вязкости среды, поэтому нарастание скорости дрейфа ограничивается. Известно : скорость дрейфа крупной частицы в поле коронного разряда пропорциональна напряженности электрического поля и квадрату ее радиуса, а мелкой – пропорциональна напряженности поля.
Спустя какое-то время частица достигает поверхности осадительного электрода, где удерживается за счет следующих сил :
- электростатических сил притяжения, обусловленных наличием заряда на частице;
- молекулярных сил;
- сил, обусловленных капиллярными эффектами (в случае присутствия достаточного количества жидкости и способности частицы и электрода к смачиванию).
Эти силы противодействуют воздушному потоку, стремящемуся сорвать частицу. Частица выведена из воздушного потока.
Как можно заметить, коронирующий промежуток электродной системы выполняет следующие необходимые для электрической очистки функции:
- производство положительных ионов для зарядки частиц;
- обеспечение электрического поля для направленного дрейфа ионов (необходимого для зарядки частиц) и для направленного дрейфа заряженных частиц к осадительному электроду (необходимого для осаждения частиц).
Поэтому электрический режим коронного разряда существенно влияет на эффективность очистки. Известно , что процессу электроочистки способствует увеличение мощности, затрачиваемой коронным разрядом – увеличение разности потенциалов, приложенной к электродам и/или силы тока разряда. Из ВАХ межэлектродного промежутка, рассмотренной ранее, видно, что для этого необходимо поддерживать предпробойное значение разности потенциалов (кроме того видно, что это непростая задача).
Некоторые факторы могут оказывать существенное влияние на процесс электрической очистки:
- высокая количественная концентрация частиц загрязнений; приводит к дефициту ионов (большая их часть осаждается на частицах), в результате чего снижается интенсивность коронирования, вплоть до прекращения (явление носит название запирание короны), ухудшению параметров электрического поля в промежутке ; это приводит к падению эффективности процесса зарядки;
- накопление слоя пыли на осадительном электроде:
- если слой обладает высоким электрическим сопротивлением, то в нем накапливается электрический заряд того же знака, что и заряд дрейфующих частиц (и полярность коронирующего электрода), в результате чего:
- снижается интенсивность коронного разряда (из-за деформации электрического поля в промежутке), что негативно отражается на процессе зарядки частиц и процессе дрейфа частиц к осадительному электроду;
- заряженный слой оказывает отталкивающее действие на осаждающуюся частицу , имеющую заряд того же знака, что негативно отражается на процессе осаждения;
- снижается интенсивность коронного разряда (из-за деформации электрического поля в промежутке), что негативно отражается на процессе зарядки частиц и процессе дрейфа частиц к осадительному электроду;
- если слой обладает высоким электрическим сопротивлением, то в нем накапливается электрический заряд того же знака, что и заряд дрейфующих частиц (и полярность коронирующего электрода), в результате чего:
- электрический ветер (возникновение воздушного потока в направлении от коронирующего электрода в сторону осадительного электрода) в некоторых случаях может оказывать заметное влияние на траекторию движения частиц, особенно мелких.
Электродные системы электрических фильтров
По мере удаления от коронирующего электрода по направлению вдоль пластин, значение напряженности поля снижается. Условно выделим в межэлектродном промежутке активную область, в пределах которой напряженность поля принимает существенные значения; за пределами этой области необходимые для электрической очистки процессы неэффективны из-за недостаточной напряженности.
Сценарий движения частицы загрязнения на практике может отличаться от описанного ранее: например, частица так и не достигнет осадительного электрода (а), или осажденная частица может по каким-то причинам оторваться (б) от осадительного электрода с последующим уносом воздушным потоком:
Очевидно, что для достижения высоких показателей качества очистки необходимо, чтобы выполнялись условия:
- каждая частица загрязнения должна достигнуть поверхности осадительного электрода;
- каждая частица, достигнувшая осадительного электрода, должна надежно удерживаться на его поверхности до момента ее удаления при чистке.
Напрашивается предположение, что следующие меры должны приводить к повышению качества очистки:
- увеличение скорости дрейфа W;
- снижение скорости воздушного потока Vв.п.;
- увеличение длины S осадительных электродов по ходу движения воздуха;
- уменьшение межэлектродного расстояния L, что приведет к уменьшению расстояния A (которое необходимо преодолеть частице, чтобы достигнуть осадительного электрода).
Наибольший интерес, конечно, вызывает возможность повышения скорости дрейфа. Как было ранее отмечено, она в основном определяется величиной напряженности электрического поля и зарядом частицы, поэтому для обеспечения ее максимальных значений необходимо поддерживать интенсивный коронный разряд, а также обеспечить достаточное время пребывания (не менее 0,1с ) частицы в активной области промежутка (чтобы частица успела получить значительный заряд).
Величина скорости воздушного потока (при постоянном размере активной области) определяет время пребывания частицы в активной области промежутка, и, следовательно, время, отпущенное на процесс зарядки и время, отпущенное на процесс дрейфа. Кроме того, чрезмерное увеличение скорости приводит к возникновению явления вторичного уноса – к вырыванию осажденных частиц с осадительного электрода. Выбор скорости потока является компромиссом, так как снижение скорости приводит к падению объемной производительности аппарата, а значительное увеличение – к резкому ухудшению качества очистки. Обычно скорость в электрофильтрах составляет около 1 м/с (может находиться в пределах 0,5…2,5 м/с).
Увеличение длины S осадительного электрода не сможет оказать значительного положительного эффекта, так как в удлиненной части межэлектродного промежутка за пределами условной активной области (большое удаление от коронирующего электрода) напряженность электрического поля и, следовательно, скорость дрейфа частицы будет мала:
Установка дополнительного коронирующего электрода в удлиненной части значительно улучшит ситуацию, но для бытового устройства это решение может вызвать проблемы с выработкой токсичных газов (из-за увеличения суммарной протяженности коронирующего электрода):
Аппараты с таким расположением электродов известны как многопольные электрофильтры (в данном случае двухпольный электрофильтр) и применяются в промышленности для очистки больших объемов газов.
Уменьшение межэлектродного расстояния (L → *L) приведет к уменьшению пути (*A
Из-за сокращения межэлектродного расстояния будет снижена разность потенциалов U, из-за чего уменьшится и размер активной области межэлектродного промежутка. Это приведет к сокращению времени, отпущенного на процесс зарядки и процесс дрейфа частицы, что в свою очередь может привести к снижению качества очистки (особенно для мелких частиц, обладающих низкой способностью к зарядке). Кроме того, уменьшение расстояния приведет к сокращению площади поперечного сечения активной зоны. Решить проблему сокращения площади можно параллельной установкой такой же электродной системы:
Аппараты с таким расположением электродов известны как многосекционные электрофильтры (в данном случае двухсекционный) и применяются в промышленных установках. У данной конструкции увеличена протяженность коронирующего электрода, что может вызвать проблемы с выработкой токсичных газов.
