Простая схема прибора ESR для проверки конденсаторов не выпаивая .(журнал Радио 07-2008 стр.26).
Радиодетали из донорских Б.У. плат.Не дорогой корпус с головкой 140 мка.
С Вами Ржавый Чайник!
Видео ESR прибор из легко доступных деталей. канала Viktor Ignatov
Показать
То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель – тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR – mikro». Остановило то, что уж больно здорово хвалили – «через край». В общем, решился на самостоятельные действия. Так как на микроконтроллерные устройства замахиваться не хотелось – выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось – не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.
Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.
Схема ESR метра
А печатную плату доделал по-хитрому. Стала она «двухсторонней» – со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества – пробник нужен.
Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.
Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал – способны на контакт с электролитическим конденсатором любого размера.
Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.
И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.
А 10 Ом соответствует 49 мВ.
Исправный конденсатор, соответствует примерно 0,1 Ом.
Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:
А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее – враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.
Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР
В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.
Не буду перечислять все дестабилизирующие факторы в работе этих трудяг, (об этом сейчас разве что только на заборах не пишут), рассмотрим лучше вкратце один из параметров – ESR и конструкции нескольких простых приборов для оценки качества электролитических конденсаторов, которые были мною успешно повторены, кое чего изменено, но главное, и самое ценное, это конечно полученный опыт, которым я и собираюсь в данной статье поделиться с вами. Статья написана для начинающих, поэтому и изложение будет простым, совсем без формул.
Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.
Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» – так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html
Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.
Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.
Мой первый пробник ЕПС, исправно работающий по сегодняшний день.
Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:
Были произведены следующие изменения:
1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.
В общем получился такой вот девайс:
После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички :).
Для большей универсализации, мною были добавлены дополнительный функции:
1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях .
А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.
Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:
Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:
Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.
Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)
Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:
Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».
Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.
Корпус приспособил от маркера
Печатку выцарапал скальпелем, щупы-контакты от реле мку48.
Трансформатор намотал на кольце от КЛЛ, остальное собрал на макетке.
В корпусе платку приклеил дусторонним скотчем.
Частота генератора АЦП немного низковата, поэтому, путем уменьшения емкости из 100 до 33 пикофарад удалось довести до примерно 40-45 килогерц, это уже более менее приемлемо.
Отсюда берем прямоугольные импульсы. Конденсатор под белым проводником меняем на меньшего значения, в пределах 30-40 пик номинал не критичен
Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.
Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.
Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.
Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.
Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.
Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.
Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.
Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.
Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.
Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом
На изображении показана плата, на которую уже напаяны компоненты:
Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.
Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.
А вот и готовый прибор:
Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.
Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.
Как сделать ESR метр своими руками
Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.
Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.
Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.
Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.
Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.
Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.
Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.
Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.
Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.
Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом
На изображении показана плата, на которую уже напаяны компоненты:
Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.
Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.
А вот и готовый прибор:
Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.
Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.
ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание
ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.
Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.
Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.
Описание ESR метра для конденсаторов
Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.
Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.
Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.
Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.
Настройка устройства
После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:
1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.
К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.
Esr метр своими руками схема
То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель — тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR – mikro». Остановило то, что уж больно здорово хвалили – «через край». В общем, решился на самостоятельные действия. Так как на микроконтроллерные устройства замахиваться не хотелось — выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось – не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.
Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.
Схема ESR метра
А печатную плату доделал по-хитрому. Стала она «двухсторонней» — со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества — пробник нужен.
Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.
Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал — способны на контакт с электролитическим конденсатором любого размера.
Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.
И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.
А 10 Ом соответствует 49 мВ.
Исправный конденсатор, соответствует примерно 0,1 Ом.
Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:
А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее — враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.
ESR (ЭПС) измеритель — приставка к цифровому мультиметру
↑ Начало
↑ Мой вариант схемы измерителя ESR
Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N, транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.
Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.
Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.
↑ Наладка
Наладка очень проста и заключается в установке чувствительности с помощью R4 при подключенном резисторе 2…5 Ом и установке нуля цифрового вольтметра на диапазоне 200mV.
Операции надо повторить несколько раз, далее можно убедиться в точности измерителя, подключая резисторы 0,1…5 Ом. Настраивать надо со штатными шнурами, плату хорошенько промыть, конденсатор С3 должен быть термостабилен.
↑ К вопросу о точности вообще
Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил.
При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.
На первом фото ЭПС конденсатора 0,03 Ом.
Желающие подробнее ознакомиться с принципом работы данного устройства могут прочитать оригинальную статью на стр. 19, 20 «Радио» №8 за 2011 год.
↑ Моя печатная плата
↑ Итого
Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens.
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.
Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.
↑ Файлы
Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.
—
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»
Оригинальная статья в журнале «Радио» № 8 за 2011 год:
▼ radio-8-2011-esr-meter.7z ? 13/08/16 ⚖️ 1,09 Mb ⇣ 55
Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.
—
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»
Как сделать ESR-метр конденсаторов своими руками


В этом поможет простой прибор для проверки конденсаторов — ESR-метр. Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру. С его помощью можно легко установить такие неисправности, как пробой и высыхание.
Что такое ESR

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.
Примеры проблем, связанных с ESR

В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат — сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.
В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе — зависаниям, торможению, так и к банальному отказу работать.
Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности. Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется — показатели в этом случае могут быть слишком неточными. Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.
Основные элементы устройства

Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.
В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.
При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.
В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.
Возможные недостатки и замечания по работе этого устройства:
- При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
- Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.
Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.
Порядок калибровки прибора
После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:
- Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120—180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
- Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
- Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
- Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.
После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.
Esr метр своими руками схема
Измеритель LOW ESR конденсаторов
Автор: Simurg
Опубликовано 17.08.2012
Создано при помощи КотоРед.
Всё гениальное – просто!
Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.
Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.
Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..
А это показания исправного конденсатора:
Общий вид измерителя
Цели, которые достигались при проектировании измерителя:
— измерение на частоте 100 — 110 кГц
— измерение низким напряжением (до 0,2 вольт)
— растянутая шкала в диапазоне до 0,5 Ома
— работа от одного аккумулятора напряжением 1,2 вольта
— длительная работа без зарядки аккумулятора
— отсутствие неудобных проводов витой пары
— мощные щупы для пробивания окислов и лака
— минимум корректирующих настроек
Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:
Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.
Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).
Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.
Приведу структурную схему устройства для более понятного назначения каждого компонента:
Схема состоит из автоколебательного блокинг – генератора,
собранного на транзисторе VTI, выпаянном из серверной материнки:
Но можно и любой другой например аналог КТ3102 в smd корпусе.
Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.
Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.
Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.
В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.
Стоит он обычно около выходного строчного транзистора
Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.
Для ТР2 можно ставить без выведенного отвода (таких большинство).
Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.
При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.
Некоторые фото проведенных измерений:
Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.
Шкалу не затирал, а просто дописал значения выше. Фото шкалы.
Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.
Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.
Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.
Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.
Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.
Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.
Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!
P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.
Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).
20.12.2019
15
3 мин на чтение
Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.
Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.
Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.
Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.
Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.
Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.
Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.
Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.
Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.
Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом
На изображении показана плата, на которую уже напаяны компоненты:
Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.
Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.
А вот и готовый прибор:
Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.
Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.
Мой мир
Вконтакте
Одноклассники
Apr
Только те, кто предпринимают абсурдные попытки, смогут достичь невозможного. — Альберт Эйнштейн
В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!
Для чего нужен ESR-метр
Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока , то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?
P=I 2 xR
где
P
– это мощность, Ватт
I
– сила тока, Ампер
R
– сопротивление, Ом
А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло;-) И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.
Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))
Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром :
Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.
Схема и сборка
В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к . С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:
Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.
Для того, чтобы не травить лишний раз платку, я взял и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.
С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ
Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.
Что это за “фрукт”? МГТФ расшифровывается как М
онтажный, Г
ибкий, Т
еплостойкий, в Ф
торопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.
Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).
После сборки макетная плата выглядит вот так:
Микросхемы по привычке всегда ставлю в панельки:
При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)
Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:
Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.
Прибор выполнен в виде приставки к любому цифровому мультиметру:
Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.
А вот и мой самопальный щуп :
Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.
Внутри корпуса платка выглядит примерно вот так:
Провода, идущие к пинцету, закреплены каплей термоклея . Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.
Калибровка прибора
После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:
1)Если у вас есть осциллограф , замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.
2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.
3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.
4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1
5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра
6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.
Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом;-).
Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор
При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.
После того, как я сделал замеры, смотрю в другую табличку:
Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.
Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора
Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).
Поправки к схеме
1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.
2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (Н
изкоЧ
астотную) схему.
Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:
Степан Миронов.
Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их — не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% — это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% — не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.
Ориентировочная таблица допустимых значений ESR, приведена ниже:
Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором — «aESR» (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.
На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте — эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме «ESR», а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью «анализатора — aESR».
Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания «aESR» в большинстве случаев немного выше показаний «ESR». Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.
Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.
На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.
При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” — это превышение нормы.
К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.
И так, что же может мой измеритель.
Измеритель ESR+LCF v3 — измеряет
Дополнительные функции:
В режиме ESR можно измерять постоянные сопротивления 0.001 — 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 — 20Ом.
— В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора (подробное описание см. далее).
— В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
— Индикация разряда батареи.
— Автоматическое отключение — около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись «StBy» и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.
В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».
Принципиальная схема.
«Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.
Конструкция и детали.
ЖК — индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер — PIC16F886-I/SS.
Транзисторы BC807 — любые P-N-P, близкие по параметрам.
ОУ TL082 — любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 — 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 — 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 — 430-650пФ с низким ТКЕ, К31-11-2-Г — можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
С102, С104 4-10мкФ SMD — можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 — можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.
Печатная плата выполнена из одностороннего стеклотекстолита.
Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.
Крышки сделаны из чёрной пластмассы.
Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” — гнездо более высокого качества.
Конструкция щупа:
В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.
Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.
Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.
Удачи всем и всего наилучшего!
miron63
.
Архив Измеритель ESR+LCF v3.
Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер
китайского происхождения Mega328
. Купил его на алиекспресс
у этого продавца
. Какие именно достоинства этого прибора?
Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость
. Это те самые микрофарады
которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.
Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR
.
ESR — Equivalent Series Resistance
– параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.
Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом
. Если этот параметр выше, то я меняю конденсатор на новый.
На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.
Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.
Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.
Или такой же 220мкф на 35в из статьи , где ESR уже 15 Ом.
Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

Здесь ESR вообще ноль Ом, а номинал больше заявленного.
Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328
. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны, мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.
Пример проверки полевого транзистора:

Вот пример проверки обычного N-P-N транзистора.
Полный перечень возможностей данного тестера:
Проверка:
Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ,
Сопротивление, регулируемые потенциометры и др.
Сопротивление:
от 0.1 Ом до максимум 50 мОм
Конденсатор:
от 25pF до 100,000 мкФ
Индукторы:
от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы. Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.
Очень важно!!! Перед измерением ESR, конденсатор необходимо разрядить!!!
Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

