Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь. Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.
Поиск данных по Вашему запросу:
Блок питания 5в 2а своими руками
Схемы, справочники, даташиты:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Завышенные 2А 5В
Блок питания своими руками
С помощью предлагаемой схемы блока питания для USB порта, можно подсоединить к компьютеру или ноутбуку внешнее USB-устройство, потребляющее большую мощность. Схема достаточно проста в изготовлении в домашних условиях, минимум дефицитных деталей и настройки. Стабильна в работе. Рано или поздно перед радиолюбителем возникает проблема изготовления универсального БП, который пригодился бы на все случаи жизни.
То есть имел достаточную мощность, надёжность и регулируемый в широких пределах, к тому же защищал нагрузку от чрезмерного потребления тока при испытаниях и не боялся коротких замыканий. Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1.
Конструкция его произвольная. Все зависит от вкуса и способностей радиолюбителя. Им можно подсоединить любую радиолюбительскую разработку с напряжением от 1 до 35 В и которой не боится больших токов нагрузки, поскольку введена токовая защита. Представляю вниманию радиолюбителей варианты схем и конструкций простых и не очень , удобных и надежных лабораторных блоков питания для домашней мастерской.
В просторах интернета, можно найти много схем лабораторных БП, поэтому данные схемы никак не претендует на шедевр, а призвана лишь помочь радиолюбителям, немного оснастить свою мастерскую или рабочее место. Также рассмотрены варианты переделки компьютерных ATX блоков питания в лабораторные. По структуре предлагаемое вниманию читателей разработка не новодел: выпрямитель, — конденсаторный фильтр — полумостовой преобразователь постоянного напряжения в переменное с понижающим трансформатором — выпрямители — фильтры — стабилизаторы.
Проще некуда, схема состоит из понижающего трансформатора, выпрямительного моста на Д, стабилизатора напряжения и трех транзисторов КТ Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками — сетевыми, импульсными и аккумуляторными батареями.
Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем. Рассмотрено несколько вариантов схем защиты от переполюсовки, в. Эта схема регулятора тока предельно проста и выполнена на доступной элементной базе и проста в управлении. У меня реализована такая идея. Перематываете трансформатор максимально большой мощности из имеющихся у вас так, чтобы сделать восемь вторичных обмоток.
Эту схему блока питания вы можете использовать для запитки цифровых устройств. Схема дополнена вольтметром для контроля и регулировки параметров. Cхемы умножителей напряжения позволяют значительно снизить вес и габариты финального устройства. Для понимания работы любого умножителя напряжения, рассмотрим принципы построения таких устройств.
Их можно условно поделить на симметричные и несимметричные. Его можно использовать для запитки фотоэлектронного умножителя, но от него можно запитать счетчик Гейгера и другие высоковольтные приборы. Роль регулирующего элемента в схеме выполняет мощный транзистор, причем конструкция на столько проста, что ее может повторить любой, даже неопытный радиолюбитель, затратив при этом минимум времени и средств. Данная радиолюбительская разработка моментально уменьшает питание до нуля на обоих плечах, и таким образом обладает триггерным эффектом.
Его можно использовать для любых радиотехнических исполнений с напругой 4, В, 9 В и током потребления до мА. Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения.
Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя. В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах.
Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах. Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП. Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке.
Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора. В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону.
Решить возникшую проблему очень легко. Рано или поздно у любого радиолюбителя возникнет надобность в мощном БП как для проверки различных электронных узлов и блоков, так и для подключения мощных радиолюбительских самоделок. Регулировать значения уровня напряжение питания можно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество такой настройки состоит в том, что выходной транзистор работает в режиме ключа и может быть только в двух состояниях — открытом или закрытом, что исключает его перегрев, а значит использование большого радиатора и как следствие снижает расходы на электроэнергию.
Аккумуляторную батарею любого мобильного компьютера, требуется периодически заряжать, а как это можно сделать находясь на отдыхе или на рыбалке. Очень даже просто, вам достаточно собрать и использовать обычный автомобильный адаптер для бортовой сети автомобиля, собрать который очень легко и просто.
Этот преобразователь с двухполярным питанием отлично подойдет для питания УНЧ средней мощности до ватт, но если поменять ключи на более мощные можно получить и более высокие значения. Для проверки и регулировки мощных блоков питания необходима низкоомная регулируемая нагрузка с допустимой мощностью рассеивания до сотни ватт.
Применение переменных сопротивлений не всегда реально, в основном из-за мощности допустимой рассеивания. Если у вас есть всего один мощный транзистор, то этого вполне достаточно, чтобы собрать простой блок питания с выходным напряжением 9В и с приемлемыми характеристиками, кроме того рассмотрим в рамках данной статьи конструкции и поинтересней. В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в вольт.
Хочу предложить простую схему самодельного блока питания для автомагнитолы. Она содержит всего два транзистора, но в ней имеется защита от короткого замыкания. Очень важным параметром самодельных блоков питания является внутреннее сопротивление источника питания, это такая количественная характеристика БП, которая описывает величину энергетических потерь при прохождении через блок питания нагрузочного тока.
В ряде проведения некоторых радиолюбительских экспериментов требуется контролировать основные параметры блоков питания для этого я собрал приставку цифрового амперметра и вольтметра для БП, но затем я решил добавить функций, выполняемых микроконтроллером и повесил на него функцию измерения температуры силовых транзисторов. Ведь вполне может появиться ситуация применения БП на пределе его технических параметров и тут появляется опасность теплового пробоя полупроводников радиокомпонентов.
Эти устройства стали обязательным атрибутом оргтехники, бытовой техники и многих радиолюбительских приборов. Это устройство защищает цепи питания электронной аппаратуры от высокочастотных и импульсных помех, возможных скачков напряжения. Иногда, для различных радиолюбительских экспериментов, просто необходим источник высокого напряжения. Для этих целей , как нельзя лучше подходят трансформаторы высокого напряжения. Об одном из них из извлеченного из старого телевизора мы поговорим в этой статье.
Для радиолюбительских самоделок на микроконтроллерах, модулей считывания SD-карт и некоторых других устройств требуется постоянное напряжение 3,3 вольта. Во многих современных радиолюбительских устройствах и разработках применяются регуляторы напряжения. Они необходимы для регулирования и стабилизирования напряжения в определенном интервале.
С помощью них входное напряжение понижают до необходимого. Многие интегральные микросхемы стабилизаторы напряжения, например, LM, LM и им аналогичные, имеют один большой минус.
Они не обладают большим выходным током. В этом случае схему подключения стабилизатора следует немного дополнить, поставив усилитель тока, например на мощном транзисторе. Трансформаторные питающие источники изменяют структуру напряжения за счет работы силового трансформатора, питающегося от сети переменного тока напряжением вольт, в котором осуществляется понижение амплитуды синусоидальной гармоники переменного напряжения, следующей далее на выпрямительное устройство, состоящее обычно из диодов, включенных по мостовой схеме.
Схемы блоков питания своими руками. Схема защиты блока питания или зарядного устройства от короткого замыкания. Адаптер автомобильный для подключения ноутбука или планшетника. Схема самодельного эквивалента нагрузки для проверки блоков питания. Схема блока питания и преобразователя напряжения на 3,3 вольта.
Блоки питания
Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Блок питания, о нём и пойдёт речь. Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения. Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ Схема повторялась много раз в настройке не нуждается.
В данной статье описан простой блок питания, который сможет повторить каждый желающий. Он собран на простой микросхеме LM, которая есть в .
Схема простого блок питания 5 В 1 А. Бп 5в 2а схема
Цифровой прибор для проверки и установки момента зажигания. Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями — трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается. В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А. В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А.
Простой БП своими руками
Вообще изначально планировался обзор другой модели, имеющей больший выходной ток и порт USB type-C, но пришла почему-то модель попроще. В моем случае модель с кабелем была бы более удобна, но что прислали, то и будем ковырять. Ключевые характеристики- Выходное напряжение — 5 Вольт Ток нагрузки — до 7. Поставляется в мягкой упаковке, при этом сам блок питания лежит в дополнительном мягком пакете. Внешне очень даже аккуратное, черный корпус с покрытием напоминающим СофтТач.
Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать?
Блоки питания, адаптеры
Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке. Мы будем рассматривать, каким образом можно адаптировать любой блок питания для светодиодной ленты на 12В. Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов.
Простой БП своими руками
Достался он без родного блока питания 5 вольт 2 ампера. Никогда ранее не приходилось сталкиваться с импульсными блоками питания, так что я обратился на один из радиолюбительских форумов. Там пользователь Starichok51, привел свою схему импульсного блока питания. После сборки она не работала как нужно, тогда часть ее переделал Serj, и дело сдвинулось с мертвой точки. Пользователи Gaff и vertigo принимали активное участие в обсуждении и настройке. В результате совместной работы этих пользователей получился новый мощный 5v 2a импульсный блок питания. Выражаю им свою глубокую благодарность.
Купить блок питания, купить импульсный блок питания, блок питания 12 вольт, купить Бескорпусный блок питания 5В 4 А. Б/У, с 2-х полюсным гнездом.
Войти Регистрация. Логин: Пароль Забыли? Популярные ICO.
Рассмотрим три простых варианта источников питания. Собрать их под силу даже начинающим радиолюбителям. В зависимости какое устройство, схему вам нужно запитать выбираем варианты БП и IC в них. Напряжение и ток на выходе этого источника питания соответствует характеристикам, установленной в нём IC см. Диоды типа Д, КД и т.
Пользователь интересуется товаром ZDN — Электрический паяльник 40W с керамическим жалом. Пользователь интересуется товаром MPmulti — Логический модуль таймер, термостат, часы, ацп, шим.
С помощью предлагаемой схемы блока питания для USB порта, можно подсоединить к компьютеру или ноутбуку внешнее USB-устройство, потребляющее большую мощность. Схема достаточно проста в изготовлении в домашних условиях, минимум дефицитных деталей и настройки. Стабильна в работе. Рано или поздно перед радиолюбителем возникает проблема изготовления универсального БП, который пригодился бы на все случаи жизни. То есть имел достаточную мощность, надёжность и регулируемый в широких пределах, к тому же защищал нагрузку от чрезмерного потребления тока при испытаниях и не боялся коротких замыканий. Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1. Конструкция его произвольная.
Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В , это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания , то питать готовую конструкцию конечно же нужно собственным БП 5В. В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:.
cxema.org — Три хороших блока питания на 5 вольт
5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.
Первый вариант – самый простой.
Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.
Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе
s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.
Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.
Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут ) точками указаны начала обмоток.
По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и
s9014.
Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.
Блок кстати выглядит так:
Второй вариант – более мощный.
Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.
Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.
Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.
Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.
Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.
Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.
Блок выглядит вот так:
Третий вариант – самый мощный.
Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.
В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.
Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:
На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.
Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.
Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.
Выглядит это всё примерно так:
А вот их относительные размеры:
Печатные платы
Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Дмитрий4202
Блок питания 5В 2А | Все своими руками
Опубликовал admin | Дата 5 июля, 2016
Как сделать блок питания своими руками, об этом пойдет речь в данной статье. Выходное стабилизированное напряжение блока – 5 вольт, номинальный ток нагрузки 2 ампера. Выход блока питания имеет защиту от короткого замыкания. Принципиальная схема устройства показана на рисунке 1.
В схеме применен унифицированный накальный трансформатор ТН-220-50. Данные на него можно посмотреть в таблице ниже.
ТН2-127/220-50, параметры
Данные трансформаторы имеют несколько модификаций. Поэтому подключение первичной обмотки у них отличается. Если трансформатор рассчитан только на напряжение 220 вольт, то это напряжение надо подключать к выводам 1 и 5 первичной обмотки, см. рисунок 2.