Гипотетический высокоэффективный электрический фильтр, наверное, содержал бы некоторое количество электрический полей и секций очистки:
Каждая поступившая в этот многосекционный многопольный электрофильтр частица успевала бы получить максимально возможный заряд, так как в аппарате обеспечивается активная область зарядки большой протяженности. Каждая заряженная частица достигала бы поверхности осадительного электрода, так как в аппарате обеспечена активная область осаждения большой протяженности и уменьшено расстояние, которое необходимо преодолеть частице, чтобы осесть на электроде. Аппарат без труда справлялся бы и с высокой запыленностью воздуха. Но такая компоновка электродов из-за большой суммарной длины коронирующих электродов будет вырабатывать недопустимо большое количество токсичных газов. Поэтому подобная конструкция совершенно непригодна для использования в устройстве, предназначенном для очистки воздуха, который будет использоваться людьми для дыхания.
В начале статьи была рассмотрена электродная система, состоящая из двух параллельных пластин. Она обладает очень полезными свойствами в случае ее применения в бытовом электрофильтре:
- электрический разряд в электродной системе не протекает (ионизационные процессы отсутствуют), поэтому токсичные газы не вырабатываются;
- в межэлектродном пространстве образуется однородное электрическое поле, поэтому пробойная прочность межэлектродного промежутка выше, чем эквивалентного промежутка с коронирующим электродом.
Благодаря этим свойствам использование данной электродной системы в электрическом фильтре может обеспечить эффективное осаждение заряженных частиц без наработки вредных газов.
Заменим в двухпольной электродной системе второй коронирующий проволочный электрод на пластинчатый электрод:
Процесс очистки воздуха в модифицированной электродной системе немного отличается – теперь он протекает в 2 стадии: сначала частица проходит коронирующий промежуток с неоднородным полем (активная область 1), где получает электрический заряд, затем поступает в промежуток с однородным электростатическим полем (активная область 2), который обеспечивает дрейф заряженной частицы к осадительному электроду. Таким образом, можно выделить две зоны: зона зарядки (ионизатор) и зона осаждения (осадитель), поэтому данное решение и получило название — двухзонный электрофильтр . Пробойная прочность межэлектродного промежутка осадительной зоны выше пробойной прочности промежутка зоны зарядки, поэтому к ней приложено большее значение разности потенциалов U2, что обеспечивает большее значение напряженности электрического поля в этой зоне (активная область 2). Пример: рассмотрим два промежутка с одинаковым межэлектродным расстоянием L=30мм: с коронирующим электродом и с пластинчатым электродом; пробойное значение средней напряженности для промежутка с неоднородным полем не превышает 10кВ/см ; пробойная прочность промежутка с однородным полем составляет около 28кВ/см, (более, чем в 2 раза выше).
Увеличение напряженности поля будет способствовать повышению качества очистки, так как сила, обеспечивающая дрейфа заряженных частиц пыли, пропорциональна ее значению. Что примечательно, электродная система зоны осаждения почти не потребляет электроэнергию. Кроме того, так как поле однородное, по всей длине зоны (по ходу движения воздуха) напряженность будет принимать одинаковое значение. Благодаря этому свойству можно увеличить длину электродов осадительной зоны:
В результате увеличится длина активной области осаждения (активная область 2), что обеспечит увеличение времени, отпущенного на процесс дрейфа. Это будет способствовать повышению качества очистки (особенно для мелких частиц, обладающих низкой скоростью дрейфа).
В электродную систему можно внести еще одно усовершенствование: увеличить количество электродов в осадительной зоне:
Это приведет к уменьшению межэлектродного расстояния осадительной зоны, в результате чего:
- уменьшится расстояние, которое необходимо преодолеть заряженной частице, чтобы достигнуть осадительного электрода;
- увеличится пробойная прочность межэлектродного промежутка (видно из уравнения критической напряженности воздушного промежутка), благодаря чему будет возможно обеспечить еще более высокие значения напряженности электрического поля в зоне осаждения.
Например, пробойная напряженность при межэлектродном расстоянии L=30мм составляет около 28кВ/см, а при L=6мм – около 32кВ/см, что на 14% выше.
Протяженность активной области 2 по ходу движения воздуха при этом, что важно, не уменьшится. Поэтому увеличение количества электродов в осадителе тоже будет способствовать повышению качества очистки.
Заключение
В конечном счете, мы пришли к двухзонной электродной системе, обладающей высоким качеством очистки от взвешенных частиц, даже мелких, улавливание которых вызывает наибольшие трудности (низкая способность к зарядке и, следовательно, низкое значение скорости дрейфа) при низком уровне вырабатываемых токсичных газов (при условии использования положительной лавинной короны).
Конструкция имеет и недостатки:
при высокой количественной концентрации пыли возникнет явление запирания короны, что может привести к значительному снижению эффективности очистки. Как правило, воздух жилых помещений не содержит такого количества загрязнений, поэтому такой проблемы возникнуть не должно. Благодаря неплохому сочетанию характеристик устройства с аналогичными электродными системами успешно применяются для тонкой очистки воздуха в помещениях.
Источники
- Электрофизические основы техники высоких напряжений. И.П.Верещагин, Ю.Н. Верещагин. – М.: Энергоатомиздат, 1993г.;
- Очистка промышленных газов электрофильтрами. В.Н. Ужов. – М.: Издательство «Химия», 1967г.;
- Техника пылеулавливания и очистки промышленных газов. Г.М.-А. Алиев. – М.: Металлургия, 1986г.;
- Промышленная очистка газов: Пер. с англ. – М., Химия, 1981г.
Не так давно была поднята тема, как очистить квартиру или отдельное рабочее место от табачного дыма. Но, оказывается, и для других условий можно собрать простой очиститель воздуха своими руками. Правда, оговоримся, знание правил монтажа электроустройств и требований безопасности обязательны.
Когда возникает потребность в очистителях с дополнительными функциями
Нормальной считается влажность от 30 до 75 процентов, при этом для разных типов помещений предусмотрены различные нормативы.