Виде обзор работы ESR метра
Рекомендую покупать на алиекспресс
напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка
на продавца, где покупал я. Прибор пришел в Украину за 18 дней.
Equivalent Series Resistance (Эквивалентное Последовательное Сопротивление — ЭПС), как один из значимых паразитных параметров электролитических конденсаторов,
в последние годы приобрёл широкую популярность среди ремонтников электронной аппаратуры.
Измерители и пробники ESR для многих мастеров стали прибором первой необходимости наряду с тестером или мультиметром.
Увеличение ESR конденсатора на несколько Ом, а иногда на несколько десятых долей Ома, может являться причиной неработоспособности устройства,
в котором он установлен, что иногда невозможно выявить существующими измерителями ёмкости, не способными учитывать другие параметры конденсатора.
Обычно в ремонтной практике не требуется особой точности в измерении ESR, поэтому ощутимая погрешность пробников чаще не вызывает неудобств
в отыскании неисправных элементов, а определение состояния конденсатора пробником может упрощаться до оценки его качества по принципу –
годен или не годен для работы в конкретном узле устройства.
Но, следует отметить, для конденсаторов, работающих при больших импульсных токах, например, в фильтрах преобразователей,
иногда требуется более объективная оценка качества, а погрешность в десятые и даже сотые доли Ома может иметь существенное значение.
Большинство популярных и применяемых в ремонтной практике приборов и пробников ESR основаны на измерении полного сопротивления переменному току на частоте 40 — 100 кГц.
На частотах этого порядка для электролитических конденсаторов больших номиналов такие приборы покажут значения,
максимально близкие к величине ESR, которая составит основную часть импеданса на этих частотах.
Недостатком такого способа является значительная погрешность
при измерении малых номиналов ёмкостей (менее 10 uF), когда реактивное сопротивление конденсатора на данной частоте соизмеримо и может превышать ESR.
Тогда прибор покажет значение импеданса, а реальное значение ESR может быть в несколько раз меньше.
Одним из требований в плане практичности использования ESR-пробников является возможность производить замеры
без выпаивания конденсатора из платы. Следовательно, процесс измерения должен происходить при достаточно низком падении напряжения на проверяемом конденсаторе,
исключая отпирание переходов полупроводниковых элементов схемы.
В большинстве случаев такие нехитрые измерители импеданса мастера собирают самостоятельно по схемам, широко распространённым в интернете,
но кто-то применяет и свои разработки с учётом личных предпочтений в плане удобства пользования или точности измерений.
В продаже существуют как простые пробники со светодиодной или стрелочной индикацией, так и измерители с цифровой шкалой различной степени сложности.
Подробно останавливаться на принципах и методах измерения импеданса нет необходимости, таких обсуждений и описаний существует достаточно много
и их нетрудно найти в интернете. Но некоторые особенности отдельных конструкций всё же могут заслуживать внимания.
В этой статье предлагается рассмотреть один из способов измерения ESR и ёмкости, как отдельных параметров конденсатора.
Достаточно точный и несложный метод, который используется во многих любительских и промышленных приборах, реализован в измерителе Micro,
популярном среди мастеров – участников ремонтных форумов monitor.net.ru и monitor.espec.ws.
Если испытываемый конденсатор ёмкостью C
заряжать от источника постоянного тока I
,
напряжение на его выводах будет линейно нарастать от значения U R
по закону:
C dU/dt = I = const
.
U R
– падение напряжения на активном сопротивлении конденсатора (ESR).
В таком случае ёмкость конденсатора будет определяться выражением:
Посчитать U R
для вычисления ESR можно несколькими способами, например, составив уравнение прямой по двум точкам и найти координату Y
для нулевого значения X,
либо геометрически, исходя из соотношения сторон подобных треугольников…
Активное сопротивление конденсатора (ESR) в таком случае составит:
Для реализации такого метода нет необходимости в применении АЦП, пороговые значения напряжений для управления таймером устанавливаются компараторами,
а математические вычисления ёмкости и ESR производятся микроконтроллером с выводом информации на ЖК дисплей.
В некоторых подобных конструкциях для измерения ESR используется более простой, но менее точный способ.
Производится измерение уровня напряжения
U R
посредством АЦП в начальный момент времени.
Несмотря на то, что измерительный импульс достаточно короткий (1-2 uS),
конденсаторы меньшей ёмкости успевают зарядиться до большего значения, чем конденсаторы большой ёмкости, что создаёт некоторую погрешность
в измерении ESR разных номиналов конденсаторов.
Следует учитывать, что ESR, измеренный постоянным током, является относительным показателем качества электролитического конденсатора.
Значимой составляющей ESR являются диэлектрические потери, которые существенно меняются с изменением частоты переменного тока.
Существуют более сложные и точные методики и способы измерений, основанные на анализе сдвига фаз в конденсаторе.
В этом случае ESR определится произведением импеданса и тангенса угла потерь.
Замечания и предложения принимаются и приветствуются!
Наиболее слабым местом в любой радиосхеме являются электролитические конденсаторы, которые подвержены постоянному высыханию. И чем большие токи проходят через них — тем этот процесс быстрее. Обычным омметром определить плохой конденсатор не получится, поэтому необходим спецприбор — esr измеритель.
Схема электрическая esr измерителя конденсаторов
Печатные платы — рисунок
В типичной схеме, может быть 10 или даже 100 конденсаторов. Выпаивать каждый для тестирования очень утомительно и существует большой риск повреждения платы. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц), и он способен мерять ESR конденсаторов прямо в схеме. Напряжение выбрано достаточно низкими, чтобы другие окружающие радиоэлементы схемы не влияли на результаты замеров. А если вам случайно доведется испытать заряженный конденсатор — не беда. Этот измеритель выдерживает до 400В заряда на конденсаторе. Опыт показал, что ЭПС метр выявляет около 95% конденсаторов с потенциальными проблемами.
Особенности работы прибора
- Тест электролитических конденсаторов > 1 мкФ.
- Полярность не важна для тестирования.
- Переносит заряд конденсаторов до 400В.
- Низкий ток потребления от батареи — около 25 мА.
- Легко читать данные аналогового измерителя.
- Меряет ЭПС в диапазоне от 0-75 Ом по расширенной шкале с помощью омметра.
Будьте осторожны, если вы тестируете высоковольтные конденсаторы. Имейте в виду, что высоковольтные конденсаторы могут нести сильный заряд в течение нескольких дней, в зависимости от схемы.
Как использовать ESR метр
Включаете прибор. Убедитесь, что проверяемая схема находится не под напряжением. Разрядите конденсатор перед тестированием — ЭПС метр не делает этого автоматически. Замкните выводы конденсатора и удерживайте их так в течение нескольких секунд. С помощью вольтметра убедитесь, что конденсатор полностью разряжен. Вольтметр должен показывать нулевое значение. Прикоснитесь щупами ESR метра к конденсатору. Определите сопростивление ESR. Является ли значение ESR приемлемым узнаём путем сравнения измеренного ESR с эталонными данными. Посмотреть эту таблицу
Газета «Своими руками» №1-36 за 2011
Своими руками — это очень популярная газета-энциклопедия от украинского издательства, из которой домашние мастера и радиолюбители смогут узнать много нового. Эта газета предлагает читателям много самых разных полезных советов. Также содержит рисунки и необходимые чертежи.
Издательство: Полтавская обл.
Серия: Своими руками
Год издания: 2011
Язык: Русский, Украинский
Формат: DJVU/rar
Размер: 20.66 Mb
Внимание! У вас нет прав для просмотра скрытого текста.
Образ диска к книге «Дискотека своими руками»
Формат: ISO/rar
Размер: 162.47 Mb
Книга «Дискотека своими руками»
Внимание! У вас нет прав для просмотра скрытого текста.
Газета »Своими руками» за 2006-2010
Своими руками — это очень популярная газета-энциклопедия от украинского издательства, из которой домашние мастера и радиолюбители смогут узнать много нового. Эта газета предлагает читателям много самых разных полезных советов. Также содержит рисунки и необходимые чертежи.Данный архив содержит 92 номера этой замечательной газеты за 2006-2010 года.
Список номеров:
2006 №№ 01,03,05,06,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24.
2007 №№ 01,02,03,05,06,07,09,10,11,12,15,16,17,18
Изготовление предохранителя своими руками
При ремонте не всегда под рукой оказывается предохранитель с нужными параметрами. Воспользовавшись данными, приведенными в таблице, можно легко изготовить предохранитель с требуемыми параметрами.
Важно!: учитывайте напряжение, так как на малых напряжениях предохранитель из меди, алюминия или стали просто не перегорит при нужном токе.
Электрика в квaртире и доме своими руками
Электрика в квартире и доме своими руками. Любые работы, связанные с электротехническим оборудованием дома или квартиры, крайне ответственны, и не каждый возьмется осуществить их самостоятельно. И тем не менее многие операции доступны даже дилетантам: заменить розетки или выключатели, найти причину неисправности в сети, установить точечные светильники в подвесном потолке — все это вам под силу, и ни к чему звать на помощь электрика.
СОДЕРЖАНИЕ:
Внимание! У вас нет прав для просмот
Усилитель своими руками
Страниц: 60
Формат: PDF
Размер: 9,56 Mb
Сделать усилитель не так сложно, как это кажется. Все работы можно выполнить дома на
кухне, располагая минимальным набором инструмента и материала. Но тем не мене можно
получить впечатляющие результаты. В этой статье я расскажу вам, как это сделать. Я так же
не буду пользоваться станками и выполню все работы вручную.
Скачать:
Внимание! У вас нет прав для просмотра скрытого текста.
Электрика своими руками
Как неподготовленному человеку разобраться с электропроводкой, энергопотреблением, заменить включатель, розетку, установить удлинитель, провести электричество на лоджию и в кладовую, экономить электроэнергию в быту – вот лишь малая толика рассматриваемых в этой книге вопросов.
СОДЕРЖАНИЕ:
Внимание! У вас нет прав для просмотра скрытого текста.
Автор: Кашкаров А. П.
Издательство: ДМК Пресс
Год издания: 2011
Страниц: 128
Формат: PDF/rar
Размер: 39.31 Mb
Внимание! У в
Ночник своими руками
Схема:
Используемые радиоэлементы:
Конденсатор неполярный 0.22мкФ 400V
Предохранитель 100мА
Диоды выпрямительные на ток от 100мА — 4шт.
Конденсатор полярный 47мкФ 50V
Резистор 600Ом
Светодиоды – 3шт.
Ночник можно разделить на схему питания светодиодов и сами светодиоды. Схема питания работает следующим образом: Напряжение 220В подается через вилку на гасящий конденсатор С1 и предохранитель F1, далее оно выпрямляется диодным мостом VDS1 и сглаживается конденсатором С2
Лучшие конструкции усилителей и сабвуферов своими руками
Материал систематизирован по главам в соответствии с элементной базой усилителя: на транзисторах, на микросхемах, на лампах и гибридные схемы. Рассмотрены практические описания десятков конструкций усилителей звуковой частоты и электронных сабвуферов разной степени сложности, даны практические советы как схемного, так и конструктивного характера..
СОДЕРЖАНИЕ:
Внимание! У вас нет прав для просмотра скрытого текста.
Автор: Сухов Н.Е
Издательство: Наука и Техника
Год издания:
Бронированная флешка или новый корпус своими руками из подручных средств
В общем сложилось так что у нескольких моих флешек от времени испортились корпуса и это стало проблемой для их дальнейшей эксплуатации, так как был свободный доступ к электронике из вне.
Было решено сделать для них корпус раз и навсегда, так как флешки не особенно навороченные и вряд ли с ними чего еще плохого случится, да и не жалко их уже было Перечитав много статей в интернете из из чего можно слепить корпус для флешки было решено сделать свой личный корпус из коробочки для грифелей мех. к
ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание
ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.
Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.
Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.
Описание ESR метра для конденсаторов
Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.
Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.
Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.
Настройка устройства
После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:
1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.
К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.
Источник: Радиомир 03/2012
Простейший измеритель ESR электролитических конденсаторов / Habr
Собственно, как я уже когда-то очень давно обещал, расскажу про простейший измеритель ESR. В дальнейшем буду писать не ESR, а ЭПС(эквивалентное последовательное сопротивление), поскольку лень переключать раскладку. И так, кратко, что же такое ЭПС.
ЭПС можно представить в виде резистора, включенного последовательно с кондесатором.
На данной картинке — R. Собственно, у исправного конденсатора этот показатель измеряется долями Ома, для конденсаторов малой емкости (до 100мкф) может достигать 2-3 Ом. Более подробно значения ЭПС для исправных конденсаторов можно найти в справочных данных производителей. Со временем, из-за испарения электролита, это сопротивление увеличивается, что приводит к повышению мощности потерь. Как результат конденсатор сильнее нагревается, что еще сильнее ускоряет процесс испарения электролита и приводит к потере емкости.
На практике ремонта точное измерение ЭПС не нужно. Достаточно считать любой конденсатор с ЭПС выше 1-2 Ом неисправным. Можно считать это спорным утверждением, в интернете достаточно легко найти целые таблицы с значениями ЭПС для конденсаторов различной емкости. Однако я убеждался неоднократно, что приблизительной оценки вполне достаточно. Не говоря уже о том, что результаты измерения ЭПС одних и тех же конденсаторов(новых), одного и того же производителя сильно разнятся в зависимости от партии, времени года и фазы луны.
Я использую простой измеритель на копеечной микросхеме. Разработал его Manfred Mornhinweg.
Конструкция довольно простая, но привлекательна своей нетребовательностью к трансформатору. Из недостатков — шкала получается «широкая», в моем случае 0-20ом. Соответственно, нужна большая измерительная головка, т.н. «магнитофонные» (из индикаторов уровня магнитофонов), не подойдут — будет неудобно работать.
В качестве трансформатора автор намотал две обмотки 400 и 20 витков на ферритном кольце 19х16х5мм 2000НМ. Однако можно поступить значительно проще — использовать трансформатор дежурки из любого ATX блока питания. Достаточно заменить R8 на подстроечный многооборотный резистор 3296W сопротивлением 51к. При помощи этого резистора можно будет увеличить коэффициент усиления измерительного усилителя и компенсировать недостаточный коэффициент трансформации. LM7805 необходимо заменить на LM1117-5, это снизит потребляемый ток, плюс нижний порог напряжения питания опустится примерно до 6.5В. Стабилизатор обязателен, иначе шкала будет плавать в зависимости от напряжения питания. Для питания я использовал обычную «Крону». Саму микросхему обязательно поставьте в панельку!
Настройка прибора сводится к установке «нуля» и калибровке шкалы. Для калибровки шкалы используются низкоомные резисторы с допусками 0.5% и сопротивлениями от 0 до 2-5 Ом. Калибровка производится следующим образом — снимаем защитное стекло с индикаторной головки. Включаем прибор и измеряем сопротивление эталонных резисторов. Смотрим, куда отклоняется стрелка и ставим в этом месте на шкале метку с соответствующим сопротивлением. Так размечаем шкалу.
Измеряемые низковольтные конденсаторы(до 50-80 вольт без проблем) разряжаются резисторами R5, R6 и первичной обмоткой трансформатора. «Сетевые» емкости(те, которые после диодного моста в импульсных БП) я предварительно разряжаю приспособой, сделанной из резистора 510 Ом/1Вт, иглы от шприца, крокодила и корпуса гелевой ручки. В теории цепочка R5-R6 должна разрядить и такие емкости, но на практике, выбивает TL062 ? Именно поэтому ее надо ставить в панельку -чтобы быстро заменить. Но надежнее — предварительно разрядить «сетевую» емкость.
В целом — очень удачный прибор — дешев, прост, не требователен к трансформатору.
Цифровой измеритель ESR (ЭПС) и ёмкости на контроллере
Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.
Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.
Ёмкость меряет в пределах 1 — 150 000мкФ, ESR — до 10 Ом.
Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.
Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 — в конце статьи есть прошивки на обе модели.
Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра ?
Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности — может врать. В этом случае выпаиваем элемент.
Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.
Старый, советский, подсохший электролитический конденсатор.
А это нерабочий конденсатор с цепи питания процессора на материнской плате.
Как работает.
Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все — далее спокойно можно мерять напряжение на выходе ДУ — там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.
На форуме-источнике, где выложена печатная плата и прошивки — печатка была двухсторонняя. С одной стороны — все дорожки, с другой — сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.
На последней картинке — источник тока, источник отрицательного напряжения и силовой ключ.
Плата простая, настройка — ещё проще.
Первое включение — проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три — для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор — той же кнопкой Set.
Имеется так же отладочный режим — в этом режиме на индикатор выводятся измеренные значения без обработки — для емкости — состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим — при нажатой кнопке «+»
И еще один момент — установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку «+» и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку «+», нажимаем Set — на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:
Схема прибора:
Прошивка для PIC16F873
Прошивка для PIC16F876A
Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.
Q. При подключении резистора в 0,22 Ома — пишет — 1 с копейками, при подключении резистора в 2,7 Ом — пишет ESR > 12.044 Ом.
A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:
источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом — в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется — проверьте в статике — уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 — тогда при проверке коллектор VT1 лучше отключить от схемы).
На деле решение было такое: -«Перепутал я сослепу 102 и 201 — и вместо 1 килоома забубенил 200 ом.»
Q. Возможна ли замена TL082 на TL072?
A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.
Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой — к DD2?
A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.
Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.
A. После замены на танталовый, выдранный с 286 материнки стало -4 В.
Q. Индикатор WH-1602 не работает или греется контроллер индикатора.
A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D — вот он имеет «спутанные» 1 и 2 выводы.
Надпись Cx —- выводится в следующих случаях:
При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx —-.
При разомкнутых щупах (или R>10 Ом) так и должно быть.
Знак «>» в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)
Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер — и прибор работает.
Update.
Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей — отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта — небольшая потеря ?
Мой новый конструктор выглядел так:
Маленькая платка преобразователя была «обута» в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.
На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.
Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется ?
Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.
Уже не одну сотню приборов эта маленькая штучка помогла восстановить за считанные минуты. Делайте, не пожалеете. Или заказывайте у меня:)
ESR (ЭПС)-метр своими руками | Каталог самоделок
Неисправность электролитических конденсаторов чаще всего является причиной дефектов в радиоэлектронных аппаратах. При этом ёмкостный показатель неисправного конденсатора может совсем немного отличаться от его нормального значения, а ЭПС быть больше. Поэтому зачастую найти поломку в электролитическом конденсаторе с помощью измерителя ёмкости бывает крайне сложно.
В связи с этим именно увеличенный показатель ЭПС является единственным признаком ненормальной работы конденсатора в радиоаппаратуре.
В поиске увеличенного значения ЭПС может помочь специальный прибор, который называется ЭПС-метр. Его можно сделать самостоятельно.
Этот прибор измеряет сопротивление, которое выдаёт конденсатор при частоте в 100 кГц.
Плюсом этого прибора является то, что он не требует абсолютной точности в измерениях, ведь показатель ЭПС дефектного конденсатора обычно в разы превышает установленную норму.
Конструирование ЭПС-метра должно начинаться с составления схемотехнического рисунка в системе LTspice. В итоге должен получиться график, демонстрирующий отклонение стрелки амперметра в зависимости от показателя ЭПС.
По результатам схемотехнического рисунка, который был составлен ранее, можно спроектировать схему в программе OrCAD.
Известно, что в приборе установлено 9-вольтовое питание и регулятор напряжения, за основу которого берётся схема LM 7805. Также для прибора нужны транзисторные приёмники, которые можно выбрать на своё усмотрение, но всё же лучше подойдут 2N3904 (n-p-n) и 2N3906 (p-n-p). Ещё в приборе применимы диоды 1N5711 и измерительная головка с силой тока в 50 мкА.
Небольшое напряжение в конденсаторе, позволяет использовать устройство без его снятия.
В итоге получается разводка односторонней платы без перемычек. Для платы использовались чип-компоненты и проделывались отверстия для крепления деталей, которые позже нужно припаять.
Плата изготавливается с помощью фоторезистора, ЛУТ или ЧПУ.
Для создания шкалы прибора, необходимо произвести практические замеры, которые позже переносится в программу и распечатывается. После этого можно производить сборку всех компонентов.
В заключении, стоит заметить, что перед тем, как измерять показатель ЭПС с помощью самодельного прибора, его необходимо полностью разрядить.
Автор: Орлов Александр, Москва.
Измеритель емкости конденсаторов своими руками: принцип, схема
Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.
Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.
Обозначения на конденсаторах
Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.
Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).
Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.
Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.
Вычисления с помощью формул электротехники
Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.
Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.
Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.
Схема измерения
Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.
Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.
Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.
Измерительные приборы
Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.
В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.
В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.
Самодельный С — метр
Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.
Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.
Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.
Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.
При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.
Конструкция и детали
R1, R5 6,8k R12 12k R10 100k C1 47nF
R2, R6 51k R13 1,2k R11 100k C2 470pF
R3, R7 68k R14 120 C3 0,47mkF
R4, R8 510k R15 13
Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.
Вариант печатной платы и расположение компонентов
Видео по теме
Испытатель конденсаторов.
С
помощью такого прибора можно проверить, нет ли внутри конденсаторов
обрыва короткого замыкания, или значительной утечки. Рассчитан он на
конденсаторы емкостью более 50 пФ. Основа
прибора генератор прямоугольных импульсов, собранный на элементах