ТН2-127/220-50, схема включения
Если в своем обозначении трансформатор имеет 127, то его схема показана на рисунке 3. В этом случае надо будет еще поставить перемычку между выводами 2 и 4 первичной обмотки. Выходное переменное напряжение величиной 6,3 вольта поступает на выпрямительный мост, состоящий из четырех диодов КД202В, можно применить и готовый мост на ток не менее четырех ампер. Например, из импортных, это RS401, KBL005. Шести амперные мосты – KBU6A, RS601, BR605, KBPC6005 и др. Постоянное напряжение на конденсаторе фильтра будет примерно равно 6,6×1,41= 8,8 вольт. Основой стабилизатора служит микросхема К157ХП2, в состав которой входит источник опорного напряжения с устройством управления временем включения и выключения, усилитель сигнала рассогласования, регулирующий элемент с токовой тепловой защитой. Имеет все то, что нам надо! Правда в состав микросхемы входят еще два транзистора для генератора стирания и тока подмагничивания магнитофонов (микросхема то магнитофонная), но мы их использовать не будем. В качестве регулирующего транзистора в схеме используется мощный составной транзистор КТ829А (схема Дарлингтона). В крайнем случае, можно применить менее мощный транзистор КТ972А или соответствующие импортные, какие ни будь TIP120, 121,122, имеющий ток коллектора пять ампер.
И так, как уже говорилось выше, схема имеет вывод включения/выключения — 9. Что бы включить стабилизатор надо на этот вывод подать напряжение не ниже двух вольт. В первый момент после подачи напряжения на вход стабилизатора, это напряжение формируется цепочкой R1 и С2. За время протекания тока заряда этого конденсатора успевает включиться сам стабилизатор и часть его выходного напряжения через резистор обратной связи так же подается на вывод 9. Это удерживающее напряжение для поддержания стабилизатора в рабочем состоянии. Вывод 8 микросхемы, это выход напряжения источника опорного напряжения. У данной микросхемы это напряжение равно 1,3 вольта. С8 – конденсатор фильтра и одновременно конденсатор задержки включения стабилизатора. Таким образом, если у вас не будет включаться стабилизатор, то надо будет увеличить емкость конденсатора С2. Т.е. увеличить время заряда этого конденсатора, что бы успел включиться стабилизатор.
Чтобы выключить стабилизатор, надо нажать на кнопку SA3 – Стоп. Она зашунтирует вывод 9 DA1 на общий провод, открывающее напряжение пропадет, стабилизатор закроется. Прекрасная микросхема, напряжение выключенного стабилизатора в моем случае равно всего 7,6 мВ. То же самое произойдет, т.е. стабилизатор выключится, когда в его выходной цепи произойдет короткое замыкание. Так же пропадет открывающее напряжение. Через резистор R1 напряжение на вывод 9 поступать не будет, так как уже заряженный конденсатор для постоянного тока имеет очень большое сопротивление. В таком состоянии схема может находиться сколько угодно долго. Для повторного запуска стабилизатора необходимо или снять напряжение питания и снова подать, или нажать на кнопку пуск. В этом случае открывающее напряжение на вывод 9 поступит через резистор R1.
Подстроить выходное напряжение стабилизатора можно резистором R4. При токе нагрузки, равному 2 амперам и падении напряжения на регулирующем транзисторе 8,8-5=3,5 вольт, мощность, на нем выделяемая, будет равна P = U x I = 3,5 x 2 = 7 Вт. Отсюда следует, что транзистору необходим соответствующий теплоотвод, площадь которого можно прикинуть, посетив страницу со статьей «Расчет радиаторов». Я тут прикинул и получилось, примерно, 200см2.
На сайте есть другой блок питания с использованием этой же микросхемы, если интересно можете заглянуть в статью «Блок питания от2 до 30 вольт» или же сюда «Стабилизатор 5В». Пока все. Удачи. К.В.Ю.
Скачать статью «Блок питания 5В 2А своими руками»
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:11 202
5 Вольт 7.2 Ампера и 36 Ватт или небольшой рассказ о том, как выбрать правильный блок питания.
Несколько раз в комментариях, а потом и в личке меня просили об обзорах блоков питания на определенное напряжение. Я ответил, что постараюсь взять такие БП на обзор и протестировать.
Сегодня обзор блока питания на 5 Вольт.
Но просто сделать обзор было бы совсем скучно, поэтому в этот раз я попробую рассказать какие компоненты в блоке питания за что отвечают и на что надо обращать внимание при выборе блока питания.
В обзоре будет много букв и не очень много фотографий. И хоть я буду стараться писать на понятном языке, но могу сорваться и начать выражаться неприличными словами типа — синфазный, насыщение, утечка и т.п. Если вдруг что то непонятно, спрашивайте, объясню 🙂
Изначально я планировал заказать два блока питания, на разную мощность, 18 и 36 Ватт, но потом решил что 18 совсем неинтересно и заказал только 36 Ватт версию, ее и будем обозревать.
Начну обзор я как всегда с упаковки, так как по упаковке и встречают товар.
Пришел блок питания в коробочке из коричневого картона, на которой нанесена маркировка указывающая что перед нами блок питания на напряжение 5 Вольт и ток 7.2 Ампера.
Судя по маркировке, блоки питания в таком корпусе изготавливаются на разную мощность и разные напряжения. мне уже попадался как то 12 Вольт блок питания в таком корпусе.
Технические характеристики блока питания, заявленные на наклейке.
Входное напряжение 100-240 Вольт
Частота питающей сети — 50/60Гц.
Выходное напряжение — 5 Вольт
Выходной ток (максимальный) — 7.2 Ампера
Максимальная мощность — 36 Ватт. Написано что общая, что подразумевали под этим в данном случае, не совсем понятно.
Блок питания относительно небольшой, высота примерно соответствует высоте спичечного коробка и составляет 37мм.
Масса блока питания всего 133 грамма (вообще, чем больше этот параметр, тем лучше, хотя и косвенно).
Длина 85мм, ширина 58мм.
Вход, выход и заземление выведено на один клеммник.
Клеммник имеет крышку, полностью она не открывается, не хватает буквально немного, рядом расположен подстроечный резистор для корректировки выходного напряжения и светодиод, показывающий что блок питания включен.
Так как снаружи блока питания ничего интересного нет, разве что блестящий перфорированный кожух, защищающий от удара током и помех, то посмотрим что внутри и как это все работает.
Отвинчиваем пару винтов и добираемся до внутренностей.
Внешне претензий нет. Первым делом о культуре производства говорит монтаж. Если детали стоят ровно, отсутствуют пустые места на плате, а габаритные компоненты закреплены при помощи клея (ну или герметика), то чаще всего это признаки скорее хорошего БП, чем плохого.
Здесь установлено все аккуратно, но пустые места все таки присутствуют, хоть их и немного.
Внешний осмотр закончен, теперь можно перейти к более детальному описанию.
Для начала конструкция, в этом блоке питания применено пассивное охлаждение компонентов.
Часть тепла передается на алюминиевый корпус, выполняющий роль радиатора. Это довольно таки классический принцип охлаждения подобных блоков питания.
Кстати повысить эффективность охлаждения можно закрепив блок питания к чему то теплорассеивающему. Не рекомендуется крепить такой блок питания на теплоизолирующую поверхность, либо делать это только при условии уменьшения нагрузки.
Тепло на корпус передается от двух деталей, это высоковольтный транзистор и выходной диод, о них я расскажу позже. Между компонентами и корпусом был нанесена теплопроводящая паста, а сами компоненты прижаты стальной пластинкой.
А теперь рассмотрим отдельные части типичного блока питания и я попробую объяснить какие из них за что отвечают.
1. Клеммник, ну тут все понятно, отвечает за подсоединение входных и выходных проводов. при больших токах используют несколько одноименных клемм, например две плюсовые клеммы и две минусовые. Здесь на этом несколько сэкономили, так как выходной ток до 7.2 Ампера, а клемм всего по одной на полюс. Не скажу что это критично, но лучше когда нагрузку можно распределить.
2. Входной фильтр.
3. Диодный мост, выпрямляет сетевое напряжение, иногда устанавливается на радиатор (если выполнен в виде отдельного компонента), но в маломощных это не надо.
4. Конденсатор входного выпрямителя
5. Высоковольтный транзистор
6. Трансформатор
7. Выходной выпрямительный диод.
8. Выходной фильтр питания
9. Узел стабилизации и регулировки выходного напряжения.
Дальше я покажу и опишу вышеуказанные узлы более расширенно.
Входной фильтр питания. На самом деле больше необходим для фильтрации помех, которые проникают от блока питания в сеть. Если у вас фонит радиоприемник при включении импульсного блока питания, то сначала проверьте, а есть ли в нем такой фильтр.
В полном варианте включает в себя дроссель с двумя обмотками, два конденсатора х типа (на фото желтый), два конденсатора Y типа (обычно небольшие голубого цвета). Также в фильтр помех входит конденсатор, соединяющий первичную и вторичную стороны БП, и соединяющий минус выходных клемм с корпусом, но они больше влияют на гашение помех по выходу.
Из-за этих Y1 конденсаторов незаземленный блок питания обычно «кусается».
С дросселем и Х конденсаторами все просто, чем больше индуктивность и емкость, тем лучше, иногда даже применяют двухступенчатые фильтры (два дросселя).
В некоторых случаях фильтр упрощают, оставляя только дроссель, один конденсатор Х типа и один или два Y1 типа (между первичной и вторичной стороной БП и между минусом БП и корпусом). Это также вполне нормальное решение, но иногда вместо дросселя ставят «специально обученные перемычки», либо убирают фильтр совсем, вот так делать нельзя, помехи гарантированы.
В данном случае мы видим «эконом вариант», но вполне работоспособный, его можно было бы не дорабатывать, но производитель вместо правильных Y1 конденсаторов установил обычные высоковольтные (2.2нФ 2КВ). Это небезопасно, так как при пробое таких конденсаторов выход БП окажется соединенным со входом и может ударить током. пробить его может от всплеска напряжения вызванного например мощным разрядом молнии недалеко от линии электропередач.
Вывод, фильтр вполне жизнеспособен, но для безопасной эксплуатации лучше заменить конденсаторы голубого цвета обозначенные на плате как CY на правильные Y1 конденсаторы, либо заземлить корпус БП.
К сожалению подобным грешат наверное 90% недорогих БП.
Также, перед фильтром питания, в импульсных блоках питания устанавливается специальный терморезистор, который ограничивает бросок тока при включении. Здесь его нет, вернее его роль частично выполняет дроссель, это не очень хорошо, но в данном случае терпимо, при большой мощности БП (и соответственно конденсаторах большой емкости) он обязателен, а в особо тяжелых случаях даже стоит специальная схема, которая после включения его замыкает.
Работает он так: пока терморезистор холодный, его сопротивление велико и он ограничивает ток, после включения он нагревается и его сопротивление падает, и он не вносит больших потерь. Но если выключить блок питания, а затем включить не дождавшись остывания терморезистора, то бросок тока почти не будет ограничен.
После входного фильтра установлен диодный мост, который выпрямляет переменный ток, дальше уже постоянный ток поступает на электролитический конденсатор.
Диодный мост бывает также разным, либо из отдельных диодов, либо в виде отдельного компонента, иногда его даже устанавливают на радиатор. В данном случае применено 4 отдельных диода. Диоды самые классические, 1N4007, вполне достаточно для такого блока питания. В дешевых блоках питания применяют вообще один диод, это очень плохо, так как входной конденсатор работает неэффективно.
Входной электролитический конденсатор. Ну тут все просто, чем больше емкость (в разумных пределах), тем лучше.
Для блока питания рассчитанного только под 230 (± 10%) необходимо конденсатор емкостью равной мощности БП. Т.е. если блок питания на 90 Ватт, то конденсатор ставят 100мкФ.
Для блоков питания рассчитанных под расширенный диапазон 100-240 Вольт емкость этого конденсатора должна быть больше в 2-3 раза.