Проверить этот показатель можно при помощи обычных психрометров (самый простейший представляет собой два обычных термометра, рабочая капсула одного из которых помещена во влажную среду, при этом влажность определяется по разнице показаний приборов). Более удобными считаются современные электронные устройства, отличающиеся высокой точностью.
Если влажность в комнате не соответствует нормативам, следует задуматься о том, как сделать очиститель воздуха, который будет не только задерживать пыль, но увлажнять или осушать воздух в качестве дополнительной опции.
За основу всех предлагаемых устройств примем уже описанную конструкцию из пластикового контейнера и обычного вентилятора для компьютера (кулера). При сборке необходимо учитывать следующие основные моменты:
- Глубина пластикового контейнера должна быть не менее 50-70 мм (чем больше данный показатель, тем реже придется менять воду в устройстве).
- Роль дополнительного фильтра и аэратора играет вода, налитая на дно контейнера. В целях безопасности ее уровень не должен доходить до вентилятора минимум на 30 мм, в противном случае возможно попадание влаги на электрические детали конструкции.
- Учитывая то, что работа даже небольшого вентилятора вызывает определенную вибрацию, следует надежно укрепить кулер при помощи стандартных болтов. При необходимости усиления можно применить вырезанную по размерам пластину из тонколистового металла.
- При прохождении воздуха через конструкцию происходит частичное оседание пыли в воздушных каплях, находящихся во взвешенном состоянии. При этом также обеспечивается повышение влажности воздуха в помещении.
Кстати, особо ленивые используют для увлажнения воздуха моющий пылесос, который работает по аналогичному принципу.
Для помещений с повышенным уровнем влажности можно порекомендовать самодельный очиститель воздуха, способный удалять излишек влаги из комнатной атмосферы.
В принципе, конструкция такого очистителя практически не отличается от описанного выше устройства. Только вместо воды в качестве фильтрующего вещества используется соль, закрытая слоем пористого материала. Обычная поваренная соль отличается значительным влагопоглощением, обратите внимание на ее состоянии в сырой комнате.
При прохождении воздушного потока через слой соляного фильтра происходит значительное поглощение водяных паров, при этом пористый материал обеспечивает удержание частиц пыли.
Стоит отметить то, что для подобных самодельных устройств следует применять вентилятор с небольшой частотой вращения крыльчатки.
В противном случае мощный воздушный поток может привести кристаллы соли во взвешенное состояние, в результате чего существенно возрастет уровень создаваемого при работе шума (соль будет биться о стенки сосуда и крыльчатку вентилятора).
В качестве высокотехнологичного влагопоглотителя можно порекомендовать и силикагель, пакеты которого можно встретить в упаковках фирменной обуви и других предметов гардероба. Но стоит учитывать то, что этот реагент достаточно быстро поглощает влагу, поэтому эффективность и долгосрочная работа очистителя может быть достигнута только при значительном слое вещества. Поэтому глубина применяемой в качестве корпуса очистителя емкости должна быть увеличена.
Если существует необходимость очистки воздуха в помещениях, отличающихся большой площадью, то рекомендуется приобретать агрегаты заводского изготовления. В настоящий момент можно выбрать очиститель с самыми разнообразными фильтрами, обеспечивающими как увлажнение, так и осушение воздуха в автоматическом режиме.
Выбираем воздухоочиститель для дома — с каким фильтром лучше?
Выбираем лучший очиститель воздуха с ионизатором для квартиры
Выбираем очиститель воздуха с фотокаталитическим фильтром
Электростатический фильтр своими руками
Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:
1 Этап. Корректируем плоскость по трем точкам
Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.
И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.
Далее командой меняем параметры высоты оси Y: M666 Y
M666 Y0.75
M500
G28
2 Этап. Исправляем линзу
После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.
Воздухоочиститель самодельный
Хотел озаглавить оригинально, но нет.
Грязный воздух для жителей больших городов с шутками не сочетается, особенно когда его уже видно, а некоторые уже могут потрогать его руками.
Недавно на глаза попался пост замечательного чикагца проживающего ныне в Китае, в самом логове Дымящего Дракона. Да, там воздух можно щупать, а в иной день лепить смоговика.
Измученный кашлем и сильно ограниченный в средствах, наш гуманитарий решил бороться подручными средствами. Прошерстив сайты, Томас понял, что модный за $2000 и даже самый дешевый $500, бедный аспирант не потянет, не лишив себя удовольствия питаться.
Как истинный гуманитарий, он не имел заморочек с расчетами и сомнениями в эффективности, а просто взял HEPA фильтр от пылесоса и настольный вентилятор, применив волшебные слова и портняжный метр, наш культуролог создал простейший, как они там называют air purifier. Соседи понимающие в аэродинамике, объяснили причину по которой фильтр идет после потока, гуманитарий естественно не понял клингонского и просто последовал совету.
Через некоторое время Томас почувствовал улучшение качества газовой смеси в объеме квартиры и решил, как истинный ученый провести эксперимент и получить статистику. Был приобретен лазерный анализатор частиц, проще говоря счетчик пыли. У разных знакомых позаимствованы на время фабричные воздухоочистители и эксперимент начался. И результат огорчил всех, кроме смелого гуманитария:
I wanted to tell the world that those $1,000 purifiers were ripoffs. I made all the data and testing methods open source.
Вас ограбили на штуку вечнозеленых. (вольный перевод)
Собрав команду единомышленников и разместив сбор средств на kick starter, Томас начал помогать людям дышать в прямом смысле. На данный момент команда помогла 40000 человек в Индии, Китае и Монголии. Бывают люди которым сложно выбрать фильтр без инструкции, и им тоже нужно помогать.
Томаса похвалил, основную идею разъяснил, теперь о моем конструкторе.
Потраченное время около часа при попутном просмотре хорошего фильма Fresh Eggs.
Вентилятор вытяжной новый 14W, 220V, 94 куба в час. – $3
Фильтр салонный для toyota “Kurin” 19x21cm – $3.5
Корпус собственно коробка от фильтра – $0
Кабель 220V с реостатом – $2
Двухсторонний скотч по периметру фильтра для установки в коробку, дополнительная картонка для прочности с обратной стороны, круглое отверстие для вентилятора. Скотч по всей поверхности для герметичности. Реостат для регулировки скорости и шума.
Стоит в метре на уровне стола, третий час работы, поток в сторону, комната 20 метров, потолок 3 метра, окно закрыто, дверь в коридор открыта на половину, воздух заметно чище.