DD1.1- DD1.3, частота следования которых составляет около 75 кГц, а
скважность примерно 3.
Элемент DD1.4,
включенный инвертором, исключает влияние нагрузки на работу генератора.
С его выхода импульсное напряжение идет по цепи: резистор R3,
конденсатор С2 и проверяемый конденсатор,
подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр
РА1 и шунтирующий их резистор R2. Детали этой нагрузочной цепи
подобраны таким образом, что без проверяемого конденсатора в ней ток
через стрелочный прибор РА1 не превышает 15
мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток
в цепи увеличивается до 40 … 60 мкА, и если прибор будет показывать
ток в этих пределах, то независимо от емкости проверяемого конденсатора
можно сделать вывод о его исправности. Эти пределы тока цепи отмечают
на шкале прибора цветными метками. Если емкость проверяемого
конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора
резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад,
устанавливается в пределах отмеченного сегмента. Полярный конденсатор
выводом положительной обкладки подключают к гнезду XS1.При внутреннем
обрыве проверяемого конденсатора стрелка индикатора останется на
исходной отметке, а если конденсатор пробит или его внутренне
сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка
индикатора отклоняется за пределы контрольного сегмента и даже может
зашкаливать.
Налаживание:
После включения питания стрелка должна отклониться до деления примерно
15 мкА. В случае необходимости такой ток устанавливают подбором
резистора R3. Затем к гнездам «Сх»
подключают конденсатор емкостью 220 … 250 пФ и подбором резистора R2
добиваются отклонения стрелки индикатора до отметки 50 мкА. После этого
замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.
Монтажную плату устройства вместе с питающей его батареей 3336Л следует
разместить в корпусе подходящих размеров.
Испытатель можно питать и
от любого другого источника с напряжением 5V и током не менее 50 мА.
Рис.1 Принципиальная схема измерителя конденсаторов
Монтажная плата испытателя конденсаторов показана на рисунке.
В конструкции использован стрелочный микроамперметр от китайского мультиметра:
Шкала прибора заменена другой с
обозначением сектора для исправных конденсаторов, который располагается
между 8 и 20 Омами по предыдущей верхней шкале:
Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом.
Устройство питается от 4-х батареек 1,5V. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.
Источник: http://radio-hobby.org/
Прибор предназначен для измерения емкости оксидных конденсаторов в
составе узла, в котором они применены
(т. е. без выпаивания).
Параметры
входных цепей прибора рассчитаны таким образом, что на точность
измерения практически не влияют ни сопротивление подключенных к
проверяемому конденсатору цепей аппарата, ни полярность этих элементов,
ни полярность подключения самого прибора.
Пределы измерения
емкости — 1… 1000 мкФ,
Относительная погрешность измерения в
интервале значений 20…500 мкФ — не более —20 и +40 %.
Принципиальная схема.
Принцип
его действия основан на измерении падения переменного (50 Гц)
напряжения на делителе, состоящем из резисторов R1, R2 и проверяемого
конденсатора Сх. Снимаемый с делителя сигнал усиливается микросхемой
DA1 и поступает на выпрямитель, выполненный по схеме удвоения
напряжения на диодах VD1, VD2. Постоянная составляющая выпрямленного
напряжения через логарифмирующую цепь R7,VD3,R8
(она расширяет пределы измерения емкости) поступает на микроамперметр
РА1, и его стрелка отклоняется на угол, обратно пропорциональный
емкости конденсатора Сх.
В приборе можно использовать постоянные резисторы МЛТ, переменные резисторы СП4-1 (СП5-2, ППЗ-45),
конденсаторы
КМ-6, МБМ(С1), КТ-1(СЗ). К50-6. К50-16, К53-1 (остальные).
Трансформатор Т1—любой, мощностью более 1 Вт с напряжением
на вторичной обмотке 2X22V.
Для подключения прибора к проверяемому
конденсатору и прокалывания защитного лака, которым обычно покрыты
печатные платы радиоаппаратуры, рекомендуется изготовить специальный
щуп. По сути, это — два склеенных корпусами цанговых карандаша, в
которые вместо грифелей вставлены стальные иглы. К утолщенным концам
игл припаивают гибкий экранированный провод, который подключают к
гнездам XS1, XS2.
Налаживание прибора сводится к подгонке
(попеременным изменением сопротивлений резисторов R3, R7 и R8) шкалы
путем измерения емкости заведомо исправных конденсаторов с возможно
меньшим допускаемым отклонением емкости от номинала (конденсаторы
с допуском 10%).
Шкалу микроамперметра
градуируют непосредственно в микрофарадах или пользуются при работе
градировочной таблицей. Если применен микроамперметр с током полного
отклонения стрелки 100 мкА, то отметка 5 мкА соответствует емкости 1000
мкФ, отметки 10, 20, 40, 60, 80 и 90 мкА — соответственно 500, 200,
100, 50, 20 и 10 мкФ, отметка 100 мкА — 0.
Перед измерением прибор
калибруют переменным резистором R8, ось которого выведена на лицевую
панель, устанавливают стрелку микроамперметра РА1 на отметку 0 (100
мкА).
Пределы измерения емкости можно сместить в
сторону больших или меньших значений, для чего достаточно заменить
резисторы R1 и R2 резисторами соответственно меньших или больших
сопротивлений, сохранив неизменным их отношение.
Микросхему К548УН1А в испытателе можно заменить на
К140УД7, К554УД2 и т. п., обеспечив им напряжения питания +15V и — 15V.
Необходимые
для питания ОУ DА1 напряжения получены выпрямлением переменного
напряжения обмотки II трансформатора Т1 и последующей стабилизацией его
параметрическими стабилизаторами R9,VD4 и R10,VD5.
Для
расширения пределов измерения емкости в сторону меньших значений в
прибор необходимо ввести еще один делитель входного напряжения,
подключив его как показано на рис.1 (нумерация новых деталей
продолжает начатую на схеме в начале статьи, пропуск в нумерации
означает, что элемент исключен). Делитель R11, R12 подключают
к прибору, переключателем SA1.
Замена подстроечного резистора R7 постоянным, и введение резистора R14 облегчают налаживание испытателя.
Чертеж
печатной платы модернизированного прибора показан на рис. 2,
смонтированную плату закрепляют непосредственно на шпильках зажимов
микроамперметра РА1.
Простой прибор, за основу которого взяты предыдущие варианты схем.
Конструкция размещена в корпусе милливольтметра SUNWA YX1000A:
Для
установки «нуля» использован переменный резистор R8, определяющий
коэффициент усиления ОУ DA1. Если сопротивление микроамперметра РА1
отличается от 1 кОм, то номинал переменного резистора должен быть
соответственно изменен. Для уменьшения чувствительности усилителя к
«наводкам» от сетевого напряжения номинал разделительного конденсатора
С1 увеличен в 10 раз (1 мкФ).
Для градуировки шкалы индикатора
рассчитывают отклонения стрелки (в процентах от всей шкалы) для каждой
емкости из ряда Е12 (от 2,2 мкФ до 220 мкФ) по формуле: (Сх/Roбp)x100%.
Образцовые
резисторы R4—R6 подбирают с максимально возможной точностью.
Желательно, чтобы резисторы R1—R3 отличались друг от друга по
сопротивлению точно в 10 раз, иначе придется устанавливать стрелку
индикатора на «нуль» при каждой смене диапазона.
Операционный
усилитель должен быть с полной внутренней коррекцией и высоким входным
сопротивлением, например: К140УД8, К140УД18, К140УД22. Диоды VD1—VD4 —
германиевые с малым прямым напряжением. VD5.VD6 — любые с обратным
напряжением более 30V. Конденсатор С1 — любой малогабаритный, а С2 —
обязательно с малым током утечки (К52, К53). Переключатель диапазонов
SA1 — штатный, галетный. Для более плавной установки «нуля», резистор
R8 рекомендуется заменить цепочкой из последовательно соединенных
переменного и постоянного резисторов, чтобы переменным можно было
компенсировать любые изменения сетевого напряжения.
Для приборов,
описанных выше, также желателен сетевой трансформатор с увеличенным
числом витков на вольт. Конденсатор C1 нужно использовать
емкостью 1 мкФ, резистор R3 заменить переменным («установка нуля»), а
переменные и подстроенные — постоянными. Резистором R6 устанавливать
стрелку на нуль нельзя, поскольку будет «растягиваться» или «сжиматься»
шкала из-за нелинейности характеристики диода VD3.
Источник: «РАДИО» №9 1990г, №11 1996г.
Схема питается от двух
3-хвольтовых батареек, соединенных последовательно, потребляя:
6,5мА при разомкнутых щупах
и 10мА — при замкнутых.
Схема:
В качестве генератора использована МС КР1211ЕУ1 Datasheet (частота при номиналах на
схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП
АТ/АТХ — одинаковые параметры (коэффициенты трансформации в частности)
практически от всех производителей.
Внимание!!! В трансформаторе Т1
используется лишь половинка обмотки.
Головка прибора имеет чувствительность 300мкА, но возможно использование других
головок. Предпочтительно использование более чувствительных головок.
Шкала прибора растянута на треть при измерении до 1-го Ома. Десятая Ома
легко отличимая от 0,5 Ома, в шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к
измерительной обмотке (с щупами) и/или к обмоткам III того или иного
трансформатора.
Источник: http://datagor.ru/
Предлагаемый вариант схемы и
конструкции компактного прибора для оценки ЭПС оксидных конденсаторов с
питанием от батареи отличается от опубликованных ранее использованием
распространенных деталей и стабилизатором напряжения питания, повышающим
точность измерения.
Конструкция оформлена в виде
малогабаритного переносного прибора со съемным щупом—иглой, вторым щупом на
гибком проводе и стрелочным индикатором с градуировкой в Омах.
Диапазон измерения сопротивления
— 0,5… 100 Ом. Питание — от батареи напряжением 9V («Крона» и аналогичные).
Прибор предназначен для
использования не в качестве средства измерения ЭПС, а для быстрой проверки
исправности оксидных конденсаторов. Как показала практика, «высохшие»
оксидные конденсаторы, потерявшие емкость, также имеют и повышенные значения
ЭПС. Таким образом, оценивая эквивалентное последовательное сопротивление,
можно выявлять неисправные конденсаторы с полной или частичной потерей емкости.
Схема прибора рис.
1.
Он состоит из нескольких узлов:
высокочастотного генератора на элементе DD1.1, который вырабатывает колебания с
частотой 350…400 кГц, буферного усилителя на DD1.2—DD1.6, делителя напряжения
R2—R4 и усилителя переменного тока на транзисторе VT2. Полученное переменное
напряжение выпрямляется диодами VD2—VD5, сглаживается конденсатором С5 и
поступает на микроамперметр РА1, проградуированный как омметр, по показаниям
которого оценивается ЭПС и пригодность конденсатора. Микросхема DD1 питается
через стабилизатор на транзисторе VT1; это необходимо для стабилизации амплитуды
испытательного сигнала на щупах прибора Х1 — XS1. Потребляемый микросхемой ток
не превышает 15 мА.
Настройку прибора начинают с
установки частоты ВЧ генератора. Подключив осциллограф к щупам XS1 (Х1) и XS2,
устанавливают частоту в интервале 350…400 кГц (в авторском варианте период
колебаний равен 2,66 мкс). Подстроечником катушки L1 устанавливают частоту;
если частота не укладывается в заданные пределы, можно изменить число витков
катушки L1, добавив или отмотав их. Затем подстроечным резистором R2
устанавливают амплитуду колебаний, равную 50 мВ. После этого нужно установить
рабочий режим транзистора VT2. До впаивания конденсатора СЗ подбором резистора
R5 устанавливают напряжение между коллектором и эмиттером транзистора VT2,
примерно равным половине напряжения питания прибора. Затем впаивают конденсатор
СЗ.
Рис. 3
Сопротивление переменного
резистора R8 устанавливают таким, чтобы при разомкнутых щупах прибора стрелка
устанавливалась на максимальное значение, не зашкаливая при этом. Затем градуируют
шкалу в Омах.
Для этого вскрывают
микроамперметр РА1, на его шкалу наклеивают бумагу и, последовательно подключая
резисторы сопротивлением 1, 2, 3, 5, 10, 20, 50, 100 Ом, делают риски
карандашом на шкале прибора. После окончательного оформления шкалы
микроамперметр собирают.
В приборе использованы детали:
Транзисторы КТ3102Г (возможно
КТ3102Б, КТ3102В) — желательно с наибольшим коэффициентом передачи И21э.
Микроамперметр РА1 — индикатор М4762-М1, такие использовались в индикаторах
уровня записи отечественных магнитофонов.
Конденсаторы — импортные от
старого китайского плейера.
Катушка L1 намотана на
пластмассовом каркасе диаметром 7 мм проводом ПЭВ-2 диаметром 0,3 мм и содержит
125 витков (в секции I — 50 витков). Подстроечник — ферритовый с резьбой М4 и
длиной 7 мм. Для катушки можно использовать каркасы от контуров ПЧ приемников.
Число витков в этом случае придется подобрать экспериментально.
При этом секция II катушки L1
должна содержать примерно в 1,5 раза больше витков, чем секция I.
Кнопка SB1 — МП7. Резисторы —
МЛТ-0,125, подстроечный R2 — СПЗ-386, переменный R8 — СПЗ-166.
Плата прибора с расположением
деталей показана на рис. 2. Все детали размещены на одной стороне печатной
платы, за исключением катушки L1 и переменного резистора R8, которые находятся
со стороны проводников.
Как видно из чертежа, проводники
со стороны установки элементов, выделенные цветом, можно при желании выполнить
монтажным проводом, используя для платы стеклотекстолит, фольгированный с одной
стороны.
Корпус прибора изготовлен из двух
алюминиевых экранов от контуров ПЧ лампового цветного телевизора, которые имеют
на внутренней стороне направляющие пазы для платы. Так как точность
изготовления экранов невысокая, то размеры платы перед изготовлением следует
уточнить. Плата должна плотно входить в направляющие. В одном из экранов делают
вырез для стрелочного индикатора. Экраны соединяют между собой пайкой — на них
имеются с двух сторон латунные выводы, которыми они крепились в плате
телевизора.
Щуп—иглу XS1 делают съемной на
резьбе. По окончании работы иглу вывинчивают, разворачивают наоборот и
вставляют внутрь прибора. Щуп XS2 на коротком гибком проводе подключают к
корпусу прибора. Эти провода желательно выполнить по возможности короткими,
чтобы исключить влияние их индуктивности на показания прибора.
В противном случае при замкнутых
щупах прибора стрелка не будет устанавливаться на нулевое значение.
Источник: http://forum.cxem.net/
Также по теме: ESR — METP Помощник Радиомеханика.
Copyright ©2011 SHCompamy Odessa
Комплект измерителя esr емкости
— лучшие предложения на комплект измерителя esr емкости от глобальных продавцов комплектов измерителя esr емкости
Отличные новости !!! Вы находитесь в нужном месте для приобретения комплекта измерителя esr емкости. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот комплект измерителя esr верхней емкости вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели набор для измерения емкости esr на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в наборе измерителя емкости esr и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите комплект измерителя емкости конденсатора по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Простая схема измерителя СОЭ | Проекты самодельных схем
В этом посте обсуждается простая схема измерителя ESR, которую можно использовать для определения неисправных конденсаторов в электронной схеме, практически не снимая их с печатной платы.Идея была предложена Руководством Sofian
Технические характеристики
У вас есть схема измерителя СОЭ. Техники рекомендуют мне сначала проверять электролит каждый раз, когда я обнаруживаю неисправную цепь, но я не знаю, как это измерить.
Заранее благодарю за ответ.
Что такое ESR??????? из-за старения значение ESR может увеличиваться до аномальных уровней, что отрицательно влияет на общее качество и реакцию задействованной цепи. Развивающееся ESR в конкретном конденсаторе может постепенно увеличиваться от всего лишь нескольких миллиомов до 10 Ом, сильно влияя на отклик схемы.
Однако объясненное выше ESR не обязательно означает, что емкость конденсатора также будет затронута, на самом деле значение емкости может остаться неизменным и хорошим, но при этом характеристики конденсатора ухудшатся.
Именно из-за этого сценария обычный измеритель емкости полностью не может обнаружить неисправный конденсатор, на который влияет высокое значение ESR, и технический специалист считает, что конденсаторы в порядке с точки зрения его значения емкости, что, в свою очередь, делает поиск неисправностей чрезвычайно трудным.
В тех случаях, когда обычные измерители емкости и омметры становятся совершенно неэффективными при измерении или обнаружении аномального ESR в неисправных конденсаторах, измеритель ESR становится чрезвычайно удобным для идентификации таких вводящих в заблуждение устройств.
ОБНОВЛЕНИЕ более простой альтернативы
Схема на основе ОУ, приведенная ниже, без сомнения, выглядит сложной, поэтому после некоторых размышлений я мог прийти к этой простой идее для быстрой оценки ESR любого конденсатора.
Однако для этого вам необходимо сначала рассчитать, какое сопротивление в идеале имеет конкретный конденсатор, используя следующую формулу:
Xc = 1 / [2 (pi) fC]
- где Xc = реактивное сопротивление (сопротивление в Ом),
- pi = 22/7
- f = частота (для этого приложения возьмем 100 Гц)
- C = емкость конденсатора в фарадах
Значение Xc даст вам эквивалентное сопротивление (идеальное значение) конденсатор.
Затем найдите ток по закону Ома:
I = V / R, Здесь V будет 12 x 1,41 = 16,92 В, R будет заменен на Xc, как получено из приведенной выше формулы.
Когда вы найдете идеальный номинальный ток конденсатора, вы можете использовать следующую практическую схему, чтобы сравнить результат с вычисленным выше значением.
Для этого вам понадобятся следующие материалы:
- Трансформатор 0-12 В / 220 В
- 4 диода 1N4007
- 0-1 амперметр FSD с подвижной катушкой или любой стандартный амперметр
Вышеупомянутая схема обеспечит прямой чтение относительно того, какой ток конденсатор может передать через него.
Запишите ток, измеренный с помощью вышеуказанной настройки, и ток, полученный по формуле.
Наконец, снова воспользуйтесь законом Ома, чтобы оценить сопротивления по двум показаниям тока (I).
R = V / I, где напряжение V будет 12 x 1,41 = 16,92, «I» будет соответствовать показаниям.
Быстрое получение идеального значения конденсатора
В приведенном выше примере, если вы не хотите проводить вычисления, вы можете использовать следующее контрольное значение для получения идеального реактивного сопротивления конденсатора для сравнения.
Согласно формуле, идеальное реактивное сопротивление конденсатора 1 мкФ составляет около 1600 Ом при 100 Гц. Мы можем взять это значение в качестве критерия и оценить значение любого желаемого конденсатора с помощью простого обратного перекрестного умножения, как показано ниже.
Предположим, мы хотим получить идеальное значение конденсатора 10 мкФ, это будет очень просто:
1/10 = x / 1600
x = 1600/10 = 160 Ом
Теперь мы можем сравнить этот результат с результат, полученный путем решения тока амперметра по закону Ома.Разница скажет нам относительно эффективного ESR конденсатора.
ПРИМЕЧАНИЕ. Напряжение и частота, используемые в формуле и практическом методе, должны быть идентичными.
Использование операционного усилителя для создания простого измерителя ESR
Измеритель ESR можно использовать для определения исправности сомнительного конденсатора при поиске неисправностей в старой электронной схеме или блоке.
Кроме того, эти измерительные приборы хороши тем, что их можно использовать для измерения ESR конденсатора без необходимости снимать конденсатор с печатной платы или изолировать его, что упрощает работу пользователя.
На следующем рисунке показана простая схема измерителя ESR, которую можно построить и использовать для предлагаемых измерений.
Принципиальная схема
Как это работает
Схема может быть понята следующим образом:
TR1 вместе с присоединенным NPN-транзистором образует простой блокирующий генератор, запускаемый с обратной связью, который колеблется на очень высокой частоте.
Колебания вызывают пропорциональную величину напряжения на 5 витках вторичной обмотки трансформатора, и это индуцированное высокочастотное напряжение прикладывается к рассматриваемому конденсатору.
Можно также увидеть операционный усилитель, подключенный к вышеупомянутому низковольтному высокочастотному источнику питания и сконфигурированный как усилитель тока.
При отсутствии ESR или в случае нового исправного конденсатора измеритель настроен так, чтобы показывать отклонение полной шкалы, указывающее минимальное ESR на конденсаторе, которое пропорционально уменьшается до нуля для разных конденсаторов, имеющих разное количество уровней ESR.
Более низкое ESR вызывает относительно более высокий ток, развивающийся на инвертирующем входе считывания операционного усилителя, который, соответственно, отображается в измерителе с более высокой степенью отклонения и наоборот.
Верхний транзистор BC547 вводится как каскад регулятора напряжения с общим коллектором для работы генератора st
Создание цифрового измерителя емкости с использованием микроконтроллера
Конденсаторы
являются одними из наиболее распространенных пассивных электрических компонентов, которые широко используются во всех видах электронных схем. В этом проекте мы обсудим метод построения цифрового измерителя емкости с использованием микроконтроллера PIC. Этот проект может измерять значения емкости от 1 нФ до 99 мкФ с разрешением 1 нФ.Метод основан на измерении времени, прошедшего, когда конденсатор заряжается до известного напряжения через последовательный резистор. В этом проекте используется микроконтроллер PIC16F628A.
Измеритель емкости
Теория
Этот измеритель емкости основан на принципе зарядки конденсатора через последовательный резистор. В последовательной RC-цепи, как показано на рисунке ниже, напряжение на конденсаторе экспоненциально увеличивается по мере его заряда. Предположим, что изначально конденсатор был полностью разряжен.Когда Vin подается на RC-цепь, конденсатор начинает заряжаться и, следовательно, напряжение (Vc) на нем увеличивается от 0 до Vin экспоненциально, как показано в правой части рисунка. Уравнение, представленное на рисунке, описывает, как напряжение на конденсаторе изменяется со временем. Если мы знаем время, которое требуется для зарядки конденсатора до известного напряжения, то мы можем решить это уравнение относительно C, зная значение R.
Напряжение конденсатора экспоненциально возрастает со временем
Идея измерения времени, прошедшего, когда конденсатор заряжается от 0 до известного напряжения, может быть реализована с помощью любого микроконтроллера.Здесь мы используем микроконтроллер PIC16F628A, который имеет два встроенных аналоговых компаратора. В этом проекте мы используем модули аналогового компаратора 2 и TIMER2 для определения времени, необходимого конденсатору для зарядки от 0 В до 0,5 В. Положительный и отрицательный входы аналогового компаратора 2 доступны извне через контакты RA2 и RA1 PIC16F628A соответственно. На рисунке, показанном ниже, два резистора 2,2 кОм создают делитель напряжения, который устанавливает положительный вход (RA2) компаратора на половину напряжения, приложенного к выводу RA0.Отрицательный вход (RA1) компаратора идет к положительному концу конденсатора через 330? резистор. Резистор используется для разряда конденсатора перед его измерением путем установки низкого уровня RA1. Когда на вывод RA0 подается напряжение, конденсатор (Cx), изначально полностью разряженный, заряжается через резистор 22 кОм. Когда вывод RA0 просто установлен на высокий уровень (скажем, около 5 В), выход компаратора высокий, поскольку положительный вход компаратора находится под более высоким напряжением (около 2,5 В), чем отрицательный вход, который близок к 0 В в качестве конденсатора. полностью разряжен.Теперь конденсатор начинает заряжаться через последовательный резистор (22K), и когда напряжение на нем превышает половину напряжения на выводе RA0, выход компаратора переключается на низкий уровень. Флаг прерывания компаратора (CMIF) устанавливается всякий раз, когда происходит изменение выходного значения компаратора. Модуль Timer2 используется для вычисления времени, прошедшего между установкой высокого уровня RA0 и низким уровнем на выходе компаратора. Это время, необходимое конденсатору для зарядки от 0 В до половины напряжения питания.
RC-цепь и входы компаратора