В данном случае применен конденсатор емкостью 47мкФ на напряжение 450 Вольт (это очень хорошо, обычно применяют конденсаторы на 400 Вольт). Для входного напряжения 230 Вольт его емкость более чем достаточна (при мощности блока питания в 36 Ватт), но для работы при напряжении 100-150 Вольт он мал.
Емкость конденсатора влияет на следующие характеристики.
1. Диапазон входного напряжения при котором блок питания нормально работает.
2. Срок жизни конденсатора, из-за больших пульсаций конденсатор меньшей емкости состарится раньше, чем больше емкость, тем дольше будет жить.
3. Увеличение емкости положительно влияет на КПД блока питания, хоть и слабо.
Высоковольтный транзистор. Ну тут особо сказать нечего.
Разве что тут не проходит правило — чем больше, тем лучше. Параметры транзистора должны быть оптимальны для примененной микросхемы ШИМ контроллера.
Может влиять максимальное напряжение, у этого транзистора оно равняется 600 Вольт, для данной схемы это вполне нормально, я встречал иногда на 800 Вольт, но это очень большая редкость.
Влияет еще вариант корпуса. Бывают в полностью пластмассовом корпусе, а бывают с металлической частью, тогда транзистор крепится к радиатору/корпусу через изолирующую прокладку. Вариант с полностью изолированным корпусом мне лично нравится больше.
Силовой трансформатор.
Если сильно упростить, то здесь действует правило — чем больше, тем лучше.
В данном БП применена схемотехника «обратноходового преобразователя», т.е. сначала открывается транзистор, «накачивает» трансформатор (на самом деле не совсем именно трансформатор, но это не важно), потом транзистор закрывается и энергия от трансформатора «перекачивается» в нагрузку через выходной диод.
Почему я написал насчет упрощения, дело в том, что размеры трансформатора зависят не только от мощности, а и от частоты работы блока питания. Чем частота выше, тем меньше можно применить трансформатор, но большинство ширпотребных блоков питания работают в диапазоне 60-130КГц, потому правило все таки действует.
Существуют более высокочастотные контроллеры, но высокая частота требует очень качественных материалов для трансформатора, потому цена такого БП будет гораздо выше.
Я встречал в дешевых АТХ блоках питания мощностью 250-300 Ватт трансформаторы размеров с пол спичечного коробка, но это была не работа на очень высокой частоте, а просто дикая экономия 🙁
Иногда спрашивают, а можно перестроить БП с 5 Вольт на 9, или с 19 на 12?
Чаще всего нельзя, так как трансформатор имеет определенное соотношение витков в первичной и вторичной обмотке, и перестроенный БП будет работать в не оптимальном режиме. или вообще не будет, так как у трансформатора есть еще одна обмотка, от которой питается микросхема ШИМ контроллера и напряжение на этой обмотке также зависит от напряжения на других обмотках.
В данном блоке питания трансформатор вполне соответствует заявленной мощности.
Выходной выпрямительный диод.
От этого диода довольно сильно зависит надежность работы блока питания, одно из правил, диод должен быть рассчитан на ток в 2.5-3 раза больше, чем максимальный выходной ток блока питания. В нашем случае это 7.2х3=21.6
В данном блоке питания применена диодная сборка, состоящая из двух диодов. Согласно документации диод рассчитан на 20 Ампер (2х10) и напряжение 100 Вольт.
По току соответствует необходимым параметрам, а по напряжению значительно превышает требуемые.
Обычно для БП 5 Вольт достаточно чтобы диод был рассчитан на 45-60, для БП 12 Вольт на 100 Вольт, для 24 Вольта надо уже 150 Вольт.
Но на самом деле, слишком хорошо это тоже плохо. Объясню почему.
Диоды Шоттки вещь очень хорошая, имеют маленькое падение, быстрое переключение, что положительно сказывается на КПД блока питания и его нагреве.
Но в отличии от обычных диодов у них более выражена разница в зависимости падения на нем от максимального напряжения, на которое рассчитан диод. Т.е. диод на 45 Вольт запросто имеет падение в 1.5 раза меньше чем диод на 100 Вольт. Т.е в данном БП лучше смотрелся бы диод на 30-40 Ампер и 60 Вольт, КПД был бы выше, а цена практически той же.
Т.е. по факту в этом БП применен хороший диод с большим запасом по напряжению, это надежно, думаю что если и сгорит он, то одним из последних, но он просто не совсем оптимален.
Выходной фильтр и узел стабилизации.
Для начала здесь также существуют свои правила, например суммарная емкость конденсаторов желательна из расчете 1000мкФ на каждый 1 Ампер выходного тока, но на самом деле БП вполне нормально работает и при в 2 раза уменьшенной емкости. Не менее важно максимальное напряжение на которое рассчитаны конденсаторы и их тип.
Выходное напряжение обычно желательно:
Для 5 вольт БП — 16, в крайнем случае 10 Вольт, ни в коем случае не 6.3
Для 12 Вольт — 25, в крайнем случае 16.
Для 24 Вольта, 35, ни в коем случае не 25.
Конденсаторы должны быть с низким внутренним сопротивлением (LowESR) и рассчитаны на 105 градусов, тогда будет работать долго.
В этом БП конденсаторы имеют емкость 1000мкФ, что дает в сумме 2000мкФ, исходя из этого максимальный длительный ток не желателен выше 4-5 Ампер. кратковременно можно снимать и больше, но сократится срок службы конденсаторов.
Кстати в этом блоке питания есть место для установки нормальных конденсаторов с диаметром 10мм, хотя сейчас установлены небольшие, диаметром 7мм.
Выходной дроссель, ну тут точно, чем больше, тем лучше. но следует учитывать, что важен не только размер, а и ток, на который рассчитан дроссель. Если дроссель намотан тонким проводом, то он будет греться. А если феррит, на котором намотан дроссель, перегревается, то его характеристики резко ухудшаются (при превышении определенной температуры). примерно на таком принципе работают индукционные паяльники, то там зло обратили во благо, но это уже тему другого обзора.
Здесь применен не очень мощный дроссель, позже при тестах мы к нему еще вернемся.
Схема стабилизации выходного напряжения. О ней я напишу чуть позже, так как она расположена снизу печатной платы, сверху расположен только подстроечный резистор для точной установки выходного напряжения и светодиод, показывающий что блок питания включен и работает (иногда это не одно и то же :).
Постепенно мы дошли до более «тонкой» электроники. В данном БП основная часть компонентов расположена снизу, со стороны дорожек из-за того, что применены безвыводные (SMD) компоненты. В блоке питания могут быть применены и обычные детали, особого значения то не имеет, потому по большому счету на это не стоит особо обращать внимания.
А вот на монтаж платы внимание обращать стоит. Плата должна быть изготовлена качественно, выводы припаяны и обкушены. а не торчать в разные стороны как попало. Желательно чтобы флюс был смыт, как минимум основная его часть.
К данному БП особых претензий нет, вполне заслуженные 4 балла. Не скажу что идеально, скорее нормально.
Я вообще имею привычку покрывать плату лаком после монтажа и промывки, но такое встречается только у брендов верхнего уровня и то чаще в промышленных устройствах.
Немного расстроило отсутствие защитного прореза под оптроном, разделяющим высоковольтную часть и низковольтную. Желательно чтобы были прорезы между близким расположением проводников разных сторон блока питания, это повышает безопасность.
По печатной плате я начертил принципиальную схему. По большому счету я взял схему одного из обозреваемых ранее БП и внес необходимые дополнения и коррективы так как большинство таких блоков питания построено по похожей (если не сказать одинаковой) схемотехнике.
Первичная сторона блока питания поближе.
Отчетливо виден ШИМ контроллер со своей «обвязкой», шунт из нескольких SMD резисторов, а также резисторы, которые входят в состав «снаббера».
Кстати насчет «снаббера», это такой узел, который гасит паразитные выбросы возникающие на высоковольтной обмотке трансформатора, выполняется в нескольких вариациях:
1. Диод + резистор + конденсатор (так сделано в этом БП), на схеме это R3, C3, DB1.
2. Диод + супрессор (аналог очень мощного стабилитрона — ограничителя).
3. Комбинация 1 и 2 пунктов, обычно применяется на больших мощностях.
4. Китайское ноу хау, не ставить его вообще. Так делают обычно в самых дешевых БП, типа зарядных для электронных сигарет и сотовых телефонов, которые продаются по три копейки.
Данный узел влияет на надежность БП
Шунт из нескольких SMD резисторов под номерами 9, 19, 21, 22, 23 предназначен для измерения тока через высоковольтный транзистор, это необходимо для защиты блока питания от перегрузки и короткого замыкания. При выходе блока питания чаще всего уходит в другой мир вместе с высоковольтным транзистором, ШИМ контроллером и резистором, который стоит между транзистором и контролером.
Пайка аккуратная, мало того, компоненты приклеены, это уже одна из «примет» более-менее нормальных блоков питания.
В этом БП применен ШИМ контроллер неизвестного происхождения, но он полностью совпадает по выводам с контроллером 63D39, который в свою очередь является аналогом FAN6862.
В небольших блоках питания применяется три вида схемных решений
1. Микросхема ШИМ контроллера + высоковольтный полевой транзистор.
2. Микросхема мощного ШИМ контроллера у которой внутри находится и полевой транзистор и шунт (иногда вместо шунта измеряется падение на полевом транзисторе в открытом состоянии)
примеры — TOP Powerintegrations, Viper и т.п.
3. Автогенератор, микросхем нет, иногда нет и защиты от превышения тока.
Первые два типа по сути аналогичны, третий гораздо хуже, если вы увидели небольшую микросхему, значит 99% у вас первый тип БП. Если на плате есть высоковольтный транзистор и рядом с ним еще 1-2 транзистора, но меньших размеров, то это на 99% автогенератор.
Здесь применено правильное решение, замечаний нет.
Вторичная сторона, отвечает за выпрямление и стабилизацию выходного напряжения.
Некоторые люди заблуждаются, считая что за стабильность выходного напряжения отвечает первичная сторона (хотя есть и такие варианты БП). За точность стабилизации выходного напряжения отвечает именно вторичная сторона, так как она контролирует поведение первичной.
Отвечает за стабилизацию небольшая микросхемка под названием TL431, на этом фото она в очень маленьком корпусе с тремя выводами под названием V3. Эта микросхема — управляемый стабилитрон, при подаче напряжения с выхода блока питания на эту микросхему она управляет включением оптрона (на фото сверху платы, он между трансформатором и транзистором), который передает команду на ШИМ контроллер и он уже управляет мощностью БП, подстраивая ее так, чтобы на выходе было стабильное напряжение.
Напряжение на микросхему подается через делитель, иногда через просто два резистора, а иногда еще добавлен подстроечный резистор, при помощи которого можно изменить выходное напряжение в небольших пределах.
Существует еще одно заблуждение, что при выходе блока питания из строя, обычно страдает и то, что подключено. Скажу так, такое возможно, теоретически, но реально бывает ОЧЕНЬ редко. Также при выходе БП из строя вторичная сторона страдает реже всего, чаще всего все неприятности происходят на первичной (высоковольтной) стороне.
Иногда некоторые производители не делают стабилизацию выходного напряжения при помощи специальной микросхемы и оптрона, но это не очень хорошо. Мало того, у меня даже есть обзор блока питания, где есть оптрон, но он никуда не подключен.
Бывает даже влияет то, как разведены дорожки через которые измеряется выходное напряжение, это критично, особенно при больших токах.
В общем если есть оптрон и маленькая трехногая микросхема недалеко от выхода БП, то данный БП скорее всего с правильной стабилизацией.
Для большего понимания, что такое первичная (она же «горячая») сторона и вторичная (она же «холодная») я разделил на схеме стороны двумя цветами, черным цветом обозначены компоненты, которые относятся к двум сторонам одновременно.