Причина по которой сделал:
имел новый ненужный вентилятор,
сегодня же покупал салонный для авто и взял попутно самый дешевый,
возникла необходимость, просмотренные были громоздкими и дорогими для коробки с вентилятором.
Если в будущем дойдут руки, постараюсь придать устройству презентабельный вид, создам внутри туннели для равномерного распределения потока из круглой трубы на квадратный фильтр.
Для скептиков совет прочесть любую статью про Hepa фильтры, очень познавательно, например вы получите ответ, как фильтр с отверстиями больше размера частиц их улавливает с 99% эффективностью. Ключевые слова: Броуновское движение и Силы Ван-дер-Ваальса.
Таблица размеров частиц.
Найдены дубликаты
Вот почему блять у вас – хохлянские вентиляторы, а у нас, хохлов, одни китайское говно в продаже? Где справедливость??
хранцузы с леруа так решили. вентилятор качественный, пластик хороший, спасибо.
Вот весь секрет сравнения
Левая фото на никон
Правая на кэнон
И да пентакс для нищебродов
вывод: Canon честнее передает реальность.
каноники мы. а вы никонианцы, да придъ до ваши души аввакум
Соседи понимающие в аэродинамике, объяснили причину по которой фильтр идет после потока, гуманитарий естественно не понял клингонского и просто последовал совету.
равномерно распределяется поток.
фильтр в очистителях рекомендуют менять не реже двух раз в год, по отзывам некоторых пользователей в грязных городах, меняют каждые два месяца.
да, попадают клещи и их экскременты. не разлетятся, hepa хорошо держат.
наш фильтр стоит копейки, можно менять хоть раз в неделю
Мне тоже непонятно. Вроде одинаково, что на вдув, что на выдув. Разница там небольшая.
могу быть не точен, но на выдув на частицу может протянуть сквозь фильтр.
Напишите потом через сколько фильтр забьется 🙂
ожидаю на пятый день, потом просто переверну по часовой на 90°.
В машине советуют замену раз в год. Меняю раз в пол года. При замене фильтр грязный. Но то машина, ездящая по дорогам Казани, а это фильтр, стоящий дома. Так что, возможно, на те же пол года должно хватить. Учитывая цену фильтров, можно и раз в 3 месяца менять.
Надо сделать себе что-то такое же.
Фильтр в городах, которые отстоят от челябинска и магнитогорска минимум на 50 пунктов в списке грязных городов, рекомендуют менять салонный фильтр, каждые 10000 км, то есть условные 166 часов.
3 кубометра, квартиры
воздух в квартире несомненно чище дорожного (не всегда).
если предположить, что в десятки раз, то даже в этом случае авто выигрывает у помещения по объему в 70 раз.
Условные 166 часов, это месяц работы.
Адгезия это основа работы фильтра, мыть и чистить его бесполезно.
Фильтр у условного bork от $50, кусается.
Самодельный даже не скалит зубы – $3.
Лайфхак, по объявлениям можно часто приобрести, новые, запечатанные фильтры серьезных производителей приобретенные для скоропостижно скончавшихся пылесосов и прочих сосунов, а там и слой ткани больше и качество волокон отличное.
Наверное попробую, а то пыльца амброзии уже просто жить недает даже под таблетками.
не экономьте тогда на фильтре.
по объявлениям можно часто приобрести, новые, запечатанные фильтры серьезных производителей приобретенные для скоропостижно скончавшихся пылесосов и прочих сосунов, а там и слой ткани больше и качество волокон отличное.
Отлично, теперь есть планы на вечер
Решил и себе такую же хню замутить, но наткнулся на описание установки салонного фильтра: он стоит ДО вентилятора. То есть воздух через него засасывается. И мне кажется это чуть лучше в плане фильтрации самой мелкой фракции. Понимаю что в плане шума будет хуже. и в этом случае на всасывание работает вся поверхность фильтра. Что думаете?
Да, думаю если шум не важен, то после фильтра даже лучше, лопасти не будут обрастать пылью.
т.е вентилятор работает на втягивание через фильтр? Не выдувание через него? Потому что по виду вентилятора и схемы прибора, вентилятор пропускает воздух через себя внутрь коробки а там уже воздух выходит через фильтр наружу
вентилятор гонит воздух на фильтр
А насчёт изобретения – поздравляю, вы изобрели кондиционер в режиме вентиляции. Просто уже потому, что для пыли обычно ставят 100мкм фильтр и это основная вредная пыль. А для более мощной нужна уже тяга покруче, на кшталт пылесоса.
Но в любом случае по шуму лучше всего тот движок, что у кондея. А про фильтр правильно написали – забьётся. А у кондея его мыть можно.
мыть фильтр не имеет смысла
Как HEPA-фильтр «ловит» мелкодисперсную пыль?
Основное отличие HEPA от фильтров грубой и тонкой очистки в том, что для фильтрации частице не обязательно застревать в волокнах. Если пылинка просто коснулась фильтровального материала, этого уже достаточно для и эффективного осаждения. Это связано с двумя процессами: адгезией и аутогезией.
Адгезия – это взаимодействие пыли с осаждающей поверхностью, в нашем случае с волокнами HEPA. Благодаря адгезии на чистых волокнах появляется первый слой пыли.
Аутогезия, или слипаемость – это взаимодействие пылевых частиц между собой. Благодаря аутогенному взаимодействию частицы продолжают наслаиваться друг на друга, образуя на волокнах многослойные конгломераты. Выглядят они так:
Природа адгезии и аутогезии – в молекулярном взаимодействии частиц друг с другом и с волокнами (силы Ван-дер-Ваальса). Эти силы появляются на расстоянии от одного до нескольких сот диаметров частиц. Для мельчайших частиц притяжение к волокну и пылевому слою настолько большое, что частицы оседают в HEPA-фильтре фактически навсегда. Цифры это подтверждают: для частиц меньше 10 мкм прочность пылевого слоя на разрыв – больше 600 Па.
Итак, из-за сил притяжения частица практически намертво прилипает к волокну HEPA-фильтра, стоит только коснуться его поверхности. Это объясняет удерживание частиц на фильтре.
С каких это перепугов у тебя расстояния силы Ван-дер-Ваальса пропорционально диаметру частицы? Да у тебя бы яйца склеились так что домкратом не растянешь 🙂
Электростатический очиститель воздуха: панацея или вред
Любое жилище имеет огромное количество «генераторов» бытовой пыли, среди которых сам человек, мягкая мебель, книги и мягкие игрушки занимают первое место. И чтобы человек не придумывал, все равно пыль производится и ни чего с этим не поделаешь.