Зная значение зарядного резистора (в данном случае это 22 кОм) и время зарядки (от Timer2), теперь мы можем решить уравнение конденсатора, упомянутое выше, для вычисления C. Вот математика, вовлеченная в процесс. Для простоты Timer2 инициализируется значением 104, так что он переполняется за 256-104 = 152 тактовых цикла (число 152 взято из математических расчетов, показанных ниже). Если мы используем внешний источник тактовой частоты 4,0 МГц, это эквивалентно 152 мкс.Таким образом, расчеты значительно упрощаются, как описано ниже. Окончательное уравнение предполагает, что для данной схемы измеренная емкость (в нФ) просто умножается на 10 на количество переполнений Timer2, начиная с 104 каждый раз. Это дает разрешение 10 нФ, которое можно дополнительно улучшить до 1 нФ, учитывая значение самого Timer2 в момент, когда выход компаратора переключается на низкий уровень и модуль Timer2 останавливается.
Расчет C по времени зарядки
Полная схема для этого проекта представлена ниже.Выводы RA0-RA2 идут на описанную ранее схему делителя напряжения и заряда конденсатора. Измерение начинается при нажатии кнопки Старт . Измеренная емкость отображается на стандартном символьном ЖК-дисплее. Источник питания +5 В получается от батареи 9 В с использованием микросхемы регулятора LM7805. Я использую плату ввода-вывода DIY Experimenter для ЖК-части этого проекта и мою 18-контактную плату PIC16F для простого прототипирования с микроконтроллером PIC16F628A.
Схема измерителя емкости
Делитель напряжения и RC-цепь
Полная установка эксперимента
Программное обеспечение
Прошивка для микроконтроллера PIC16F628A написана на C и скомпилирована с помощью компилятора mikroC Pro для PIC. Максимальное значение измеряемой емкости установлено на 99,99 мкФ. Программа отображает сообщение «Вне диапазона» при измерении значения емкости выше этого. Обычно на выводе RA0 устанавливается низкий уровень, так что конденсатор разряжается через резистор 22 кОм перед измерением.При нажатии кнопки Start вывод RA1 устанавливается на низкий уровень на 2 секунды, что ускоряет процесс разрядки, поскольку конденсатор разряжается намного быстрее через 330? резистор, по сравнению с 22К. Затем инициализируется Timer2 и разрешается соответствующее прерывание. RA1 и RA2 сконфигурированы как входы аналогового компаратора. Затем RA0 устанавливается на высокий уровень и Таймер 2 включается. Как только выход компаратора (CMCON.C2OUT) переключается с высокого на низкий, модуль Timer2 останавливается.Время, необходимое конденсатору для зарядки от 0 В до половины напряжения на RC-цепи, рассчитывается из количества переполнений Timer2 и конечного значения самого регистра Timer2. Эта временная информация используется для оценки значения емкости с использованием математических расчетов, описанных в теоретическом разделе.
/ *
Проект: Измеритель емкости
Описание: CapMeter на основе постоянной времени RC
MCU: PIC16F28A
Осциллятор: HS, 4,0000 МГц внешний
Автор: Раджендра Бхатт (www.embedded-lab.com)
* /
// Подключения ЖК-модуля
сбит LCD_RS на RB2_bit;
сбит LCD_EN при RB3_bit;
сбит LCD_D4 на RB4_bit;
сбит LCD_D5 на RB5_bit;
сбит LCD_D6 на RB6_bit;
сбит LCD_D7 на RB7_bit;
sbit LCD_RS_Direction на TRISB2_bit;
sbit LCD_EN_Direction на TRISB3_bit;
sbit LCD_D4_Direction на TRISB4_bit;
sbit LCD_D5_Direction на TRISB5_bit;
sbit LCD_D6_Direction на TRISB6_bit;
sbit LCD_D7_Direction на TRISB7_bit;
сбит Va при RA0_bit;
sbit Switch at RB0_bit;
char message1 [] = "Емкость";
char message2 [] = "Счетчик";
беззнаковое int T_Value, Num;
беззнаковый короткий i, j, TimerValue, OverRange = 0;
char Capacitance [] = "00.000 мкФ ";
void interrupt () {
if (PIR1.TMR2IF) {
TMR2 = TimerValue;
Num ++;
если (Num & gt; 9999) OverRange = 1; // Диапазон 99,99 мкФ
PIR1.TMR2IF = 0; // Очистить флаг прерывания TMR0
}
}
void Display_Cap (unsigned int n) {
Емкость [0] = n / 10000 + 48;
Емкость [1] = (n / 1000)% 10 + 48;
Емкость [3] = (n / 100)% 10 + 48;
Емкость [4] = (n / 10)% 10 + 48;
Емкость [5] = (T_Value * 10) / 153 + 48;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «C =»);
Lcd_Out (1, 5, емкость);
}
void reset () {
TRISA = 0b00000100;
CMCON = 7;
RA1_bit = 0;
Delay_ms (2000);
TRISA = 0b00000110;
CMCON = 5;
}
пустая функция(){
char cap_size;
TRISB = 0b00000001;
ПОРТБ = 0;
TRISA = 0b00000110;
OPTION_REG.T0CS = 0;
INTCON.GIE = 1; // Включение глобального прерывания
INTCON.PEIE = 1; // Разрешить периферийное прерывание
// Настраиваем модуль Timer2
PIE1.TMR2IE = 1; // Разрешить прерывание от Timer2
T2CON = 0; // Предделитель 1: 1, и Таймер 2 изначально выключен
PIR1.TMR2IF = 0; // Очистить int бит
// Настроить модуль компаратора
CMCON = 5; // Независимый компаратор между RA1 (-) и RA2 (+)
Lcd_Init ();
Lcd_Cmd (_Lcd_Clear);
Lcd_Cmd (_LCD_CURSOR_OFF);
Lcd_Out (1, 1, сообщение1);
Lcd_Out (2, 1, сообщение2);
delay_ms (2000);
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «C =»);
Lcd_Out (1, 5, емкость);
Va = 0;
TimerValue = 108; // 104 + 4 дополнительных тактовых цикла задержки при переходе к ISR
в то время как (1) {
if (! Switch) {
Num = 0;
OverRange = 0;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «Тестирование.");
Lcd_Out (2, 1, «...»);
TMR2 = TimerValue; // Инициализируем Timer2
Va = 1; // подаем напряжение
T2CON.TMR2ON = 1; // запускаем таймер
while (CMCON.C2OUT) {
если (OverRange) перерыв;
}
T2CON.TMR2ON = 0; // остановка таймера
T_Value = TMR2 - TimerValue; // T_Value используется для улучшения разрешения
Va = 0;
// ---------------------------------
if (! OverRange) {
Display_Cap (число * 10);
}
else {
OverRange = 0;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «Вне диапазона!»);
}
сброс настроек();
}
}
} Скачать исходный код и файлы HEX
Выход
С помощью этого измерителя емкости тестируются различные значения емкости, и результаты довольно хорошо согласуются с их номинальными значениями.Вот несколько снимков счетчика в действии.
Измерение конденсатора номиналом 1 нФ
Измерительный конденсатор номиналом 15 нФ
Измерение конденсатора номиналом 100 нФ
Измерительный конденсатор номиналом 10 мкФ
Конденсатор на 22 мкФ
Конденсатор более 100 мкФ
Сводка
Явление зарядки конденсатора через последовательный резистор обсуждалось и использовалось для создания очень простого измерителя емкости. Микроконтроллер PIC16F628A использовался для управления процессом зарядки / разрядки конденсатора.С помощью встроенного аналогового компаратора и модуля таймера микроконтроллер PIC вычислил время, необходимое конденсатору для создания на нем известного напряжения при зарядке через заданное последовательное сопротивление. Используя всю эту информацию, микроконтроллер вычислил емкость. Было обнаружено, что измеренный выходной сигнал достаточно соответствует номинальному значению при испытаниях с широким диапазоном значений емкости.
Примечание: Все конденсаторы, но особенно высоковольтные конденсаторы, должны быть сначала должным образом разряжены перед измерением , чтобы избежать любого повреждения цепи измерителя емкости.
Похожие сообщения
Принципиальная схема измерителя ESR конденсатора
с таймером 555
Конденсаторы
кажутся в порядке, пока вы не дойдете до точки, когда источник питания откажет или откажется работать оптимально. А если проблема в шуме, есть простое решение, просто добавьте больше конденсаторов. Но это не решает. Что могло быть не так?
Проблема возникает из-за наивного предположения, что конденсаторы (в значительной степени) являются «идеальными» устройствами, хотя на самом деле это не так.Эти нежелательные эффекты возникают из-за того, что называется внутренним сопротивлением или эквивалентным последовательным сопротивлением (ESR) . Конденсаторы имеют конечное внутреннее сопротивление из-за материалов, из которых они изготовлены. Мы подробно объяснили ESR и ESL в конденсаторах в предыдущей статье.
Различные типы конденсаторов имеют разные диапазоны ESR. Например, электролитические конденсаторы в целом имеют более высокое ESR, чем керамические конденсаторы. Для многих приложений становится важным измерение внутреннего сопротивления конденсаторов.И сегодня в этой статье мы построим ESR Meter и изучим , как измерить ESR конденсатора с помощью таймера 555 IC и транзисторов .
Измерение ESR конденсатора
Вначале Измерение ESR может показаться простой задачей.
Сопротивление можно легко определить, приложив постоянный ток и измерив падение напряжения на тестируемом устройстве.
Что, если подать постоянный ток на конденсатор? Напряжение линейно растет и стабилизируется на значении, определяемом напряжением питания, что (для наших целей) бесполезно.
На этом этапе пришло время вернуться к тому, что мы узнали в школе — «Конденсаторы блокируют постоянный ток и пропускают переменный ток»
Сделав несколько упрощающих выводов, мы понимаем, что конденсаторы в основном представляют собой короткое замыкание на высоких частотах, а емкостная часть «закорочена», и все напряжение падает на внутреннем сопротивлении.
Преимущество этого метода в том, что нам даже не нужно знать ток, если мы знаем внутреннее сопротивление используемого источника сигнала, потому что теперь ESR и внутреннее сопротивление (источника) образуют делитель напряжения, отношение сопротивлений — это отношение падений напряжения, и зная три, мы можем легко определить другое.
Осциллограф используется для измерения формы сигналов на входе и на конденсаторе.
Список деталей
Для осциллятора:
1. Таймер 555 — и CMOS, и биполярный будут работать нормально, но CMOS рекомендуется для высоких частот
2. Потенциометр 100K — используется для настройки частоты
3. Конденсатор 1 нФ — синхронизация
4. Керамический конденсатор 10 мкФ — развязка
Силовой каскад:
1.BC548 Транзистор биполярный NPN
2. BC558 Транзистор биполярный PNP
Небольшое замечание по поводу выбора транзисторов — любой малосигнальный транзистор с высоким коэффициентом усиления (300 и выше) и несколько большим током (50 мА +) подойдет.
Базовый резистор 560 Ом
4. Выходной резистор 47 Ом — это может быть любое значение от 10 до 100 Ом.
Принципиальная схема
Ниже приведена принципиальная схема тестера конденсаторов ESR –
.
Цепь измерителя ESR может быть разделена на две части: таймер 555 и выходной каскад.
1. Осциллятор 555:
Схема 555 представляет собой обычный нестабильный мультивибратор, излучающий прямоугольную волну с частотой в несколько сотен килогерц. На этой частоте почти все конденсаторы срабатывают как короткое замыкание. Поток 100K позволяет настраивать частоту для получения минимально возможного напряжения на конденсаторе.
2. Силовой каскад:
Это обходной путь к другой проблеме. Мы могли бы напрямую подключить конденсатор к выходу таймера 555, но тогда нам нужно было бы точно знать выходное сопротивление.
Для устранения этого используется двухтактный выходной каскад с последовательным резистором. Резистор обеспечивает выходное сопротивление.
Вот как выглядит все аппаратное обеспечение этой схемы ESR Meter :
Расчет ESR конденсатора
Из уравнения делителя напряжения получаем следующую формулу:
СОЭ = (V CAP • R ВЫХОД ) / (V ВЫХОД - V CAP )
Где ESR — внутреннее сопротивление конденсатора, В CAP — сигнал на конденсаторе (измеренный в узле CAP +), R OUTPUT — выходное сопротивление силового каскада (здесь 47 Ом) и В ВЫХОД — напряжение выходного сигнала, измеренное в точке A в цепи.
При использовании этой схемы рекомендуется установить пробник осциллографа на 1X, чтобы увеличить чувствительность и уменьшить полосу пропускания, чтобы избавиться от некоторых шумов и провести точные измерения.
Сначала измеряется размах напряжения в точке А перед импедансом и записывается. Затем крепится конденсатор. Увеличивайте масштаб, пока не увидите прямоугольную волну. Покрутите горшок до тех пор, пока форма волны не станет меньше.
В зависимости от типа конденсатора размах напряжения результирующей формы волны должен составлять порядка нескольких десятков или сотен милливольт.
Пример: измерение ESR для электролитического конденсатора емкостью 100 мкФ
Вот необработанная форма выходного сигнала силового каскада:
А вот и напряжение на конденсаторе. Обратите внимание на весь шум, наложенный на сигнал — будьте осторожны с измерениями.
Подставляя значения в формулу, мы получаем ESR 198 мОм.
ESR конденсатора
является важным параметром при проектировании силовых цепей, и здесь мы создали простое устройство для измерения ESR на основе таймера 555 .
DIY метр тестер комплект для емкости ESR резистор индуктивности NPN PNP Mosfet M168
Описание продукта
Характеристика:
Ключевая операция измерения, задержка автоматического отключения питания. Ток отключения составляет всего 20 нА, поддерживает работу от батареи.
Автоматическое обнаружение биполярных транзисторов типа PNP и NPN, N, P-канальных MOSFET, JFET FET, диодов, двух диодов, тиристоров, резисторов, конденсаторов, катушек индуктивности. Автоматические определения контактов обнаружения.
Измерение коэффициента усиления тока биполярного транзистора (B) и эмиттерного напряжения проводимости (Uf). Транзистор Дарлингтона можно идентифицировать по коэффициенту усиления высокого порогового напряжения и большого тока.
Может быть обнаружен внутри биполярного транзистора и защитных диодов MOSFET и отображен на экране.
Пороговое напряжение и измерение емкости затвора полевого МОП-транзистора.
Поддержите два измерительных резистора, также можно измерить потенциал. Если потенциометр отрегулирован до конца, тестер не сможет различить два конца штифта и середину.
Разрешение измерения сопротивления составляет 0,1 Ом, максимальное значение измерения 50 МОм.
Диапазон измерения емкости от 25 пФ до 100 мФ (10 мкФ). Разрешение до 1ПФ.
Может обнаруживать последовательное сопротивление конденсатора, эквивалентное более 2 мкФ, с разрешением 0,01 Ом. Эта особенность очень важна для характеристик конденсатора обнаружения.
Вы можете отображать символы двух диодов в правильном направлении, также показывает прямое падение напряжения.
Светодиод, обнаруживающий падение прямого напряжения на диоде выше нормы.Двойной светодиод определяется как двойные диоды. Одновременное обнаружение светодиода будет мигать.
Каждое испытание длится около двух секунд, только измерения большой емкости и индуктивности займут много времени.
Параметры:
Диапазон измерений:
Резистор: 0,5 Ом ~ 50 МОм
Конденсатор: 30 пФ ~ 100 мФ
Индуктивность: 0,01 МГц ~ 10 ч
Рабочее напряжение: можно использовать батарею 6FF22 9 В или 5,5 В ~ 12 В постоянного тока через разъем постоянного тока
Контроллер: ATmega328 (был запрограммировано)
Ток в режиме ожидания: 0.02uA
Рабочий ток: 25 мА
Примечание:
При измерении неполярной емкости 1 мкФ, обратите внимание на емкость короткого замыкания между двумя футами и отложите накопление электричества при измерении емкости, в противном случае возможно повреждение прибора, если измерительный прибор с электричеством легко показывает на дисплее CELL и может ‘ При обычном использовании, мы не несем ответственности за такие ситуации. Вы можете заменить чип, это важно, пожалуйста!
Пожалуйста, скачайте файл руководства по установке отсюда или из раздела, потому что его легко повредить, особенно для новичков.
В пакет включено:
Комплект для сборки тестера, 1 шт. (Без батареи, не припаян)
Более подробные фотографии:
Дополнительная информация
При заказе на Alexnld.com вы получите письмо с подтверждением. Как только ваш заказ будет отправлен, вам будет отправлено электронное письмо с информацией для отслеживания доставки вашего заказа. Вы можете выбрать предпочтительный способ доставки на странице информации о заказе во время оформления заказа.Alexnld.com предлагает 3 различных метода международной доставки: авиапочтой, зарегистрированной авиапочтой и услугой ускоренной доставки, следующие сроки доставки:
Зарегистрировано авиапочтой и авиапочтой Площадь Время США, Канада 7-20 рабочих дней Австралия, Новая Зеландия, Сингапур 7-20 рабочих дней Великобритания, Франция, Испания, Германия, Нидерланды, Япония, Бельгия, Дания, Финляндия, Ирландия, Норвегия, Португалия, Швеция, Швейцария 7-20 рабочих дней Италия, Бразилия, Россия 10-35 рабочих дней Другие страны 7-25 рабочих дней Ускоренная доставка 3-8 рабочих дней по всему миру
Мы принимаем оплату через PayPal , и кредитную карту.
Оплата через PayPal / кредитную карту —
ПРИМЕЧАНИЕ. Ваш заказ будет отправлен на ваш адрес PayPal. Убедитесь, что вы выбрали или ввели правильный адрес доставки.
1) Войдите в свою учетную запись или воспользуйтесь кредитной картой Express.
2) Введите данные своей карты, и заказ будет отправлен на ваш адрес PayPal. и нажмите «Отправить».
3) Ваш платеж будет обработан, и квитанция будет отправлена на ваш почтовый ящик.
Отказ от ответственности: это отзывы пользователей.Результаты могут отличаться от человека к человеку.
вещей с меткой «ESR Meter»
Чехол для тестера компонентов
автор: DanielBull
22 июля 2016 г.
273
367
26
MG328 DIY измеритель СОЭ
по yhol
15 ноя.2015
47
71
1
КОРПУС ДЛЯ СЧЕТЧИКА СОЭ GM328A
по operrr
17 июня 2018 г.
43
53
0
Кейс для тестера компонентов Тестер транзисторов Fish8840
Автор: Die_Bastelkammer
20 декабря 2014 г.
.
/ *
Проект: Измеритель емкости
Описание: CapMeter на основе постоянной времени RC
MCU: PIC16F28A
Осциллятор: HS, 4,0000 МГц внешний
Автор: Раджендра Бхатт (www.embedded-lab.com)
* /
// Подключения ЖК-модуля
сбит LCD_RS на RB2_bit;
сбит LCD_EN при RB3_bit;
сбит LCD_D4 на RB4_bit;
сбит LCD_D5 на RB5_bit;
сбит LCD_D6 на RB6_bit;
сбит LCD_D7 на RB7_bit;
sbit LCD_RS_Direction на TRISB2_bit;
sbit LCD_EN_Direction на TRISB3_bit;
sbit LCD_D4_Direction на TRISB4_bit;
sbit LCD_D5_Direction на TRISB5_bit;
sbit LCD_D6_Direction на TRISB6_bit;
sbit LCD_D7_Direction на TRISB7_bit;
сбит Va при RA0_bit;
sbit Switch at RB0_bit;
char message1 [] = "Емкость";
char message2 [] = "Счетчик";
беззнаковое int T_Value, Num;
беззнаковый короткий i, j, TimerValue, OverRange = 0;
char Capacitance [] = "00.000 мкФ ";
void interrupt () {
if (PIR1.TMR2IF) {
TMR2 = TimerValue;
Num ++;
если (Num & gt; 9999) OverRange = 1; // Диапазон 99,99 мкФ
PIR1.TMR2IF = 0; // Очистить флаг прерывания TMR0
}
}
void Display_Cap (unsigned int n) {
Емкость [0] = n / 10000 + 48;
Емкость [1] = (n / 1000)% 10 + 48;
Емкость [3] = (n / 100)% 10 + 48;
Емкость [4] = (n / 10)% 10 + 48;
Емкость [5] = (T_Value * 10) / 153 + 48;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «C =»);
Lcd_Out (1, 5, емкость);
}
void reset () {
TRISA = 0b00000100;
CMCON = 7;
RA1_bit = 0;
Delay_ms (2000);
TRISA = 0b00000110;
CMCON = 5;
}
пустая функция(){
char cap_size;
TRISB = 0b00000001;
ПОРТБ = 0;
TRISA = 0b00000110;
OPTION_REG.T0CS = 0;
INTCON.GIE = 1; // Включение глобального прерывания
INTCON.PEIE = 1; // Разрешить периферийное прерывание
// Настраиваем модуль Timer2
PIE1.TMR2IE = 1; // Разрешить прерывание от Timer2
T2CON = 0; // Предделитель 1: 1, и Таймер 2 изначально выключен
PIR1.TMR2IF = 0; // Очистить int бит
// Настроить модуль компаратора
CMCON = 5; // Независимый компаратор между RA1 (-) и RA2 (+)
Lcd_Init ();
Lcd_Cmd (_Lcd_Clear);
Lcd_Cmd (_LCD_CURSOR_OFF);
Lcd_Out (1, 1, сообщение1);
Lcd_Out (2, 1, сообщение2);
delay_ms (2000);
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «C =»);
Lcd_Out (1, 5, емкость);
Va = 0;
TimerValue = 108; // 104 + 4 дополнительных тактовых цикла задержки при переходе к ISR
в то время как (1) {
if (! Switch) {
Num = 0;
OverRange = 0;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «Тестирование.");
Lcd_Out (2, 1, «...»);
TMR2 = TimerValue; // Инициализируем Timer2
Va = 1; // подаем напряжение
T2CON.TMR2ON = 1; // запускаем таймер
while (CMCON.C2OUT) {
если (OverRange) перерыв;
}
T2CON.TMR2ON = 0; // остановка таймера
T_Value = TMR2 - TimerValue; // T_Value используется для улучшения разрешения
Va = 0;
// ---------------------------------
if (! OverRange) {
Display_Cap (число * 10);
}
else {
OverRange = 0;
Lcd_Cmd (_Lcd_Clear);
Lcd_Out (1, 1, «Вне диапазона!»);
}
сброс настроек();
}
}
} Автоматическое обнаружение биполярных транзисторов типа PNP и NPN, N, P-канальных MOSFET, JFET FET, диодов, двух диодов, тиристоров, резисторов, конденсаторов, катушек индуктивности. Автоматические определения контактов обнаружения.
Измерение коэффициента усиления тока биполярного транзистора (B) и эмиттерного напряжения проводимости (Uf). Транзистор Дарлингтона можно идентифицировать по коэффициенту усиления высокого порогового напряжения и большого тока.
Может быть обнаружен внутри биполярного транзистора и защитных диодов MOSFET и отображен на экране.
Пороговое напряжение и измерение емкости затвора полевого МОП-транзистора.
Поддержите два измерительных резистора, также можно измерить потенциал. Если потенциометр отрегулирован до конца, тестер не сможет различить два конца штифта и середину.
Разрешение измерения сопротивления составляет 0,1 Ом, максимальное значение измерения 50 МОм.
Диапазон измерения емкости от 25 пФ до 100 мФ (10 мкФ). Разрешение до 1ПФ.
Может обнаруживать последовательное сопротивление конденсатора, эквивалентное более 2 мкФ, с разрешением 0,01 Ом. Эта особенность очень важна для характеристик конденсатора обнаружения.
Вы можете отображать символы двух диодов в правильном направлении, также показывает прямое падение напряжения.
Светодиод, обнаруживающий падение прямого напряжения на диоде выше нормы.Двойной светодиод определяется как двойные диоды. Одновременное обнаружение светодиода будет мигать.
Каждое испытание длится около двух секунд, только измерения большой емкости и индуктивности займут много времени.
Резистор: 0,5 Ом ~ 50 МОм
Конденсатор: 30 пФ ~ 100 мФ
Индуктивность: 0,01 МГц ~ 10 ч
Рабочее напряжение: можно использовать батарею 6FF22 9 В или 5,5 В ~ 12 В постоянного тока через разъем постоянного тока
Контроллер: ATmega328 (был запрограммировано)
Ток в режиме ожидания: 0.02uA
Рабочий ток: 25 мА
Пожалуйста, скачайте файл руководства по установке отсюда или из раздела, потому что его легко повредить, особенно для новичков.
| Зарегистрировано авиапочтой и авиапочтой | Площадь | Время |
|---|---|---|
| США, Канада | 7-20 рабочих дней | |
| Австралия, Новая Зеландия, Сингапур | 7-20 рабочих дней | |
| Великобритания, Франция, Испания, Германия, Нидерланды, Япония, Бельгия, Дания, Финляндия, Ирландия, Норвегия, Португалия, Швеция, Швейцария | 7-20 рабочих дней | |
| Италия, Бразилия, Россия | 10-35 рабочих дней | |
| Другие страны | 7-25 рабочих дней | |
| Ускоренная доставка | 3-8 рабочих дней по всему миру | |
автор: DanielBull
22 июля 2016 г.
273
367
26
MG328 DIY измеритель СОЭ
по yhol
15 ноя.2015
47
71
1
КОРПУС ДЛЯ СЧЕТЧИКА СОЭ GM328A
по operrr
17 июня 2018 г.
43
53
0
Кейс для тестера компонентов Тестер транзисторов Fish8840
Автор: Die_Bastelkammer
20 декабря 2014 г.
.
ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание
ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.
Описание ESR метра для конденсаторов
Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.
Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.
Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.
Настройка устройства
После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:
1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.
К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.
Источник
Простые схемы измерителей ESR оксидных конденсаторов
В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы.
Кроме того, данным прибором можно «прозванивать» электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные изделия на предмет наличия короткозамкнутых витков.
Несколько лет назад в Интернете автор обнаружил схему несложного прибора, позволяющего выявлять неисправные электролитические конденсаторы.
Заинтересовавшись этим, автор решил собрать и испытать этот «измеритель ESR». Результат превзошел все ожидания: телевизор Toshiba, находившийся в ремонте несколько дней (не запускался БП), был отремонтирован буквально за 5 минут.
С помощью этого прибора были обнаружены два электролитических конденсатора с повышенным ESR, которые до этого были выпаяны из платы и проверены обычным тестером на «подергивание стрелки» Стрелка отклонялась, и исправность конденсаторов не вызывала сомнений. После замены конденсаторов телевизор нормально заработал.
Теория
Итак, обо всем по порядку.
Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности.
К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.
В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками.
Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, причем последний находится в самом конденсаторе.
В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается.
Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением 10. 20 Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения.).
Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до 3. 5 Ом) на работе импульсных блоков питания, выводя из строя более дорогостоящие транзисторы или микросхемы.
Принцип работы описываемых измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Из курса радиотехники известна формула:

Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (т.е. ESR) задают именно на этой частоте.
Следует отметить, что формула (1) справедлива для переменного тока синусоидальной формы, описываемые же измерители работают с генераторами прямоугольных импульсов. Но, как было замечено выше, нам нужно не точность измерений, а возможность различать конденсаторы с ESR, например, 0,5 и 5 Ом.
Схема простейшего измерителя ESR
Рассмотрим работу схемы простейшего измерителя ESR, показанную на рис.1. На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2) и буферный усилитель (элементы D1.3, D1.4). Частота генерации определяется элементами С1 и R1 и приблизительно равна 100 кГц.

Рис. 1. Схема простейшего измерителя ESR.
Прямоугольные импульсы через разделительный конденсатор С2 и резистор R2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде VD1 включен микроамперметр РА1, по шкале которого отсчитывают значение ESR.
Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению «бесконечность» измеряемого ESR.
Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению (помните, при С=10 мкФ, Хс=0,16 Ом на частоте 100 кГц) конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю.
При наличии же в измеряемом конденсаторе какого-пибо из описанных выше дефектов, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения «бесконечность».
Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению «бесконечность» находится стрелка.
Шкала прибора нелинейная и напоминает шкалу омметра обычного тестера. В качестве измерительной головки можно использовать любой микроамперметр на ток до 500 мкА, хорошо подходят головки от индикаторов уровня записи магнитофонов. Градуировать шкалу не обязательно, достаточно засечь, где будет находиться стрелка, подключая калибровочные резисторы.
Благодаря разделительному повышающему трансформатору напряжение на измерительных щупах прибора не превышает значения 0,05. 0,1 В, при котором еще не открываются переходы полупроводниковых приборов. Это дает возможность проверять конденсаторы, не выпаивая их из схемы.
Доработанная схема измерителя
Схема, показанная на рис. 1, вполне работоспособна, однако имеет один существенный недостаток. Нетрудно заметить, что если к схеме подключить неисправный конденсатор, имеющий пробой диэлектрика, стрелка прибора так же, как и в случае проверки исправного конденсатора, приблизится к нулевой отметке. Для устранения указанного недостатка в схему введен переключатель S1 (рис.2).