Для начала первое включение (надо же было его когда нибудь включить). все заработало и ничего не сгорело :).
При включении БП показал напряжение на выходе равное 5,12 Вольта.
Проверяем диапазон регулировки, он составляет 4.98-5.19 Вольта, вполне нормально.
После этого выставляем на выходе заявленные 5 Вольт.
Для проверки блока питания я использую уже известный моим читателям «стенд», состоящий из:
Электронной нагрузки
Мультиметра
Осциллографа
Бесконтактного термометра.
Ручки и листика бумаги
Как и в прошлые разы я провожу ступенчатые тесты по 20 минут каждый, поднимая ток нагрузки после успешного прохождения теста. Щуп осциллографа стоит в положении 1:1.
Первый тест проводим без нагрузки, напряжение 5 Вольт, пульсации почти отсутствуют.
2. Нагрузка 2 Ампера, напряжение 5 Вольт, пульсации на уровне 30-40мВ, отлично.
1. Нагрузка 4 Ампера, напряжение 5 Вольт, пульсации около 40мВ, отлично.
2. Нагрузка 6 Ампер, напряжение чуть просело до 4.99 Вольта, пульсации практически неизменны и составляют около 40мВ, отлично.
1. Ток нагрузки 7.2 ампера, напряжение 4.99 Вольта, а вот пульсации очень выросли. Это плохо.
Рост пульсаций обусловлен не только током нагрузки, а скорее нагревом дросселя (вернее его перегревом). Выше я писал, что сердечник дросселя (и трансформатора) меняет свои характеристики при нагреве выше определенной температуры. В данном случае дроссель начинает работать как просто кусок проволоки почти ничего не фильтруя. Если так перегреется трансформатор, то это закончится походом за другим БП. Именно из измерения температур я делаю выводы от том, в каком режиме работает БП и какая его максимальная мощность.
Дроссель в этом БП намотан тонким проводом, потому он имеет большое сопротивление и сильно греется.
Ради эксперимента я охладил дроссель и измерил пульсации под нагрузкой еще раз. на всякий случай я сделал фото экрана осциллографа » в режиме реального времени», а не в режиме удержания показаний.
2. Тока нагрузки 7.2 Ампера, дроссель охлажден до 88 градусов (правда я невольно немного охладил и весь БП, но в основном охлаждал дроссель), пульсации составляют максимум 50мВ.
Согласно результатам тестирования, была составлена небольшая табличка температур основных элементов данного блока питания.
Немного о температурах.
Пускай вас не пугают температуры под 100 градусов у транзисторов и диодов, при таких температурах они себя вполне нормально чувствуют.
Гораздо более критична температура трансформатора и дросселя, а также электролитических конденсаторов. В данном БП после 1час 40 минут тестирования (последняя колонка + 20 минут под максимальным током) выходные конденсаторы разогрелись до 104.2 градуса, это очень плохо, но судя по температуре дросселя в 142 градуса я думаю что основной «вклад» в этот результат дал именно он и если его заменить, то температура конденсаторов значительно снизится.
Вообще диоды и транзисторы нормально могут работать и при 130-140 градусов, но я считаю это большой температурой. Раньше в наших справочниках писали — запрещается эксплуатация компонентов при превышении более чем одного из параметров, я стараюсь не превышать вообще никакие параметры.
В данном БП самым греющимся компонентом является выходной дроссель, температуры остальных компонентов даже под максимальным током и после длительного прогрева находятся на безопасном уровне, я был даже удивлен что диод так мало нагрелся.
При измерении температур измерялась температура именно компонента, а не радиатора, на котором он установлен, это дает более точное понимание процесса.
Резюме.
Плюсы
БП отлично держит выходное напряжение, пока это самый лучший результат среди протестированных мною БП.
Уровень пульсаций можно было бы считать очень хорошим, если бы не перегрев дросселя на максимальном токе и последующий рост пульсаций.
Общий нагрев БП находится в пределах допустимого.
Неплохое общее качество изготовления БП.
Входной конденсатор на 450 Вольт
Минусы
Дроссель «несоразмерен» выходному току БП, перегрев.
Выходные конденсаторы установлены заниженной емкости.
Применены не правильные Y, а обычные высоковольтные.
Мое мнение. Данный блок питания можно вполне безопасно эксплуатировать при токе нагрузки до 5-6 Ампер, но если заменить выходной дроссель и конденсаторы, то можно спокойно длительно работать и при токе 7 Ампер. При тесте я кратковременно нагружал его током 7.5 Ампер, работал абсолютно без проблем. т.е. запас по мощности у этого БП есть.
Очень жаль, что опять сэкономили на конденсаторах, соединяющих первичную и вторичную стороны БП и поставили обычные высоковольтные, но судя по моей практике разбора недорогих БП, так делается очень часто 🙁
Очень обрадовала точность стабилизации выходного напряжения, при изменении тока нагрузки от холостого хода до 7.5 ампер выходное напряжение снизилось всего на 10мВ, это просто отлично, честно, я не ожидал.
В общем такой себе БП-конструктор с хорошим потенциалом, но буквально «просящий» доработки.
На этом пока все. Надеюсь что немного помог тем, кто испытывает затруднения при выборе блоков питания. Частично обзор является ответом на многие вопросы, которые мне задают в личке и в комментариях, но в планах продолжение (скорее дополнение) данного обзора-объяснения, но уже с другим блоком питания, заметно мощнее. Второй блок питания также заказан для обзора по просьбе читателей и я надеюсь, что он уже где то на подходе ко мне.
Как всегда жду вопросов и предложений в комментариях 🙂
И все же, что должно быть в нормальном БП
А если кратко по пунктам, то:
Клеммник, при большом токе лучше когда выходных клемм больше одной пары.
Терморезистор (покажу в другом обзоре), в маломощном БП желателен, в мощном обязателен.
Входной дроссель, обязателен если не хотите помех на радиоприемники. да и просто в сеть.
Входной электролитический конденсатор, минимум 400 Вольт, если 450, то вообще отлично, емкость минимум равняется мощности БП в Ваттах.
Высоковольтный транзистор, тут все проще, меньше чем на 600 Вольт еще не встречал (в с такой схемотехникой).
Трансформатор, если грубо, то чем больше, тем лучше. при работе проверить нагрев, если греется более 95-100 градусов — плохо.
Выходной диод, данные есть в тексте, ток не менее 2.5-3 раза от выходного, напряжение не менее 100 Вольт для 12 Вольт БП и не менее 45-60 для 5 Вольт БП
Выходные конденсаторы — Емкость чем больше (но в разумных пределах), тем лучше, но не менее чем 470мкФ на 1 Ампер, лучше 1000мкФ на 1 Ампер. Конденсаторы должны быть LowESR 105 градусов и напряжение не менее 10 Вольт для 5В БП и 25В для 12В БП.
Выходной дроссель, чем больше. тем лучше. Но с максимальным током, соответствующим выходному току БП.
Наличие регулировки выходного напряжения, необязательно, но приветствуется.
Обязательно наличие стабилизации на вторичной стороне.
Обязательно наличие ШИМ контроллера, а не транзисторной схемы.
Все элементы должны быть хорошо прижаты к радиатору/корпусу.
Предохранитель ДОЛЖЕН БЫТЬ.
Обязательно наличие правильных конденсаторов Y типа между сторонами БП (присутствие надписи Y1 на конденсаторе)
Общая аккуратность сборки говорит о контроле со стороны производителя, если БП изначально собран «криво», то от него уже тяжело ждать хороших результатов.
Именно по этим критериям я оцениваю качество блока питания
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
БЕСТРАНСФОРМАТОРНЫЙ БП НА 5В
Это достаточно простая схема бестрансформаторного блока питания. Устройство выполнена на доступных элементах и в предварительной наладке не нуждается. В качестве диодного выпрямителя использован готовый мост серии КЦ405В(Г), также можно использовать любые диоды с напряжением не менее 250 вольт. Электросхема показана на рисунке:
Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.
После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой.
Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех. Устройство работает очень стабильно, но имеет всего один недостаток — малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи. Печатная плата и схема — в архиве.
Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже:
Однако учтите, что из-за отсутствия сетевого трансформатора, есть риск удара током фазы, поэтому все токонесущие элементы БП и девайса, что к нему подключен, должны быть тщательно изолированны! Автор статьи — АКА (Артур).
Форум по источникам питания
Обсудить статью БЕСТРАНСФОРМАТОРНЫЙ БП НА 5В
Простой блок питания 5 В 1 А
Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.
В данной статье я постараюсь пошагово расписать построение трансформаторного блока питания на 5 вольт специально для начинающих радиолюбителей. Вообще написать статью о БП меня побудили предыдущие публикации:
Простая мигалка на светодиодах
Простейшая мигалка на светодиоде
Программируемый переключатель гирлянд
Светодиодная гирлянда на микроконтроллере
Переключатель ёлочной гирлянды на ШИМ
Во всех перечисленных схемах требуется блок питания 5 В как основной или дополнительный источник. Наш БП 5 В будет трансформаторным, а не импульсным. По моему скромному мнению трансформаторный блок питания собрать и настроить легче, возможно по стоимости и габаритам импульсный предпочтительней, но если у вас завалялся старенький и к тому, же тороидальный «транс» на 7 — 10 В, то как говорится сам бог велел.
Структурная схема блока питания на 5 В:
Каждый блок пронумерован А1-А6. На принципиальной схеме каждый блок будет выделен, так сказать для наглядности. Рассмотрим, что представляет из себя каждый блок.
Сетевой фильтр (А1).
Предназначен для подавления высоковольтных и высокочастотных сетевых помех. С высоковольтными помехами успешно справляется варистор. А высокочастотными помехами займется RC фильтр.
Варистор – это полупроводниковый элемент, характеризующийся сопротивлением. Работает следующим образом: в рабочем режиме сопротивление варистора достаточно велико, напряжение не превышает пороговое значение варистора, и ток через него не течет. Как только напряжение достигает «порога» — сопротивление варистора понижается практически до нескольких десятков Ом и ток начинает протекать через него. Кратковременные высоковольтные импульсы гасятся варистором, а более длительное перенапряжение, как правило, выводит его из строя, иногда даже с громким хлопком.
В нашей схеме блока питания 5 В будем использовать RC фильтр, он уступает по эффективности LC фильтру, но зато дешевле и для нашего маломощного БП вполне подойдет.
Раньше никто не «заморачивался» сетевым фильтром, а теперь, какую бы вы бытовую технику не разобрали, обязательно увидите варистор, RC или LC фильтры тоже встречаются, но реже. Вызвано это массовым использованием импульсных блоков питания, которые передают в сеть такую «кашу» помех, что не всякий потребитель выдержит, поэтому производители электротехники пытаются хоть как-то обезопасить свою продукцию. Одним словом не рекомендую убирать из схемы блока питания сетевой фильтр.
Трансформатор (А2).
В нашем БП 5 В трансформатор играет ключевую роль, именно он понижает (преобразует) сетевое питание 220 В в низковольтное. Трансформатор должен быть силовым, рассчитан на сетевую частоту 50 Гц, с первичной обмоткой на 220 В и одной вторичной обмоткой на 7 — 10 В. Номинальная мощность трансформатора 4 — 8 Вт. Конструкция (тороидальный, броневой) в принципе особой роли не играет, какой найдете.
Еще такой момент, на трансформаторе указывают действующее значение напряжения (Uд), которое можно проверить, измерив вольтметром. А на выходе после фильтра (блок А4), по сути после диодного моста и сглаживающего конденсатора, мы получим амплитудное значение (Uа). Зависимость между амплитудным и действующим напряжениями такая:
Uа = 1,41xUд
Т.е. если в блоке питания вторичная обмотка трансформатора выдает 7 — 10 В, то на фильтре-конденсаторе (А4) мы приблизительно получим 10 — 14 В. Забегая наперед скажу, что для нас это не опасно, т.к. стабилизатор напряжения (А5) работает до 40 В на входе. Теоретически, да и практически, мы можем взять трансформатор с большим напряжением и на выходе стабилизатора получить необходимые 5 В. Куда денется разница? Правильно – в тепло! А нам это не надо, мы строим рациональный блок питания 5 В.