В процессе «технической революции» и наполнения наших домов электрическими приборами стали замечать, что некоторые электроприборы имеют свойство притягивать пыль. Исследуя эту особенность, учеными и был разработан электростатический воздухоочиститель. Этот достаточно простой и эффективный прибор стал очень популярен во всем мире и о нем пойдет речь в этой публикации.
Принцип действия и конструкция очистителя
Принцип работы электростатического очистителя воздуха достаточно прост: на электроде создается коронирующий заряд, который производит ионы с определенным зарядом. Заряженные ионы начинают двигаться в сторону противоположно заряженного электрода захватывая по пути молекулы воздуха, пыль, бактерии и пр. После чего все ионы и загрязнения, получившие заряд оседают на электроде, а очищенный воздух поступает обратно в комнату.
Конструктивно, такие очистители состоят из:
- Корпуса, в котором выполнены отверстия для забора загрязненного и вывода очищенного воздуха.
- Фильтра, картриджа или патрона, в котором воздух проходит ионизацию, попадая в поле высокого напряжения.
В некоторых моделях электростатических воздухоочистителей установлен вентилятор для повышения производительности и для прокачки воздушной смеси через дополнительные ступени фильтрации, если таковые предусмотрены.
Достоинства и недостатки
Основным достоинством таких воздухоочистителей является эффективность очистки воздушных масс от загрязнений, размером менее 1 мкр., при минимальном расходе электроэнергии. Мощность бытовых электростатических очистителей воздуха редко когда превышает 25-45 Вт. Кроме этого, еще одним немаловажным фактором в поддержку использования таких очистителей, можно считать тот факт, что электростатический фильтр не нуждается в замене: время от времени его необходимо снимать и промывать в теплой воде. Воздухоочиститель без сменных фильтров значительно снижает затраты на его эксплуатацию. Если модель очистителя не оснащена вентилятором, то в ней нет движущихся частей, а это значит, что она полностью бесшумна. Это еще один большой плюс электростатическим очистителям.
Теперь немного о недостатках. Почему немного – потому что их действительно всего один, но достаточно серьезный. В процессе работы, такой аппарат производит не только ионы с определенным знаком заряда, а и озон, который является сильнейшим окислителем.
Этот газ в малой концентрации обладает потрясающими обеззараживающими свойствами. Неконтролируемое превращение кислорода в озон может привести к достаточно серьезным последствиям. Наиболее пагубное влияние озон оказывает на:
- Органы дыхания человека.
- Свойства холестерина, придавая ему нерастворимые формы.
- На систему размножения человека, убивая мужские половые клетки и препятствуя их образованию.
В нашей стране озон отнесет к вредным веществам с высшим классом опасности. ПДК содержания озона в воздухе для населенных пунктов составляет 0,03 мг/м 3 .
Правила выбора электростатического воздухоочистителя
Выбирать прибор следует исходя из его мощности, т.е на объем какого помещения он рассчитан.
Устройства с высокой мощностью оснащены вентилятором, который производит шум.
Наличие дополнительных ступеней очистки.
Для продавливания воздуха через фильтры требуется наличие вентилятора.
В связи со сравнительной дороговизной этого прибора, многие наши соотечественники задают вопрос о том, как его сделать своими руками. Электростатический очиститель воздуха своими руками, конечно изготовить можно и в этом нет ничего сложного: если немного покопаться, в сети можно найти массу схем, инструкций и даже книг. (Одна из них называется «Домашний практик», выпуск 7)
Несмотря на высокое напряжение, можно избежать поражения электрическим токомни, выполняя элементарные требования по технике безопасности. Но, контролировать производство озона в домашних условиях очень сложно или даже практически невозможно. Ввиду высочайшей токсичности озона, мы не рекомендуем собирать электростатический воздухоочиститель своими силами.
Если производитель нее указывает данных по выделению озона, то на такой очиститель не стоит обращать внимание, каким бы привлекательным по стоимости оно ни было.
Самодельный очиститель воздуха от пыли
В любом помещении скапливается слишком много пыли, которая поглощается мягкой мебелью, коврами, детскими игрушками и даже самым человеком. И как бы интенсивно не велась борьба за чистоту, частицы пыли все равно будут витать в воздухе помещения. Усовершенствовать процесс противостояния можно, использовав воздухоочиститель. Достаточно простым и высокоэффективным прибором является очиститель воздуха электростатического типа.
Общий подход к инженерному решению домашнего очистителя
- Корпус с наличием прорезей для забора грязных и вывода чистых воздушных масс.
- Очищающий и ионизирующий фильтр.
- Пылесборник, состоящий из установленных электродов с разнополярными зарядами.
- Электронные управления для автоматического контроля.
- Блок питания для запуска устройства.
Принцип работы
Коронирующий заряд, созданный на электроде, производит заряженные ионы. В процессе движения они захватывают частички пыли и бактерии. Оседая на электроде такие ионы вместе с собой «приклеивают» и вредные компоненты воздуха. Чистый воздух подается обратно в помещение. Простой рабочий алгоритм позволяет использовать прибор в помещениях любого типа. Он пригоден для малогабаритных комнат, площадь которых не превышает 20 м2.
Достоинства
- Эффективное устранение пылевых частиц, размер которых не превышает 1 мкр. Спровоцировать появление большого количества пыли может простой ремонт.
- Минимальное потребление электрической энергии, так как мощность современных устройств не превышает 45 Вт.
- Установленный фильтр не нуждается в замене. При загрязнении он просто моется под проточной водой не реже 1 раза в 10 дней в случае интенсивного использования.
- Модели без вентилятора не создают звука, что позволяет их применять в детской комнате или в ночное время суток.
При этом совсем необязательно приобретать готовое устройство. Очиститель воздуха для помещения можно изготовить самостоятельно, приложив немного усилий и потратив чуть-чуть времени. В итоге это даст экономию средств.
Электростатический очиститель воздуха своими руками: вариант №1
Представленная ниже конструкция профессионального очистителя воздуха позволяет определить способ монтажа устройства своими руками. Соответствуя предложенной схеме, можно смастерить устройство своими руками. Составные элементы механизма приобретаются в специализированных магазинах, либо заменяются подручными средствами. К примеру, НЕРА-фильтр заменяется угольным элементов, фильтр грубой очистки – пористым материалом, ионизатор в конструкции можно не использовать.
Данная схема работает при искусственной подаче загрязненного воздуха. Для перемещения воздушных масс можно применять обычный вентилятор. Подключив к питанию такой очиститель, можно устранит пыль в течение 12 часов. Но, главным его недостатком является выработка озона, который в большом количестве вреден для человеческого организма.