Рис. 2. Модернизированная схема измерителя ESR для оксидных конденсаторов.
В верхнем положении контактов переключателя (как показано на схеме) прибор работает как измеритель ESR, и стрелка измерительной головки отклоняется под воздействием выпрямленного напряжения
генератора. В нижнем же положении контактов переключателя S1 стрелка измерителя отклоняется под воздействием постоянного напряжения источника питания, а измеряемый конденсатор подключают параллельно головке.
Процедура измерения выглядит так: подключают щупы к измеряемому конденсатору и наблюдают за стрелкой. Допустим, стрелка приблизилась к нулю, по части ESR конденсатор исправен. Переключают S1 в нижнее положение.
При исправном конденсаторе стрелка измерительного прибора должна вернуться в положение «бесконечность», так как конденсаторы не проводят (вернее, не должны проводить) постоянный ток. Пробитый же конденсатор зашунтирует головку, и стрелка измерителя останется в нулевом положении. Отклонения стрелки на конечную отметку шкалы на постоянном токе (в нижнем положении S1) добиваются подбором резистора R3.
Для защиты измерительной головки от механических повреждений импульсом разрядного тока (при случайном подключении измерительных щупов к заряженному конденсатору) служат кремниевые диоды VD2, VD3. Заряженный конденсатор будет разряжаться через обмотку I трансформатора Т1.
Будьте внимательны, не подключайте щупы к заряженному конденсатору! Автор как-то подключил прибор к конденсатору на 220 мкФх400 В в схеме компьютерного монитора, только что отключенного от сети. Прибор выдержал, но щупы приварились к выводам конденсатора. Пришлось менять «цыганские» иголки, которые служили щупами.
Естественно, подключать щупы к измеряемому конденсатору нужно в верхнем положении переключателя S1, чтобы он разрядился через обмотку трансформатора, в противном случае можно сжечь головку и диоды! Чтобы не задумываться, в каком положении находится переключатель, в качестве S1 лучше применить кнопку (или переключатель типа П2К) без фиксации. Подключают щупы, измеряют ESR, конденсатор разрядился, затем нажимают кнопку и проверяют конденсатор на пробой.
Наличие переключателя S1 дает возможность «прозванивать» проводники печатной платы, позволяя выявлять обрывы, микротрещины или случайные замыкания между дорожками.
На переменном токе этого сделать нельзя, так как, например, из-за наличия в схеме блокировочного конденсатора прибор покажет замыкание между общим проводом и проводником питания.
Существуют и другие области применения прибора. С его помощью, благодаря наличию генератора импульсов, можно проверять исправность трактов РЧ и ПЧ радиоприемников и телевизоров, а также видеоусилители, формирователи импульсов и т.д.
Спектр гармоник сигнала прямоугольной формы генератора, работающего на частоте 100 кГц, простирается вплоть до сотен мегагерц. Телевизор реагирует на подключение щупов прибора даже к антенному входу ДМВ диапазона! В диапазоне МВ на экране телевизора отчетливо просматриваются горизонтальные полосы.
Третий вариант схемы измерителя ESR
Чтобы иметь возможность проверять тракты ЗЧ, в схему прибора необходимо ввести еще один переключатель, с помощью которого частота генератора импульсов понижается до 1 кГц.
Кроме того, измерения показали, что потребляемый прибором ток не превышает 3. 5 мА, и его лучше сделать малогабаритным переносным, чтобы иметь всегда под рукой. Питать такой вариант прибора можно от батареи типа «Крона» через маломощный 5-вольтовый стабилизатор.
Схема такого варианта прибора показана на рис.З. Переключателем S2 выбирают частоту генератора, а переключателем S3 включают питание прибора.