Выпрямитель (А3).
Превращает переменное напряжение на входе в постоянное на выходе. Будем использовать двухполупериодный выпрямитель – диодный мост.
Фильтр (А4).
Предназначен для сглаживания напряжения после выпрямителя. Используется обычный электролитический конденсатор достаточно большой емкости. Чем больше емкость конденсатора, тем меньше пульсации. У конденсатора кроме емкости есть еще такой параметр как напряжение, будьте внимательны и берите конденсаторы с запасом. Мы условились, что в блоке питания на 5 В вторичная обмотка трансформатора (А2) будет на 7 — 10 В и с учетом повышения напряжения в 1,41 раз возьмем конденсатор не менее 25 В. В момент, когда конденсатор заряжается, протекающий через диодный мост ток увеличивается т.к. необходимо обеспечить и заряд и нагрузку. Обратное напряжение диода тоже велико – происходит суммирование входного и выходного напряжений. Поэтому диоды для выпрямителя нужно подбирать с запасом по параметрам.
Стабилизатор напряжения (А5).
Это микросхема, служит для стабилизации диапазона напряжений на входе в четко установленное значение на выходе. Логично, что входное напряжение должно быть больше выходного, как правило, не менее чем на 3 В. Максимальный порог обычно ограничен 30 — 40 В. Стабилизатор лучше брать в корпусе TO220 и установить на радиатор, по крайней мере, в нашем блоке питания на 5 В я рекомендую это сделать.
Индикатор (А6).
В повседневной жизни мы уже настолько привыкли, что любая техника нам весело подмигивает светодиодом, когда мы ее включаем, то я решил, что индикатор рабочего режима не помешает в БП 5 В. Он состоит из светодиода и токоограничивающего резистора. Светодиод красного или зеленого цвета свечения на напряжение 1,5 В или 3 В, только посчитайте правильно сопротивление резистора. Сопротивление токоограничивающего резистора рассчитывается по формуле:
R = (Uпит — Uсвет)/Iсвет, где
Uпит – напряжение источника питания;
Uсвет – прямое напряжение светодиода;
Iсвет – прямой ток светодиода.
Рекомендую воспользоваться отличным калькулятором для расчета токоограничивающего резистора.
Пора переходить от теории к практике. Вашему вниманию предлагается принципиальная схема блока питания 5 В:
Для наглядности на схеме БП выделены блоки согласно структурной схемы. Пройдемся по схеме.
Первым идет предохранитель FU1, не забывайте про него в своих конструкциях, это очень важный элемент. Нередко, жертвуя собой, он спасает всю схему. Предохранитель должен быть рассчитан на ток 0,15 А, можно взять и мощней, но до 0,5 А, это на тот крайний случай когда 0,15 А сгорает. Все зависит от качества трансформатора. Больше 0,5 А не ставьте ни в коем случае!
Выключатель SA1 любой подходящий, лучше конечно если у него будет две группы контактов как показано на схеме. Отлично подойдет на 250 В, 6 А. Ставить с подсветкой в блок питания не советую, у нас в качестве индикатора будет светодиод который стоит на выходе БП и в отличии от неонки в кнопке сигнализирует о работе всех предстоящих компонентов.
Далее по схеме блока питания 5 В идет варистор RU1. Можно любой, я поставил JVR-07N471K. Главное чтобы так называемое классификационное напряжение было 470 В, не меньше – будет греться, и не больше – будет пропускать перенапряжение.
Сопротивление резисторов R1 и R2 5 — 20 Ом, мощность до 2 Вт. Если при сборке блока питания эти резисторы у вас окажутся рядом – оденьте на них термоусадку или кембрик, таким образом, их нужно изолировать друг от друга, потому что собственная изоляция резисторов штука ненадежная. На предлагаемой ниже печатной плате эти резисторы разнесены, тем не менее, лишняя изоляция не повредит.
Конденсатор C1 неэлектролитический пленочный серии К73-17 номинальное напряжение 630 В, емкость 0,1 — 0,47 мкФ.
Про трансформатор Т1 для блока питания 5 В уже говорили, вкратце напомню – первичная обмотка 220 В, вторичная 7 — 10 В, мощность 4 — 8 Вт.
Диодный мост VD1 рекомендую брать готовый, конечно если есть желание можно спаять из диодов. При подключении смотрите маркировку на корпусе. Если все же решили собрать из диодов, напомню, что на корпусе диода полоской маркируется катод, как определить катод на схеме смотрите рисунок, красным отмечена буква «К» это он и есть. Что касается параметров, для нашего БП 5 В берем мост с запасом, я выбрал KBL01.
Фильтр блока питания, он же конденсатор электролитический C2 типа К50-35. Электролитические конденсаторы имеют полярность, на корпусе маркируется минус, в схеме указывается плюс, будьте внимательны, если перепутаете ба-бах обеспечен. Тоже произойдет, если напряжение питания превысит номинальное конденсатора. Емкость 2200 — 4700 мкФ, меньше нельзя из-за роста пульсаций, больше — нет смысла. Напряжение 25 В и выше. Не забывайте мы условились, что в собираемом БП вторичная обмотка на 10 В, не больше, учитывая повышение в 1,41 раз, получаем с запасом 25 В. Вообще, при подборе трансформатора умножайте примерно на 1,5 подаваемое на конденсатор напряжение (т.е. с учетом 1,41) – это будет запас на прочность.
Стабилизатор напряжения также важный компонент схемы блока питания на 5 В. Есть отечественные, есть импортные аналоги выбирать вам. Я остановился на L7805A, максимальное входное напряжение – 35 В, выходное – 5 В, выходной ток до 1 А, корпус TO220. Конденсатор C3 рекомендуется для предотвращения самовозбуждения стабилизаторов. Подойдет обычный керамический многослойный серии К10-17Б, емкость 0,1 — 4,7 мкФ.
Последний элемент блока питания 5 В – индикатор работы. Светодиод HL1 и токоограничивающий резистор R3. Светодиод АЛ307БМ, сопротивление резистора согласно расчетам 300 Ом, мощность 0,125 Вт. У светодиода, как и у диода, есть катод, и анод не перепутайте при подключении. Определить полярность поможет мультиметр в режиме омметра или в режиме проверки диодов, при правильном подключении светодиод загорится.
5 В блок питания собран на одностороннем фольгированном стеклотекстолите размерами 60х26 мм. Предохранитель FU1, выключатель SA1 и трансформатор Т1 располагаются отдельно. Светодиод HL1 по желанию, его можно вынести на корпус.
Печатная плата блока питания 5 В со стороны элементов выглядит так:
А со стороны выводов элементов выглядит следующим образом:
Предлагаю вам скачать печатную плату блока питания 5 В в формате .lay в конце этой статьи.
В наладке правильно собранный блок питания 5 В не нуждается.
Список файлов
bp_5v.lay
Печатная плата блока питания 5 В
- Загрузок: 1541
- Размер: 23 Kb
Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник
Вообще изначально данная статья писалась очень давно, более двух лет назад. Но в данном случае я решил, что информация из нее может быть полезна и использована на благо мастеров 3D печати.
Суть данной статьи в том, чтобы превратить обычный блок питания в маленький бесперебойник с выходом примерно 11-13.5 Вольт.
В качестве примера будет БП с мощностью 36 Ватт, но практически без доработок схема применима к более мощным БП с топологией Флайбек и с доработками к двухтактным БП.
Но сначала просто миниобзор самого БП, сорри за качество фото, снималось на паяльник.
На торце указаны технические характеристики.
Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.
Размеры относительно небольшие.
С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения.
После вскрытия моему взору предстала печатная плата данного блока питания.
На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.
Силовой транзистор 5N60D — только в корпусе ТО-220.
Выходной диод — stps20h200ct — аналогично в корпусе ТО-220.
Схема стабилизации и обратной связи сделана на TL431.
Обратная сторона платы.
Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.
Но удивила маркировка на плате (она есть и с верхней стороны).
SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?
Эксперименты покажут.
Первое включение, ничего не бахнуло, уже неплохо.
Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.
Ток около 2.5 Ампера.
Напряжение измерял после проводов к резисторам, потому немного просело.
Оставил так, пошел попить чайку и покурить, ждал что рванет.
Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не измерял, по ощущениям немного теплый.
Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.
Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.
Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.
Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.
К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.
Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.
Допилинг
Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.
В общем накидал небольшую добавочную платку к этому блоку питания.
Платка, схема и небольшое описание процесса.
Схема.
И страссированная по ней плата.
Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.
Перенес платку на текстолит, покрыл припоем.
Подобрал детали.
Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12.
Пояснения по схеме.
С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1-10 кОм.
Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.
В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичную обмотку, либо еще лучше — дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 кОм, я поставил 4.3 кОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.
После сборки платы встроил ее в блок питания.
На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).
Плату обмотал скотчем, и уложил на более-менее свободное место.
После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85.
Вот вид собранного и настроенного устройства.
Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева).
Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения.
Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше.
После этого подключил питание 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева).
В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.
Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.
Вы конечно спросите, при чем здесь 3D принтеры и этот мелкий блок питания.
Все просто, как я писал в самом начале, можно взять мощный блок питания, применить более мощные компоненты в плате которую я делал и получить бесперебойник, который не имеет такого понятия как ‘время переключения’, т.е. фактически ‘онлайн’. А так как печать идет очень долго, то это может быть весьма полезно в плане бесперебойности работы. Кроме того КПД такой системы заметно выше чем у традиционных УПСов.
Для применения с большими токами надо заменить на моей плате диод VD1 на любой Шоттки с током более 30 Ампер (например выпаянный из компьютерного БП) и установить его на радиатор, Реле на любое с током контактов более 20 Ампер и обмоткой с током не более 100мА (а лучше до 80). Кроме того возможно понадобится увеличение тока заряда, это делается путем уменьшения номинала резистора R1 до 0.6-1 Ом.
Есть и промышленные БП с такой функцией, по крайней мере я знаю пару таких производства Meanwell, но:
1. Они очень дорогие
2. Выпускаются мощностью 55 и 150 Ватт, что не так много.
Вроде все, если есть вопросы, буду рад обсудить.
3dtoday.ru
Как сделать мини бесперебойник для роутера
Если у вас дома отключили электричество, то это не значит, что во входящем сетевом электрическом или оптоволоконном кабеле пропал интернет. У большинства семей дома стоит центральный роутер, который раздает интернет на все мобильные устройства домашних. Когда отключают свет, то становится особо тоскливо и скучно. Чтобы интернет был всегда в работе, предлагаю собрать для него несложный источник бесперебойного питания, который обеспечит работу роутера в автономном режиме порядка трех часов.
Понадобится
Изготовление мини источника бесперебойного питания для роутера
Батареи 18650 было решено взять из вышедшего из строя аккумулятора ноутбука.
Разбираем корпус.
Проверяем чтобы напряжение каждой батареи не было ниже 2,7 В, иначе она не будет работать. Нужно всего два элемента.
Заряжаем аккумуляторы, чтобы быть уверенным в их полной работоспособности.
Берем пластиковый корпус. Вырезаем сбоку отверстия под гнездо подключения блока питания и выключатель.
Чтобы исключить случайное замыкание батарей, что очень опасно, подключение будет сделано через предохранители.
Изолируем термоусадкой все термоусадкой. Элементы скрепляем между собой изолентой.
Вырезаем окошко для вольтметра.
Вклеиваем его горячим клеем и им же изолируем контакты на его плате, чтобы не произошло случайного замыкания.
Контроллер зарядки приклеиваем на аккумуляторы при помощи двухстороннего скотча. Припаиваем провода к плате согласно схемы.