Важно! Использование дополнительного фильтра на основе активированного угля, установка перегородки с силикагелем позволит более эффективно и быстро удалить пылевые частицы из воздуха.
Очиститель воздуха своими руками для дома: вариант №2
Необходимые конструктивные элементы
- Маленький вентилятор, напряжение которого составляет 12 В.
- Питание: батарейка «Крона».
- Клемма для подключения источника питания.
- Пластиковый контейнер, соответствующий габаритам вентилятора.
- Фильтрующий элемент: угольный.
Процесс изготовления
- На приготовленном контейнере нанести разметку для проделывания отверстий для поступления и вывода воздушных масс.
- На дне контейнера нанести линии пропила, которые соответствуют габаритам батарейки.
- С помощью клеммы подсоединить вентилятор к источнику питания – батарейке.
- Проверить работоспособность собранной конструкции.
- Готовую конструкцию установить в пластиковый контейнер.
- По размерам контейнера вырезать угольный фильтр.
- Уложить фильтрующий элемент поверх вентилятора.
Важно! Для повышения надежности конструкции батарейку к вентилятору лучше припаять. Это позволит устранить перебои с подачей питания, и соответственно повысит эффективность использования прибора.
Самодельный очиститель воздуха от пыли с увлажнением: конструкция №3
Для реализации задачи используются:
- объемная емкость из пластика с наличием крышки;
- блок питания в 12 В, который можно подключать к электросети;
- вентилятор незначительных габаритов;
- фильтрующий элемент.
Принцип конструкции аналогичный №2: в пластиковом баке выполняется отверстие под установку вентилятора и блока питания. В верхней части емкости с помощью болтов прочно фиксируется вентилятор для предотвращения его зануривания в воду. В нижнюю часть пластикового бака заливается вода. Жидкость должна не доходить до вентилятора как минимум на 3 см. Данное устройство может быть оборудовано реле, с помощью которого можно автоматически управлять конструкцией: она будет включаться и отключаться через определенное время самостоятельно, что, согласитесь, очень удобно.
Как сделать очиститель воздуха своими руками для комнаты с повышенной влажностью
Для выполнения проекта необходимы материалы:
- емкость из пластика глубиной не менее 20 см;
- маломощный вентилятор, крыльчатка которого вращается медленно;
- морская или поваренная соль;
- пористый материал: многослойная подушка по типу ватно-марлевой повязки, поролона;
- питание для работы вентилятора;
- крепежные элементы;
- надежный клей скоропалительного действия;
- заточенный нож для выполнения процесса монтажа.
Сделать самому очиститель воздуха можно, следуя инструкции:
- в пластиковом контейнере на разных стенках проделать два отверстия разного размера: отверстие под установку вентилятора должно быть таких же размеров как устройство для воздухообмена. Разместить его следует немного выше, нежели второе отверстие на противоположной стороне;
- зафиксировать вентилятор;
- сделать фильтр, размер которого будет немного превышать размер второго отверстия. Фильтр может быть изготовлен многошаровым способом: марля + вата;
- зафиксировать фильтр на коробе с помощью быстросохнущего клея;
- насыпать сухую соль таким образом, чтобы вещество закрывало отверстие с установленным фильтром, но не доставало до вентилятора;
- подсоединить конструкцию к источнику питания, и запустить механизм.
Важно! При создании очистителя для квартиры с высокими показателями влажности необходимо использовать вентилятор, который вращается очень медленно. В противном случае интенсивный воздушный поток «расшевелит» соль, которая стуча по стенкам контейнера будет раздражать слух. Такое устройства не пригодно для применения в ночное время суток.
Данный очиститель имеет 2 уровня фильтрации: пористый материал в виде марли устранит пылевые частицы; соль, которая впитает излишнюю влажность, бактерии и мелкофракционную пыль. Самодельный электростатический очиститель воздуха данного типа насытит воздух в комнате ионами хлора и натрия, делая воздух в помещении более благотворным для человека и комнатных растений.
Очиститель своими руками изготавливается с учетом показателей влажности в комнате. Для ее измерения применяется специальный прибор – гигрометр. Оптимальная влажность в помещении в соответствии с ГОСТ 30494-96 составляет 40-60%. При показателях гигрометра более 70 % следует использовать «сухой» очиститель. При показателях менее 30 % потребуется устройство с увлажнением воздуха.
Самодельный очиститель воздуха от пыли
В любом помещении скапливается слишком много пыли, которая поглощается мягкой мебелью, коврами, детскими игрушками и даже самым человеком. И как бы интенсивно не велась борьба за чистоту, частицы пыли все равно будут витать в воздухе помещения. Усовершенствовать процесс противостояния можно, использовав воздухоочиститель. Достаточно простым и высокоэффективным прибором является очиститель воздуха электростатического типа.
Общий подход к инженерному решению домашнего очистителя
- Корпус с наличием прорезей для забора грязных и вывода чистых воздушных масс.
- Очищающий и ионизирующий фильтр.
- Пылесборник, состоящий из установленных электродов с разнополярными зарядами.
- Электронные управления для автоматического контроля.
- Блок питания для запуска устройства.
Принцип работы
Коронирующий заряд, созданный на электроде, производит заряженные ионы. В процессе движения они захватывают частички пыли и бактерии. Оседая на электроде такие ионы вместе с собой «приклеивают» и вредные компоненты воздуха. Чистый воздух подается обратно в помещение. Простой рабочий алгоритм позволяет использовать прибор в помещениях любого типа. Он пригоден для малогабаритных комнат, площадь которых не превышает 20 м2.
Достоинства
- Эффективное устранение пылевых частиц, размер которых не превышает 1 мкр. Спровоцировать появление большого количества пыли может простой ремонт.
- Минимальное потребление электрической энергии, так как мощность современных устройств не превышает 45 Вт.
- Установленный фильтр не нуждается в замене. При загрязнении он просто моется под проточной водой не реже 1 раза в 10 дней в случае интенсивного использования.
- Модели без вентилятора не создают звука, что позволяет их применять в детской комнате или в ночное время суток.
При этом совсем необязательно приобретать готовое устройство. Очиститель воздуха для помещения можно изготовить самостоятельно, приложив немного усилий и потратив чуть-чуть времени. В итоге это даст экономию средств.