Рис. 3. Схема самодельного измерителя ESR с питанием от батареи.
Длительная работа с прибором позволила выявить еще один «скрытый резерв»: с помощью него можно проверять катушки индуктивности (обмотки трансформаторов) на наличие короткозамкнутых витков.
При этом прибор измеряет все то же реактивное сопротивление, только на этот раз индуктивное Х|_. Индуктивное сопротивление можно рассчитать по формуле:

Ели такую катушку подключить к нашему прибору, стрелка измерителя практически останется в положении «бесконечность», отклонение будет едва заметно. Наличие же в обмотке катушки короткозамкнутого витка (витков) приведет к резкому уменьшению индуктивного сопротивления, до единиц ом, и стрелка прибора в этом случае покажет какое-то малое сопротивление.
Индуктивность катушек, применяемых в радиотехнических устройствах, может находиться в очень широких пределах: от единиц микрогенри в ВЧ дросселях до десятков генри в силовых трансформаторах.
Поэтому проверка катушек с большой индуктивностью на частоте 100 кГц может вызвать затруднения. Чтобы проверять такие катушки (например, первичные обмотки маломощных силовых трансформаторов), частоту генератора нужно установить в 1 кГц (переключателем S2).
Детали
В качестве провода для первичной обмотки идеально подходит монтажный провод марки МГТФ-0,5 или одножильный провод в ПВХ-изоляции («кроссировка»).
Диод VD1 обязательно должен быть германиевым, например, типов Д9, ДЗ10, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5. 0,7 В), что приведет к сильной нелинейности шкалы прибора в области измерения малых сопротивлений. Германиевые же диоды начинают проводить ток при прямом напряжении 0,1. 0,2 В.
Печатные платы для прибора не разрабатывались. Все варианты прибора собирались на макетных печатных платах с шагом отверстий 2,5 мм (продаются на радиорынках) методом навесного монтажа.
Правильно собранный прибор начинает работать сразу, нужно лишь подобрать сопротивление резисторов, как было указано выше. Чтобы облегчить настройку, в качестве резисторов R2 и R3 можно использовать подстроечные резисторы.
Задающий генератор может быть собран и по другой схеме. В радиолюбительской литературе подобные схемы встречаются часто. Важно, чтобы частота сигнала генератора была около 100 кГц. Можно вообще обойтись без внутреннего генератора, используя уже имеющийся в распоряжении стационарный генератор и стрелочный авометр, а прибор оформить в виде приставки к ним.
Градуировка прибора
Градуируют прибор с помощью нескольких постоянных резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании.
Поэтому провода, идущие к щупам, должны быть по возможности короткими, сечением 0,75. 1 мм2. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом.
Затем подключают резисторы но 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, например, в качестве разделительных в УНЧ, но, скорее, не очень долго.
Работа с прибором
Автор не разделяет мнения, что электролитические конденсаторы с ESR более 1 Ом всегда нужно выбрасывать. Значение ESR новых исправных конденсаторов зависит от фирмы-производителя, типа, свойств применяемых при изготовлении материалов и др.
Как было отмечено выше, в особо ответственных узлах радиоаппаратуры, например в импульсных блоках питания, схемах развертки телевизоров, должны использоваться качественные конденсаторы с ESR не более 0,5. 1 Ом.
Для междукаскадных конденсаторов НЧ цепей эти требования могут быть не такими жесткими. Именно в УНЧ, собранном пару лет назад, благополучно работают упомянутые выше миниатюрные электролитические конденсаторы.
Для проверки возможности прибора обнаруживать короткозамкнутые витки проведите такой эксперимент: подключите прибор к исправному дросселю, например, ДМ-0,1 с индуктивностью 20. 100 мкГн на измерительной частоте 100 кГц.
Стрелка прибора слегка отклониться в сторону уменьшения измеряемого сопротивления. Затем намотайте поверх дросселя 2-3 витка монтажного провода со снятой изоляцией и скрутите вместе его концы.
Снова подключите прибор. На этот раз стрелка должна отклониться на значительно больший угол, показывая сопротивление несколько ом. Следует подчеркнуть, что функция проверки катушек индуктивности является дополнительной для данного прибора, и полученные результаты могут быть весьма приблизительными.
Измеритель ESR конденсаторов, четвертый вариант
В заключение автор приводит схему еще одного варианта прибора (рис.4) Предпосылки для создания этого «монстра» были следующие: наличие корпуса от неисправного пульта управления видеомагнитофона (с питанием от двух батареек типоразмера ААА, 3 В); наличие много лет лежащего без применения кварца на 119 кГц; наличие не реализованных много лет ИМС К561ЛА7.