Схема бесперебойника на модулях
Собираем схему бесперебойника.
На выход припаиваем конденсатор, чтобы исключить микроброски и исключить передачу рабочей частоты преобразователя.
Переменным резистором, на повышающем преобразователе, настраиваем выходное напряжение 12 В для питания роутера.
Собираем ставим на зарядку.
Работа устройства:
Раньше роутер работал от своего блока 12 В. Его мы заменили на другой, 8,4-9 Вольтовый — это нужно для работы всего устройства.
Итак, при рабочей сети, блок питания преобразует сетевое напряжение в 8,4-9 В, далее оно подается на повышающий преобразователь и балансный контроллер заряда аккумуляторов. Повышающий преобразователь поднимает напряжение до 12 В и подает его на роутер. Роутер работает. Как только произойдет отключение тока в сети, контроллер заряда переключить свою работу с зарядки на потребление, и на выходе повышающего преобразователя появится напряжение от аккумуляторов 8, 4 В (если они максимально заряжены). И дальнейшая работа роутера будет производится от них.
По истечению времени батареи будут разряжаться и как их напряжение будет подходить к 2,7 Вольта, котроллер отключит элементы, исключив их полный разряд.
Итог работы таков:
При потреблении роутером тока в 1 Ампер, примерное время работы бесперебойника — 30 минут.
Если роутер будет потреблять 0,5 Ампера, то питания хватит на полтора часа.
Замеряем сколько потребляет наш роутер в реале.
Примерно четверть Ампера, а следовательно, источник обеспечит стабильную работу роутер на более чем 2,5 часа.
Такой мини бесперебойник можно использовать не только для роутера, но и для маршрутизатора, для станции проводного телефона, для питания съемного жесткого диска, и для других целей.
Смотрите видео
sdelaysam-svoimirukami.ru
Проектирование мощного ИБП двойного преобразования (on-line). Часть 1 / Habr
Пролог
Хотелось бы поприветствовать всех кто увлекается и занимается электроникой! Данная серия публикаций будет посвящена полному циклу проектирования мощного источника бесперебойного питания мощность 3,2 кВт и самое главное — с чистым синусом на выходе.
Немного о себе расскажу — работаю инженером-электронщиком на предприятии, занимающимся производством станков и линий с ЧПУ, а так же мощных импульсных устройств: ИБП, стабилизаторы напряжения, инверторы. Вместе с предприятием прошел путь от проектирования систем от 1 кВт и до 1135 кВт.
Мои публикации будут носить больше учебный характер с попытками донести до интересующихся основы силовых расчетов, трассировки плат и ВЧ цепей, программирование микроконтроллеров STM32, а так же ПЛИС от Altera. И конечно еще множество сложных, но интересных вещей. Пожалуй, начнем…
А зачем он вдруг нам понадобился этот чистый синус и ИБП вообще?
Данные устройства нужны для создания автономных систем как на производстве, так и в быту. Сам как обитатель частного дома сталкиваюсь с проблемами подачи электроэнергии. Применение ИБП позволяет обеспечить нормальное функционирования основных систем дома, такие как:
— система отопления;
— работа скважины и погружного насоса;
— резервирование домашнего сервера;
— обеспечение бесперебойной работы роутеров;
— банальное обеспечение освещения в доме.
Все, что выше — это проблемы, с которыми можем сталкиваться мы с вами. Они глобальны, но стоит ли вообще производить ИБП? Ведь пару часов без света можно и переждать!
От части это правильно, но я привык жить в цивилизованном мире. Тогда обратимся к производству, зачем там резервирование? Из своего опыта опишу несколько основных проблем:
— необходимость обеспечивать бесперебойную работу конвейерных линий;
— обеспечение автономности дата-центров, серверов компаний и прочих сетей от перебоев питания;
— защита дорогостоящего оборудования от повышенного и пониженного напряжения и коротких замыканий;
Вроде бы все проясняется! Осталось определиться: «а зачем именно чистый синус?»
Данный вопрос имеет место быть, ведь 80% современных устройств имеет встроенный импульсный блок питания, что позволяет питать их постоянным током с напряжением +310В. Осталось понять что же за оставшиеся 20%…
В основном это системы и устройства, где имеются трехфазные двигатели (асинхронные), а так же высокоточное оборудование и прочее. Если подумать, то в эту категорию попадет 90% оборудования на производстве + ко всему еще и такие бытовые устройства, как котельное оборудование, циркуляционные насосы в теплых полах и отопление, насос для скважин.
Получился достаточно серьезный повод заняться проектированием!
Что же вы получите после изучения цикла статей?
Томить не буду, а получите вы следующий девайс:
Рисунок 1 — Вид основной панели ИБП на 3200 Вт
Описание: на выходе вы получите именно такое устройство и никак иначе. Все сделано в ручную и к производству прибегал по минимуму. На нашем оборудование был лишь изготовлен корпус — стандартный под серверную стойку 2U и глубиной 600 мм.
На панели присутствует куллер охлаждения, работающий на всасывание воздуха. Так же им управляет «мозг» на основе STM32F103RBT6 с помощью ШИМ с обратной связью по температуре. То есть значение оборотов зависят от температуры радиаторов силовых ключей и от температуры трансформатора. Измерение температуры реализовано «по старинке» на DS18B20, общающемся по интерфейсу 1-Wire.
Рисунок 2 — Вид рабочей панели с полными параметрами работы устройства
Все данные о работе прибора выводятся на TFT панель 2,4″, работающую через интерфейс SPI через встроенный в дисплей контроллер ILI9341. Светодиодная шкала добавлена для более наглядного отображения режимов работа: «красный светодиод горит? Караул!»
Теперь посмотрим несколько с другого ракурса на устройство:
Рисунок 3 — Вид задней панели устройства
Описание: на задней панели все скромно и функционально: разъем для входного кабеля, 4 «розетки» для подключения нагрузки, предохранители на 25А, клемма подключения аккумуляторных батарей с предельным (испытанным мною) током в 110А (производитель заявил о 150А).
Характеристики по техническому заданию
Сначала несколько замечаний к общему функционалу. Первое, как и любой ИБП on-line типа, наше устройство должно выполнять функцию стабилизатора напряжения. Так поступают в топовой компании Schneider Electric и я решил перенять их опыт, чего греха таить. Теперь к характеристикам… Требуется получить:
— мощность номинальная: 3200 Вт
— диапазон входного напряжения: 85 — 265 В (такая цифра заявлена у Шнайдера)
— выходное напряжение: 230 В +- 3% (именно 230, а не 220. Стандарты нынче изменились)
— напряжение на DC шине: 48 В
— номинальный ток по сети 230В: 16 А
— номинальный ток по DC шине: 80 А
— пусковые токи: 650% от номинального
— перегрузочная способность: 150% в течение 30 минут, 200% в течение 12 минут
— время работы от АКБ: батареи внешние и время зависит от количества батарей
— возможность удаленного доступа к устройству
— наработка на отказ, не менее: 120 000 часов
Думаю с требованиями предъявляемыми к устройству все ясно, тогда приступаем к этапу определения концепции проектирования и выбору топологий.
Проектирования структурной схемы устройства
Пожалуй это
самый
важный этап проектирования. Любая ошибка выльется в огромную потери времени, ресурсов и денег, по этому советую отнестись к этой задаче крайне внимательно и без спешки.
Мысли
1) Необходимо выбрать методы коммутации цепей (переключение). Существует несколько методов/типов и у каждого свои плюсы и минусы. Рассмотрим типичные из них:
а) Механический — это способ коммутации цепей по средствам электромеханических устройств, чаще всего реле. Плюсы: простота. Минусы: низкая надежность, большое время переключения (порядка 0,2 секунды пока реле новое), возможность залипания реле, что вызовет процесс горение дуги между контактами. Думаю понятно почему это не наш метод? Мы же все таки ориентируемся на Шнайдер.
б) Электронный — это способ коммутации по средствам НЕ механических компонентов: диодов, симисторов, полевых транзисторов, тиристоров. Вариантов может быть много, самый адекватный на мой взгляд — диодный вентиль. Плюсы: простота, отсутствие механических подвижных элементов. Минусы: дополнительные потери тепла. В нашем случае при 80А и падение на диодах Шоттки 0.5В нам придется дополнительно рассеивать около 180 Вт, а таких диода минимум два. Потери в виде 10% К.П.Д. считаю кощунством, поэтому метод опять не наш.
в) Полный отказ от коммутации. Собственно, а зачем она нам? Слышал кучу возгласов против, но это обычно возмущаются диванные профессионалы некомпетентные инженеры или любители. Могу смело заявить, что по такой схеме у нас работает проект на одной АЭС, его мощность 750 кВт и там именно такая схема.
В чем собственно сущность — АКБ наши просто висят в буферной схеме на DC шине и постоянно находятся в процессе заряда-разряда. Многих это пугает, но вы попробуйте сами полежать месяц на диване, а потом удивитесь, что вам тяжело подниматься по лестнице. Так и с АКБ — их необходимо «тренировать» и поэтому буферная схема им полезна при условии очень быстрой защиты по току.
Плюсы: дешево, сердито, надежно, отсутствие самого понятия «время переключения» или «время перехода с питания от сети на батареи» и отсутствие дополнительных потерь. Минусы: придется использовать исключительно гелевые аккумуляторы свинцовые аккумуляторы с электролитом в состоянии геля. Это, например, АКБ от фирмы Delta серия GX. Не реклама это, но исторически сложилось, что использую именно их по причине банальной доступности и пригодного качества.
2) Необходимо выбрать схему преобразования: ВЧ vs НЧ
Спорить тут можно бесконечно и каждый гнет свою линию. Многие производственники называют преобразование на частотах 10-150 кГц ненадежным, но это обычно элементарный PR ход с попытками оправдать свою несостоятельность в производстве подобного оборудования. Я думаю если бы технология не была лучшим выбором, то ведущие мировые компании не перешли бы на нее и не занимались бы в течение последних 20 лет ее совершенствованием.
Из бонусов преобразования НЧ на частоте 50 Гц могу отметить простоту производства, дубовость схемы большую толерантность к кривым рукам неквалифицированным пользователям.
Из минусов… их много, но главный — просто огромнейшие габариты! Когда-то пытались по такой схеме сделать 1100 кВт, так вот там одной меди было 1,8 тонны! Думаю можете себе представить все масштабы.
Спор на тему выбора технологии развивать не буду, т.к. даже среди моих коллег он обычно превращался в драку с явным переходом на личности. Поэтому просто выберем технологию преобразования на высокой частоте (10-150 кГц).
Исходя из доводов описанных выше и еще десятка других, которые вылезут в ходе выполнения проекта получим такую схему:
Рисунок 4 — Блок-схема силовой части ИБП двойного преобразования
Немного объясню отображенные этапы:
1) Практически сразу после входа напряжение подается на PFC — он же корректор мощности. Он нужен в первую очередь для снижения потерь, поэтому он просто необходим. В китайских схемах и большинстве отечественных он вообще не предусмотрен, это снижает себестоимость, но качество прибора можно смело «делить на 2».
Подробно что это за параметр и модуль расскажет гугл или я в следующей части статьи. Могу сказать одно — готовьтесь к достаточно серьезному «матану» и вспоминайте неравенства Коши.
2) Далее идет первое преобразование — 85-255В переменного тока в 48 В постоянного тока. Сразу прошу обратить внимание на несколько моментов. Во-первых, диапазон входных напряжений очень широкий, это создаст проблему — если напряжение в 3 раза ниже номинального (85В например), то соответственно ток вырастит в 3 раза, поэтому данную особенность (закон Ома) надо держать в голове. Это вынудит нас дальше при расчетах трансформаторов и силовых IGBT ключей закладывать минимум трехкратный запас по току.