Электростатический очиститель воздуха своими руками: вариант №1
Представленная ниже конструкция профессионального очистителя воздуха позволяет определить способ монтажа устройства своими руками. Соответствуя предложенной схеме, можно смастерить устройство своими руками. Составные элементы механизма приобретаются в специализированных магазинах, либо заменяются подручными средствами. К примеру, НЕРА-фильтр заменяется угольным элементов, фильтр грубой очистки – пористым материалом, ионизатор в конструкции можно не использовать.
Данная схема работает при искусственной подаче загрязненного воздуха. Для перемещения воздушных масс можно применять обычный вентилятор. Подключив к питанию такой очиститель, можно устранит пыль в течение 12 часов. Но, главным его недостатком является выработка озона, который в большом количестве вреден для человеческого организма.
Важно! Использование дополнительного фильтра на основе активированного угля, установка перегородки с силикагелем позволит более эффективно и быстро удалить пылевые частицы из воздуха.
Очиститель воздуха своими руками для дома: вариант №2
Необходимые конструктивные элементы
- Маленький вентилятор, напряжение которого составляет 12 В.
- Питание: батарейка «Крона».
- Клемма для подключения источника питания.
- Пластиковый контейнер, соответствующий габаритам вентилятора.
- Фильтрующий элемент: угольный.
Процесс изготовления
- На приготовленном контейнере нанести разметку для проделывания отверстий для поступления и вывода воздушных масс.
- На дне контейнера нанести линии пропила, которые соответствуют габаритам батарейки.
- С помощью клеммы подсоединить вентилятор к источнику питания – батарейке.
- Проверить работоспособность собранной конструкции.
- Готовую конструкцию установить в пластиковый контейнер.
- По размерам контейнера вырезать угольный фильтр.
- Уложить фильтрующий элемент поверх вентилятора.
Важно! Для повышения надежности конструкции батарейку к вентилятору лучше припаять. Это позволит устранить перебои с подачей питания, и соответственно повысит эффективность использования прибора.
Самодельный очиститель воздуха от пыли с увлажнением: конструкция №3
Для реализации задачи используются:
- объемная емкость из пластика с наличием крышки;
- блок питания в 12 В, который можно подключать к электросети;
- вентилятор незначительных габаритов;
- фильтрующий элемент.
Принцип конструкции аналогичный №2: в пластиковом баке выполняется отверстие под установку вентилятора и блока питания. В верхней части емкости с помощью болтов прочно фиксируется вентилятор для предотвращения его зануривания в воду. В нижнюю часть пластикового бака заливается вода. Жидкость должна не доходить до вентилятора как минимум на 3 см. Данное устройство может быть оборудовано реле, с помощью которого можно автоматически управлять конструкцией: она будет включаться и отключаться через определенное время самостоятельно, что, согласитесь, очень удобно.
Как сделать очиститель воздуха своими руками для комнаты с повышенной влажностью
Для выполнения проекта необходимы материалы:
- емкость из пластика глубиной не менее 20 см;
- маломощный вентилятор, крыльчатка которого вращается медленно;
- морская или поваренная соль;
- пористый материал: многослойная подушка по типу ватно-марлевой повязки, поролона;
- питание для работы вентилятора;
- крепежные элементы;
- надежный клей скоропалительного действия;
- заточенный нож для выполнения процесса монтажа.
Сделать самому очиститель воздуха можно, следуя инструкции:
- в пластиковом контейнере на разных стенках проделать два отверстия разного размера: отверстие под установку вентилятора должно быть таких же размеров как устройство для воздухообмена. Разместить его следует немного выше, нежели второе отверстие на противоположной стороне;
- зафиксировать вентилятор;
- сделать фильтр, размер которого будет немного превышать размер второго отверстия. Фильтр может быть изготовлен многошаровым способом: марля + вата;
- зафиксировать фильтр на коробе с помощью быстросохнущего клея;
- насыпать сухую соль таким образом, чтобы вещество закрывало отверстие с установленным фильтром, но не доставало до вентилятора;
- подсоединить конструкцию к источнику питания, и запустить механизм.
Важно! При создании очистителя для квартиры с высокими показателями влажности необходимо использовать вентилятор, который вращается очень медленно. В противном случае интенсивный воздушный поток «расшевелит» соль, которая стуча по стенкам контейнера будет раздражать слух. Такое устройства не пригодно для применения в ночное время суток.
Данный очиститель имеет 2 уровня фильтрации: пористый материал в виде марли устранит пылевые частицы; соль, которая впитает излишнюю влажность, бактерии и мелкофракционную пыль. Самодельный электростатический очиститель воздуха данного типа насытит воздух в комнате ионами хлора и натрия, делая воздух в помещении более благотворным для человека и комнатных растений.
Очиститель своими руками изготавливается с учетом показателей влажности в комнате. Для ее измерения применяется специальный прибор – гигрометр. Оптимальная влажность в помещении в соответствии с ГОСТ 30494-96 составляет 40-60%. При показателях гигрометра более 70 % следует использовать «сухой» очиститель. При показателях менее 30 % потребуется устройство с увлажнением воздуха.
Автор Евгений Апрелев На чтение 4 мин Просмотров 6.1к.
Любое жилище имеет огромное количество «генераторов» бытовой пыли, среди которых сам человек, мягкая мебель, книги и мягкие игрушки занимают первое место. И чтобы человек не придумывал, все равно пыль производится и ни чего с этим не поделаешь.
В процессе «технической революции» и наполнения наших домов электрическими приборами стали замечать, что некоторые электроприборы имеют свойство притягивать пыль. Исследуя эту особенность, учеными и был разработан электростатический воздухоочиститель. Этот достаточно простой и эффективный прибор стал очень популярен во всем мире и о нем пойдет речь в этой публикации.
[contents]
Принцип действия и конструкция очистителя
Принцип работы электростатического очистителя воздуха достаточно прост: на электроде создается коронирующий заряд, который производит ионы с определенным зарядом. Заряженные ионы начинают двигаться в сторону противоположно заряженного электрода захватывая по пути молекулы воздуха, пыль, бактерии и пр. После чего все ионы и загрязнения, получившие заряд оседают на электроде, а очищенный воздух поступает обратно в комнату.
Конструктивно, такие очистители состоят из:
- Корпуса, в котором выполнены отверстия для забора загрязненного и вывода очищенного воздуха.
- Фильтра, картриджа или патрона, в котором воздух проходит ионизацию, попадая в поле высокого напряжения.
- Пылесборника, в котором находятся электроды с противоположным зарядом.
- Платы управления и блока питания.