Рис. 4. Принципиальная схема измерителя ESR для оксидных конденсаторов на микросхемах К176ЛА7.
Собирать мультивибратор на транзисторах не хотелось (слишком много дискретных элементов), поэтому была проведена проверка работоспособности микросхем К561ЛА7 при пониженном напряжении питания.
Оказалось, что схема прибора, собранная на этих ИМС, начинает работать уже при Un=2,5 В, что вполне приемлемо при питании от батареек (есть запас по питанию при разряде батареи). Из-за низкой нагрузочной способности элементов КМОП на выходе генератора в качестве буферного усилителя пришлось включить пару дополнительных ИМС, однако, на по мнению автора, это не сильно усложнило схему.
Достоинством схемы является низкое напряжение питания и малый потребляемый ток. Двух батареек питания хватит на много месяцев работы. А вместо кварцевого генератора можно собрать и использовать обычный RC-генератор, например, по схеме, показанной на рис.7.

Рис. 5. Внешний вид прибора.

Рис. 6. расположение деталей внутри корпуса.

Рис. 7. Схема RC-генератора.
Источник
Прибор для проверки конденсаторов: аналоговый ЭПС-метр
Электрические цепи, состоящие из проводников и полупроводников, включают в себя элементы, позволяющие накапливать заряды и отдавать их в нужный момент. Из-за этой особенности такие элементы изначально стали называть ёмкостью. Название пришло со времён, когда электричество считали жидкостью, а её накопитель – сосудом. Это не совсем удачное определение применяется до сих пор, хотя сам элемент называется конденсатор.

Типы конденсаторов и их внешний вид
Устройство и характеристики конденсатора
Конструкция конденсатора представляет собой две токопроводящие пластины, разделённые диэлектриком. Если приложить к пластинам напряжение от источника постоянного тока, то ток короткое время будет протекать через конденсатор, и он зарядится. На его пластинах (обкладках) накопится напряжение, равное напряжению источника. Длительность протекания тока и ёмкость его заряда зависят от площади обкладок и расстояния между ними. Ёмкость обозначается буквой С и измеряется в фарадах. Единица измерения в системе СИ – 1Ф (F). Обозначение принято в честь физика из Англии М. Фарадея.
Внимание! Ёмкость 1Ф – очень большая величина. Если рассматривать Землю как уединённый проводник в форме шара, то ёмкость составила бы около 700 мкФ. Поэтому электротехнические элементы измеряют в малых величинах: пикофарадах (пФ), нанофарадах (нФ), микрофарадах (мкФ).

Единицы измерения ёмкости
В цепях постоянного и переменного тока ёмкостной элемент ведёт себя по-разному. Если постоянный ток конденсатор через себя не пропускает, то переменному току, проходящему через него, оказывает определённое сопротивление. Это ещё одна важная характеристика конденсатора – ёмкостное сопротивление RC.
Сопротивление из разряда реактивных сопротивлений, рассчитывается по формуле:
Важно! Как видно из формулы, для токов разной частоты сопротивление одного и того же элемента меняется. Чем выше частота тока, тем ниже ёмкостное сопротивление конденсатора.
Различают конденсаторы постоянной и переменной ёмкости. Вторые имеют конструкцию, в результате которой изменяется расстояние между пластинами.
По типу исполнения конденсаторы постоянной ёмкости бывают:
Конструкция зависит от порядкового разряда ёмкости элемента, применяемого материала для пластин и диэлектрика.


ESR-метр
В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!
Для чего нужен ESR-метр
Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?
P – это мощность, Ватт
I – сила тока, Ампер
R – сопротивление, Ом
А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 
И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.
Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))
Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.
Схема и сборка
В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.
Для того, чтобы не травить лишний раз платку, я взял макетную плату и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.
С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.
Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.
Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).
После сборки макетная плата выглядит вот так:

Микросхемы по привычке всегда ставлю в панельки:
При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)
Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:
Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.
Прибор выполнен в виде приставки к любому цифровому мультиметру:
Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.
А вот и мой самопальный щуп:
Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.
Внутри корпуса платка выглядит примерно вот так:
Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.
Калибровка прибора
После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:
1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.
2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.
3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.
4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1
5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра
6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.
Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).
Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор
При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.
После того, как я сделал замеры, смотрю в другую табличку:
Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.
Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора
Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).
Поправки к схеме
1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.
2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.
Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:
Автор – Андрей Симаков


Обозначения на конденсаторах
От размеров элемента зависит количество данных, характеризующих его параметры. На корпус элемента наносятся обязательные электрические характеристики:
На очень мелких деталях может быть отмечена только ёмкость, по стандарту EIA. Если нарисованы только цифры и буква, то цифры обозначают ёмкость, буквы могут иметь расшифровку, применимую к типу конструкции. При наличии трёх цифр первые две – это ёмкость. Третья цифра, лежащая в пределах 0-6, – это множитель нуля (505 – 55*100000). Когда третья цифра 8, значение умножают на 0,01, если 9 – на 0,1.
К сведению. Буква, обозначающая ёмкость, может стоять как после числового значения, так перед ним и между цифрами. Например, Н15; 1Н5; 15Н. Таким образом, может обозначаться десятичный разряд числа – 0,15нФ; 1,5нФ; 15нФ.
Дополнительно могут быть обозначены значения:

Обозначения на корпусе электролитического конденсатора


Модификации для полевых конденсаторов
Устройства для полевых конденсаторов выделяются пониженной чувствительностью. Многие модели способны работать от прямолинейных контакторов. Устройства чаще всего используются переходного типа. Для того чтобы сделать модификацию своими руками, надо применять регулируемый транзистор. Фильтры устанавливаются в последовательном порядке. Для проверки измерителя применяются сначала конденсаторы малой емкости. При этом тестером фиксируется отрицательное сопротивление. При отклонении свыше 15 % необходимо проверить работоспособность транзистора. Выходное напряжение на нем не должно превышать 15 В.
Возможные неисправности конденсатора
Прибор для измерения емкости аккумулятора
Как и всякие элементы электрических схем, ёмкостные тоже выходят из строя, что влечёт за собой отказ в работе аппаратуры. Чаще отказываются работать электролитические конденсаторы. К их основным неисправностям можно отнести:
Неисправный элемент обнаружить не всегда просто, но возможно.
Как правильно использовать прибор
Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.
Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.
Вам это будет интересно Особенности клеммных зажимов

Мостовая схема
Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.
Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.
Измерительные приборы
Как и любую радиодеталь, ёмкостной элемент можно измерить. Для этого используются измерительные приборы: омметр или мультиметр. В ходе работы неисправный конденсатор можно определить на вид ещё до того, как выпаивать из платы.
Проверка конденсатора мультиметром
Выявить обрыв детали по снижению или полному отсутствию ёмкости можно мультиметром с опцией измерителя емкости электролитических конденсаторов. Если в результате проверки ёмкость отсутствует или понижена, элемент цепи не исправен.
Когда ёмкость детали больше 20 мкФ, то проверку поможет провести любой тестер в режиме омметра. Выставляется предел измерения «200 кОм». После выпаивания для снятия остаточного заряда выводы детали кратковременно закорачиваются между собой.
На выводах измеряется сопротивление, которое будет расти в зависимости от ёмкости. Чем она меньше, тем быстрее растёт величина сопротивления и достигает бесконечности. Бесконечность показывает полностью заряженный конденсатор. Если этого не происходит, а на дисплее сразу значение бесконечности, значит, у детали есть обрыв.
Важно! При значении ёмкости менее 20 мкФ такой способ не годится. Увеличение сопротивления до бесконечной величины в этом случае происходит быстро, его невозможно заметить.
Измерение фактических емкостных значений
Пробой между пластинами происходит в результате внутреннего короткого замыкания. Измерение емкости омметром при этом показывает ноль или некоторое сопротивление, которое не растёт. Даже если чуть увеличивается, то не достигает бесконечности.
При внешнем осмотре такие элементы заметны. У электролитических конденсаторов на верхней части корпуса имеются насечки крестом. При коротком замыкании пластин электролит внутри закипает и выделяет газ. Газ пытается выйти наружу и в этом месте раскрывает деталь. Верхушки неисправных элементов разорваны или вспучены.
Измерение прибором ESR
Для измерения емкости конденсатора для определения увеличения внутреннего сопротивления применяют особый прибор – ESR. При его использовании деталь выпаивать не обязательно.
При заряде или разряде неисправного конденсатора увеличение этого параметра указывает на снижение пикового тока через элемент. Картина такая, как будто в цепи с измеряемым элементом находится последовательно подключенный резистор и вносит задержку.
Это называется эквивалентное последовательное сопротивление – ЭПС. В английском языке – ESR.
Самодельный С – метр
Собрать простой измеритель емкости конденсаторов своими руками можно на интегральной микросхеме серии 155ЛА3.

Схема измерителя ёмкости на микросхемах серии 155ЛА3
На самодельную печатную плату устанавливается микросхема К155ЛА3. Плату предварительно отмывают от грязи и флюса, которые останутся после изготовления. Используемые детали:
К выводам присоединяется питание 5 В. На вывод 7 – минус, на вывод 14 – плюс. Выводы считаются от ключа, нанесённого на корпус. Источник питания – 5 В при токе 0.1 А.
Проводники, которые соединяют резисторы с переключателем, выполняются по возможности короче. Переменные резисторы после подбора заменяются постоянными эквивалентами. Настройку выполняют с измерительным прибором, который будет использоваться.
Регулировка сводится к установке максимальных границ каждого диапазона при помощи подбора резисторов 47 К.
Снижение напряжения пробоя конденсатора
Снижение максимально возможного напряжения – это так называемый обратимый пробой. Его не определить тестером. Но в схеме при работе при номинально допустимом значении напряжения элемент ведёт себя как пробитый. При этом он будет измеряться тестером как рабочий.
Определить можно постепенной подачей напряжения от отдельного источника питания до величины, указанной на корпусе. У неисправного конденсатора пробой будет происходить раньше этой величины. Электролит закипит, и корпус начнёт греться.
Внимание! Если на маркировке стоит значение «60V», то при плавной подаче напряжения на выводы от нуля до 50V элемент должен вести себя нормально. Пробоя быть не должно.
Измерение ёмкости конденсаторов с помощью измерительных приборов заводского изготовления или самодельных устройств позволяет производить ремонт и наладку электронных схем. Выявление неисправного конденсатора путём измерения его физических ёмкостных значений сохранит работоспособность электронного устройства и снизит время, затраченное на ремонт.
Принцип действия прибора для проверки конденсаторов
Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.
Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.
Вам это будет интересно Описание мультиметра DT9205A
При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Виды конденсаторов
Источник








































































