Во-вторых, 48В это примерная величина для понимания. Ибо напряжение на батареи в заряженном состоянии 14,2В, при соединение последовательно 4-х АКБ получим напряжение 56,8 В. Из этого следует, что на самом деле напряжение на DC шине будет около 57В — это сделано для того, чтобы приложенный к АКБ потенциал был выше собственного, тогда возникнет разность потенциалов и будет протекать ток. Ток «побежит» в сторону меньше потенциала, то есть на батареи. Как только потенциал в DC шине меньше чем на батареях (например, пропало напряжение в сети) они начинают отдавать энергию (это отсылка к методу коммутации и почему нету процесса переключения).
3) АКБ сидят на DC шине в буферной зоне. Почему именно 48В и зачем объединять батареи? Все просто! Ток при питании от 48 В — около 80 А, если запитывать от 12 В, то ток будет более 300А! Огромная величина — огромные потери. Да и батареи, даже гелевые, спасибо за такой режим работы не скажут и благополучно умрут через год, вместо 10 лет на которые они способны.
4) Еще один DC-DC преобразователь 48 -> 380 В. Принцип работы и схемотехника будут в другой части статьи, пока лишь объясню почему 380В, а не 310, которые получаются после выпрямления сети. 380 В необходимы нам, чтобы спокойно и без потерь нарезать синусоидальный сигнал отличной формы. Когда начнем разбирать данный процесс, поймете зачем такой запас.
5) LC-фильтр/контур или по-научному ФНЧ 4-го порядка. Необходим чтобы после нарезки синуса с помощью ШИМ отфильтровать все лишние гармоники, помехи, шумы и прочий мусор и получить на выходе наш заветный чистенький сигнал. Он рассчитан на 1 кГц, что при частоте модуляции в 75,8 кГц позволяет получить пульсации не более +- 3 В. Это попадает в наши требования по ТЗ и поэтому дополнительно увеличивать порядок фильтра, а следовательно его габариты, попросту не вижу.
Осталось упомянуть еще несколько модулей, которые я не изобразил на блок-схеме. Почему? Да попросту они не влияют на принципиальное понимание работы и структуры данного устройства, а некоторые являются отдельной «кастой». Что я забыл:
— модуль управления, по сути «мозги» всех измерений и индикация на STM32F100RBT6
— модуль формирования чистого синуса, это отдельная плата, но входит она в большой блок DC-AC
— модуль дежурного питания, который обеспечивает низковольтное питание (+15В, + 5В, +3,3В) на популярной TOP227 мощностью 70 Вт
— модуль аварийного питания, который преобразует 48В с АКБ во все те же +15, +5, +3,3В.
Эпилог
Да бы не перегружать читателя поток информации — я планирую разбить весь процесс проектирования и самостоятельного изготовления ИБП на не менее чем 10 частей. А как вы хотели? Это дело сложное и ответственное!
Я планирую по мимо того, что посвящу для каждого описанного выше модуля целую часть, еще и выделить одну статейку как пособие по выбору компонентов, поиску выгодных цен. Так же отдельно будет рассмотрено изготовление трансформаторов и дросселей, их расчетам и намотке. Все данные этапы будут сопровождаться подробным фото отчетом и виде.
Надеюсь вас заинтриговал, а возможно кому-то уже стало интересно, так что читаем дальше…
Расчет и изготовление «сердца» ИИП — импульсный трансформатор.
Часть 2
Часть 3
Часть 4.1
Часть 4.2
Часть 5
Часть 6
habr.com
РадиоКот :: ИБП за копейки!
РадиоКот >Лаборатория >Аналоговые устройства >
ИБП за копейки!
Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.
На следующий день поехал хоз-маг и купил пару подопытных. Одна така цацка стоит 40 грн.
Тот что сверху BUKO.
Снизу копия Ташибры, только имя сменилось.
Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.
Но доработка обоих блоков идентична!
Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение.
И если вы случайно коротнете выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск!
Рассмотрим схему.
Все блоки от 50 до 150 ватт идентичны, отличаются только мощностью деталей.
В чем состоит доработка?
1) Необходимо добавить электролит после сетевого диодного моста. Чем больше — тем лучше. Я поставил 100 мкф на 400 вольт.
2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запустится.
3) Перемотать трансформатор (при необходимости).
4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор.
В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!
Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем — лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светится. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!
Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.
На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт.
30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.
Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.
Тоесть таким образом мы можем намотать катушку на необходимое напряжение!
Частота блока питания с ОС по напряжению 30 кгц.
Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!
Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи.
Запомните — при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!
Ну и теперь пару фотографий готового БП для УНЧ.
Красным обозначено место закорачивания ОС по току.
Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил в коробку из аккумулятора. И сзади поставил кнопку для выключения.
Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы!
Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!!
Все вопросы в
Форум.
| Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
преобразователь 12 в 220 из ИБП
У многих пользователей ПК есть в наличии старые отработавшие свой срок ИБП. Частая их причина нетрудоспособности — это выход из строя аккумуляторов. Так как замена на новые батареи нерентабельна, а порой просто невозможна из-за отсутствия аналогов, эти устройства попросту валяются без дела или выбрасываются на помойку.
Но можно дать вторую жизнь ИБП, сделав из него очень полезное устройство — инвертор, преобразующий 12 в бортовой сети автомобиля в необходимое для некоторых приборов 220 в. Притом, что заводская версия инвертора обойдется в немалые деньги, а так вы сэкономите деньги, и сделаете из хлама нужную вещь.
Демонтаж аккумуляторов
Итак, первое, что нужно сделать — это удалить старые, потекшие батареи. Они достаточно просто демонтируются, сняв нижнюю крышку и отключив провода питания. Если остались следы потекшего электролита, чистим корпус от кристаллов окисления.
Такая операция обеспечит устранение дальнейшего вытекания кислоты, а также значительно облегчит вес аппарата.
Изменение схемы подключения
По конструкции бесперебойники отличаются, но принцип действия у них один и тот же — преобразовывать напряжение 12 в в 220 в. То есть в каждой модели присутствует плата с электронным преобразователем напряжения. Он-то нам и нужен. Но есть одно условие, он должен быть рабочим.
Так как приборы, которые будут подключаться к этому устройству имеют стандартную вилку на 220 в, необходимо на боковой или задней панели, установить обычную бытовую розетку для скрытой проводки. К ней-то и припаиваем провода выхода с преобразователя 220 в, которые ранее подходили к специальным трехрожковым вилкам на задней панели ИБП.
Далее необходимо сделать вход для 12 в. Для этого есть два варианта: припаять шнур с разъемом для прикуривателя или подпаять провода с крокодильчиками для подключения прямо на аккумулятор.
В первом и во втором случае, провода припаивают к тем, что шли на батарею ИБП. Очень важно соблюсти полярность подключения. Красный провод — это плюс, а черный — минус.
Как и в сети авто, так и в ИБП эти цвета должны совпадать. Лучше всего, конечно, проверить полярность мультиметром, чтобы наверняка.
Такая схема подключения предусматривает моментальную работу устройства при его подключении. Если вы хотите сделать включение через тумблер или автомат, то просто в проводе, идущем от АКБ автомобиля разрываем «плюс» и присоединяем один провод на вход, а другой на выход автомата, закрепленного на корпусе ИБП. Таким образом разрывается питание инвертора, когда это необходимо.
Тонкости в работе
Следует понимать, что такое устройство не выдаст большую мощность. Как правило. она составляет не более 150 Вт, но этого вполне достаточно для подключения небольшого телевизора, ноутбука и другой слаботочной техники.
volt-index.ru
Конструкция и ремонт источников бесперебойного питания 2
УСТРОЙСТВО ИБП КЛАССА OFF-LINE
К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в табл.1.
Таблица 1. Основные технические данные ИБп класса Back-UPS
| Модель | BK250I | BK400I | BK600I |
|---|---|---|---|
| Номинальное входное напряжение, В | 220…240 | ||
| Номинальная частота сети, Гц | 50 | ||
| Энергия поглощаемых выбросов, Дж | 320 | ||
| Пиковый ток выбросов, А | 6500 | ||
| Пропущенные в нормальном режиме значения выбросов напряжения по тесту IEEE 587 Cat. A 6kVA, % | <1 | ||
| Напряжение переключения, В | 166…196 | ||
| Выходное напряжение при работе от аккумуляторов, В | 225 ± 5% | ||
| Выходная частота при работе от аккумуляторов, Гц | 50 ± 3% | ||
| Максимальная мощность, ВА (Вт) | 250(170) | 400(250) | 600(400) |
| Коэффициент мощности | 0,5. ..1,0 | ||
| Пик-фактор | <5 | ||
| Номинальное время переключения, мс | 5 | ||
| Количество аккумуляторов х напряжение, В | 2×6 | 1×12 | 2×6 |
| Емкость аккумуляторов, Ач | 4 | 7 | 10 |
| Время 90-% подзарядки после разрядки до 50%, час | 6 | 7 | 10 |
| Акустический шум на расстоянии 91 см от устройства, дБ | <40 | ||
| Время работы ИБП на полную мощность, мин | >5 | ||
| Максимальные габариты (В х Ш х Г), мм | 168x119x361 | ||
| Вес, кг | 5,4 | 9,5 | 11,3 |
Индекс «I» (International) в названиях моделей ИБп означает, что модели рассчитаны на входное напряжение 230 В, В устройствах установлены герметичные свинцовые не обслуживаемые аккумуляторы со сроком службы 3…5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБп переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.
Структурная схема ИБП Back-UPS 250I, 400I и 600I показана на рис. 1. Сетевое напряжение поступает на входной многоступенчатый фильтр через прерыватель цепи. Прерыватель цепи выполнен в виде автоматического выключателя на задней панели ИБП. В случае значительной перегрузки он отключает устройство от сети, при этом контактный столбик выключателя выталкивается вверх. Чтобы включить ИБП после перегрузки, необходимо вернуть в исходное положение контактный столбик выключателя. Во входном фильтре-ограничителе электромагнитных и радиочастотных помех используются LC-звенья и металлооксидные варисторы. При работе в нормальном режиме контакты 3 и 5 реле RY1 замкнуты, и ИБП передает в нагрузку напряжение электросети, фильтруя высокочастотные помехи. Зарядный ток поступает непрерывно, пока в сети есть напряжение. Если входное напряжение падает ниже установленной величины или вообще исчезает, а также если оно сильно зашумлено, контакты 3 и 4 реле замыкаются, и ИБП переключается на работу от инвертора, который преобразует постоянное напряжение аккумуляторов в переменное. Время переключения составляет около 5 мс, что вполне приемлемо для современных импульсных блоков питания компьютеров. Форма сигнала на нагрузке — прямоугольные импульсы положительной и отрицательной полярности с частотой 50 Гц, длительностью 5 мс, амплитудой 300 В, эффективным напряжением 225 В. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до 208 В. В отличие от моделей Smart-UPS, в Back-UPS нет микропроцессора, для управления устройством используются компараторы и логические микросхемы.
Принципиальная схема ИБП Back-UPS 250I, 400I и 600I практически полностью приведена на рис. 2-4. Многозвенный фильтр подавления помех электросети состоит из варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 2). Трансформатор Т1 (рис. 3) является датчиком входного напряжения.
Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4…D8, IC1, R9…R11, С3 и VR1) и анализа сетевого напряжения.
Если оно пропадает, то схема на элементах IC2…IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1 ) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.
Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.