В некоторых моделях электростатических воздухоочистителей установлен вентилятор для повышения производительности и для прокачки воздушной смеси через дополнительные ступени фильтрации, если таковые предусмотрены.
Достоинства и недостатки
Основным достоинством таких воздухоочистителей является эффективность очистки воздушных масс от загрязнений, размером менее 1 мкр., при минимальном расходе электроэнергии. Мощность бытовых электростатических очистителей воздуха редко когда превышает 25-45 Вт. Кроме этого, еще одним немаловажным фактором в поддержку использования таких очистителей, можно считать тот факт, что электростатический фильтр не нуждается в замене: время от времени его необходимо снимать и промывать в теплой воде. Воздухоочиститель без сменных фильтров значительно снижает затраты на его эксплуатацию. Если модель очистителя не оснащена вентилятором, то в ней нет движущихся частей, а это значит, что она полностью бесшумна. Это еще один большой плюс электростатическим очистителям.
Теперь немного о недостатках. Почему немного – потому что их действительно всего один, но достаточно серьезный. В процессе работы, такой аппарат производит не только ионы с определенным знаком заряда, а и озон, который является сильнейшим окислителем.
Этот газ в малой концентрации обладает потрясающими обеззараживающими свойствами. Неконтролируемое превращение кислорода в озон может привести к достаточно серьезным последствиям. Наиболее пагубное влияние озон оказывает на:
- Органы дыхания человека.
- Свойства холестерина, придавая ему нерастворимые формы.
- На систему размножения человека, убивая мужские половые клетки и препятствуя их образованию.
В нашей стране озон отнесет к вредным веществам с высшим классом опасности. ПДК содержания озона в воздухе для населенных пунктов составляет 0,03 мг/м3.
Правила выбора электростатического воздухоочистителя
-
Выбирать прибор следует исходя из его мощности, т.е на объем какого помещения он рассчитан.
Устройства с высокой мощностью оснащены вентилятором, который производит шум.
- Уровень шума. Следует обращать внимание на приборы с уровнем шума не более 40Дб.
-
Наличие дополнительных ступеней очистки.
Для продавливания воздуха через фильтры требуется наличие вентилятора.
- Безопасность. При выборе воздухоочистителя с электростатическим фильтром обращайте внимание на количество озона, который он вырабатывает. Напоминаем, максимальная среднесуточная концентрация озона не должна превышать 0,03 мг/м3.
- Исполнение. На современном рынке климатической техники присутствуют воздухоочистители такого типа, настенного, потолочного, напольного и настольного исполнения. Выбор очистителя зависит исключительно от ваших предпочтений.
В связи со сравнительной дороговизной этого прибора, многие наши соотечественники задают вопрос о том, как его сделать своими руками. Электростатический очиститель воздуха своими руками, конечно изготовить можно и в этом нет ничего сложного: если немного покопаться, в сети можно найти массу схем, инструкций и даже книг. (Одна из них называется «Домашний практик», выпуск 7)
Несмотря на высокое напряжение, можно избежать поражения электрическим токомни, выполняя элементарные требования по технике безопасности. Но, контролировать производство озона в домашних условиях очень сложно или даже практически невозможно. Ввиду высочайшей токсичности озона, мы не рекомендуем собирать электростатический воздухоочиститель своими силами.
Если производитель нее указывает данных по выделению озона, то на такой очиститель не стоит обращать внимание, каким бы привлекательным по стоимости оно ни было.
Характеристика электростатического фильтра воздуха
Электростатический фильтр своими руками. Вряд ли кто-то удивиться, если сказать человеку, что воздух в городах и на некотором расстоянии от них является грязным и вредным для человека. Хотя существуют установленные нормы загрязнения воздуха, совокупность существующих производств нередко превышают эти нормы, а в особых случаях управляющие предприятиями заведомо не соблюдают законодательные акты. К этому их могут принудить сотрудники санэпидемстанции.
Но даже без этого концентрация вредных веществ в воздухе может быть катастрофически большой. Чтобы как-то снизить воздействие вредных веществ, создаются специальные очистительные устройства. Одним из таких устройств является плазменный ионизатор или по-другому — статический фильтр, который защищает от пыли и мелких частиц вплоть до 0.01мкм. Его применяют в промышленности, как признанные самыми эффективными.
Каким принципом действия обладает электрический статический фильтр
Принцип действия основан на ионизировании частиц пыли при помощи магнитного поля и притягивании, этих частиц, к специальным пластинам. Этому методу уже более 100 лет, хотя, конечно же, мощность данных установок с тех пор многократно возросла. Со временем электрический статический фильтр скапливает большое количество пыли, в результате чего необходимо поменять или отчистить фильтр. В бытовых установках это необходимо делать вручную, а в промышленных вариантах применяются специальные автоматические установки.
Область применения данных фильтров широка, как никогда начиная от мелкобытовых устройств и заканчивая огромными заводами и другими промышленными предприятиями. Например, широко применяется электрический статический фильтр на ТЭЦ где необходимо сжигать уголь или на химических предприятиях, где побочным продуктом производства могут оказаться вредные газы. На ТЭЦ из-за сжигания угля, всегда присутствует повышенное содержание золы.
В целом если смотреть шире, то практически на всех предприятиях, работающих по принципу сжигания каких-либо материалов (мусоросжигающие или мазутосжигающие) устанавливают электростатические фильтры. Дело в том, что во время горения в атмосферу выделяется огромное количество вредных веществ. Чтобы атмосфера не загрязнялась необходимо проводить фильтрацию. В химическом производстве фильтры используются несколько иначе.
Конечно, они продолжают выполнять охранительную функцию, но также они улавливают полезные в производстве вещества для возврата их в цепь производства.
Достоинства и недостатки плазменного ионизатора.
Хотя может показаться, что очистка до 65% воздуха является плохим показателем среди всех остальных форм очистки, он является очень высоким при относительной дешевизне. Огромным достоинством является легкое обслуживание, что положительно влияет на снижение расходов. Следующим положительным качеством является возможность очистки очень маленьких частиц, в связи с чем, область и назначение применения весьма широки.
Главный же недостаток установки: при работе он генерирует озон. Хотя это неопасно в малых количествах в случае превышения норм необходимо его заменить. Вторым недостатком можно назвать неполную очистку, в связи, с чем необходимо подходить к очистительным мероприятия ответственно и создавать многоступенчатые системы.
На данный момент — это один из наиболее перспективных методов очистки и постоянно ведется работа над улучшением характеристик плазменных ионизаторов.




