Во время работы от батареи микросхема IC7 формирует импульсы возбуждения инвертора PUSHPL1 и PUSHPL2. В одном плече инвертора установлены мощные полевые транзисторы Q4…Q6 и Q36, в другом -Q1…Q3 и Q37. Своими коллекторами транзисторы нагружены на выходной трансформатор. На вторичной обмотке выходного трансформатора формируется импульсное напряжение с эффективным значением 225 В и частотой 50 Гц, которое используется для питания подключенного к ИБП оборудования. Длительность импульсов регулируется переменным резистором VR3, а частота — резистором VR4 (рис. 3). Включение и выключение инвертора синхронизируется с напряжением сети схемой на элементах IC3 (выводы 3…6), IC6 (выводы 3…5, 6, 8, 9) и IC5 (выводы 1…3 и 11…13). Схема на элементах SW1 (выводы 1 и 8), IC5 (выводы 4…В и 8…10), IC2 (выводы 8…10), IC3 (выводы 1 и 2), IC10 (выводы 12 и 13), D30, D31, D18, Q9, BZ1 (рис. 4) включает звуковой сигнал, предупреждающий пользователя о проблемах с электропитанием. Во время работы от батареи ИБП каждые 5 с издает одиночный звуковой сигнал, указывающий на необходимость сохранения файлов пользователя, т.к. емкость аккумуляторов ограничена. При работе от батареи ИБП осуществляет контроль за ее емкостью и за определенное время до ее разряда подает непрерывный звуковой сигнал. Если выводы 4 и 5 переключателя SW1 разомкнуты, то это время составляет 2 минуты, если замкнуты — 5 минут. Для отключения звукового сигнала надо замкнуть выводы 1 и 8 переключателя SW1.
Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. На рис. 4 этот порт обозначен как J14. Назначение его выводов:
1 — UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.
2 — AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».
3 — СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
4, 9 — DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.
5 — СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
6 — ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.
7, 8 — не подключены.
Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.
Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.
КАЛИБРОВКА И РЕМОНТ ИБП
Установка частоты выходного напряжения
Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.
Установка значения выходного напряжения
Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.
Установка порогового напряжения
Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.
Установка напряжения заряда
Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.
Типовые неисправности
Типовые неисправности и методы их устранения приведены в табл. 2, а в табл. 3 — аналоги наиболее часто выходящих из строя компонентов.
Таблица 2. Типовые неисправности ИБП Back-UPS 250I, 400I и 600I
| Проявление дефекта | Возможная причина | Метод отыскания и устранения дефекта |
| Запах дыма, ИБП не работает | Неисправен входной фильтр | Проверить исправность компонентов MOV2, MOV5, L1, L2, С38, С40, а также проводники платы, соединяющие их |
| ИБП не включается. Индикатор не светится | Отключен автомат защиты на входе (прерыватель цепи) ИБП | Уменьшить нагрузку ИБП, отключив часть аппаратуры, и затем включить автомат защиты, нажав контактный столбик автомата защиты |
| Неисправны батареи аккумуляторов | Заменить аккумуляторы | |
| Неправильно подключены аккумуляторы | Проверить правильность подключения аккумуляторных батарей | |
| Неисправен инвертор | Проверить исправность инвертора. Для этого отключить ИБП от сети переменного тока, отсоединить аккумуляторы и разрядить емкость С3 резистором 100 Ом, прозвонить омметром каналы «сток-исток» мощных полевых транзисторов Q1…Q6, Q37, Q36. Если сопротивление составляет несколько Ом или меньше, то транзисторы заменить. Проверить резисторы в затворах R1 …R3, R6…R8, R147, R148. Проверить исправность транзисторов Q30, Q31 и диодов D36…D38 и D41. Проверить предохранители F1 и F2 | |
| Заменить микросхему IC2 | ||
| При включении ИБП отключает нагрузку | Неисправен трансформатор Т1 | Проверить исправность обмоток трансформатора Т1. Проверить дорожки на плате, соединяющие обмотки Т1. Проверить предохранитель F3 |
| ИБП работает от аккумуляторов несмотря на то, что есть напряжение в сети | Напряжение в электросети очень низкое или искажено | Проверить входное напряжение с помощью индикатора или измерительного прибора. Если это допустимо для нагрузки, уменьшить чувствительность ИБП, т.е. изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства |
| ИБП включается, но напряжение в нагрузку не поступает | Неисправно реле RY1 | Проверить исправность реле RY1 и транзистора Q10 (BUZ71). Проверить исправность IC4 и IC3 и напряжение питания на их выводах |
| Проверить дорожки на плате, соединяющие контакты реле | ||
| ИБП жужжит и/или отключает нагрузку, не обеспечивая ожидаемого времени резервного электропитания | Неисправен инвертор или один из его элементов | См. подпункт «Неисправен инвертор» |
| ИБП не обеспечивает ожидаемого времени резервного электропитания | Аккумуляторные батареи разряжены или потеряли емкость | Зарядите аккумуляторные батареи. Они требуют перезарядки после продолжительных отключений сетевого питания. Кроме того, батареи быстро стареют при частом использовании или при эксплуатации в условиях высокой температуры. Если приближается конец срока службы батарей, то целесообразно их заменить, даже если еще не подается тревожный звуковой сигнал замены аккумуляторных батарей. Емкость заряженной батареи проверить автомобильной лампой дальнего света 12 В, 150 Вт |
| ИБП перегружен | Уменьшить количество потребителей на выходе ИБП | |
| После замены аккумуляторов ИБП не включается | Неправильное подключение аккумуляторных батарей при их замене | Проверьте правильность подключения аккумуляторных батарей |
| При включении ИБП издает громкий тональный сигнал, иногда с понижающимся тоном | Неисправны или сильно разряжены аккумуляторные батареи | Зарядить аккумуляторные батареи в течение не менее четырех часов. Если после перезарядки проблема не исчезнет, следует заменить аккумуляторные батареи |
| Аккумуляторные батареи не заряжаются | Неисправен диод D8 | Проверить исправность D8. Его обратный ток не должен превышать 10 мкА |
| Напряжение заряда ниже необходимого уровня | Откалибровать напряжение заряда аккумулятора |
Таблица 3. Аналоги для замены неисправных компонентов
| Схемное обозначение | Неисправный компонент | Возможная замена |
|---|---|---|
| IC1 | LM317T | LM117H, LM117K |
| IC2 | CD4001 | К561ЛЕ5 |
| IC3, IC10 | 74С14 | Составляется из двух микросхем К561ТЛ1, выводы которых соединить согласно цоколевке на микросхему |
| IC4 | LM339 | К1401СА1 |
| IC5 | CD4011 | К561ЛА7 |
| IC6 | CD4066 | К561КТ3 |
| D4…D8, D47, D25…D28 | 1N4005 | 1N4006, 1N4007, BY126, BY127, BY133, BY134, 1N5618… 1N5622, 1N4937 |
| Q10 | BUZ71 | BUZ10, 2SK673, 2SK971, BUK442…BUK450, BUK543…BUK550 |
| Q22 | IRF743 | IRF742, MTP10N35, MTP10N40, 2SK554, 2SK555 |
| Q8, Q21, Q35, Q31, Q12, Q9, Q27, Q28, Q32, Q33 | PN2222 | 2N2222, BS540, BS541, BSW61…BSW 64, 2N4014 |
| Q11, Q29, Q25, Q26, Q24 | PN2907 | 2N2907, 2N4026…2N4029 |
| Q1…Q6, Q36, Q37 | IRFZ42 | BUZ11, BUZ12, PRFZ42 |
Геннадий Яблонин
Источник: Журнал «Ремонт электронной техники»
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- ИСТОЧНИК ПИТАНИЯ С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ на LT1070.
- Ремонт модуля S20609 в инверторных сварках
- Мощный самодельный трансформаторный стабилизатор
Существуют схемы усилителей НЧ, передатчиков, других устройств, которые требуют питания не только от двуполярного источника, но и от двух гальванически развязанных источников, не имеющих соединения с «землей» или общих связанных цепей. Организовать питание такого устройства в стационарных условиях весьма просто, так как источником питания служит электросеть, а значит будет силовой или импульсный трансформатор. Достаточно сделать две вторичные обмотки, не соединенные с другими цепями, и переменные напряжения с них подать на отдельные независимые выпрямители. Подробнее…
В некоторых моделях сварочных инверторов, например Helper Prestige, ProfHelper, BestWeld и др., принадлежащих к условному семейству TECNICA устанавливают залитый эпоксидным компаундом субмодуль блока управления S20609.
О его ремонте и пойдёт речь в статье, ниже…
Подробнее…
Простой мощный стабилизатор из старых телевизионных трансформаторов
Из старых давно отслуживших свою службу ламповых телевизоров типа «Рекорд», «Горизонт», «Темп», «Электрон», «Фотон», «Радуга», «Рубин», «Чайка» и им подобных, а точнее их силовых трансформаторов можно сделать достаточно мощный (2-3 кВт) стабилизатор сетевого напряжения. Для этого трансформаторы нужно соединить специальным способом.
Подробнее…
Популярность: 24 983 просм.
www.mastervintik.ru
Сварочный аппарат из бесперебойника
Приветствую, Самоделкины!
Не так давно AKA KASYAN, автор одноименного YouTube канала занимался ремонтом бесперебойника, который принадлежал его знакомому. Повреждение были довольно серьезными, а все из-за неправильной установки аккумуляторов.
Данный бесперебойник был успешно восстановлен, но долго пылился без дела, пока автору не пришла в голову мысль сделать из него совсем другой прибор, а точнее сварочный аппарат.
Да, мы будем ломать рабочий бесперебойник. Вандализм? Возможно, но бесперебойники такого класса без всяких наворотов сейчас можно купить буквально за копейки, особенно без аккумуляторной батареи.
Автор же будет делать из внутренностей этого прибора довольно недешевое устройство, аппарат специфический, предназначенный для сварки скруток угольным электродом. Как известно самым распространенным способом соединения проводников является пайка при помощи припоя.
Но припой не славится своей долговечностью, и если речь идет о качественном монтаже «на века», то сварка проводов естественно в приоритете.
Дополнительным плюсом является то, что на месте сварки не будут образовываться дополнительные потери, а, следовательно, не будет и нагрева, получится буквально цельный проводник. Если же речь идет о пайки с помощью припоя, то под токами большой величины припой может даже расплавится.
Перед сваркой необходимо выполнить скрутку. Затем провода свариваются вместе, а на месте сварки образуется характерная для этого способа капелька.
Стоит сказать, что данный бесперебойник 24-вольтовый, то есть, он работает от 2-ух последовательно соединенных аккумуляторов с напряжением 12В.
Очень важно чтобы сварочный аппарат, а точнее трансформатор, обеспечивал необходимое напряжение холостого хода, которого было бы достаточно для образования дуги. Поэтому в данном случае трансформатор от 12-вольтового бесперебойника не подойдет. Он не обеспечит нужного напряжения, в результате чего мы получим максимум плавление провода за счет короткого замыкания. А качественно выполненной сварки с красивой капелькой с таким трансформатором получить не удастся.
В данном примере напряжение на вторичной обмотке трансформатора составляет около 26В. Этого будет вполне достаточно для образования дуги. Конечно под нагрузкой напряжение просядет, но значения не будут критическими.
Если же вы захотите использовать трансформатор с более низким выходным напряжением, например, от 12-вольтового бесперебойника, то придется искать второй такой же аналогичной трансформатор подключить вторичные обмотки последовательно, чтобы увеличить общее напряжение.
Мощность данного бесперебойника составляет порядка 400Вт. Приступим к его разборке.
На кадрах ниже отчётливо видны следы мини пожара.
Из этого бесперебойника нам нужен только трансформатор. Как видим он довольно неплохой, как по железу, так и по обмоткам, да и вес говорит о соответствующем качестве.
Обмотки, кстати, тут медные, что, согласитесь, не может не радовать. Видно, что бесперебойник довольно старый, а меди в те времена не жалели.
Данный трансформатор имеет низковольтную силовую обмотку на 24В с отводом от середины, сетевую обмотку с отводами и дополнительную маломощную обмотку.
Сейчас нам нужна сетевая обмотка, займемся ее поиском. Для этого нам понадобится мультиметр в режиме Ом-метра. Необходимо отыскать те отводы, между которыми будет самое большое сопротивление. В данном случае это около 8Ом.
Далее берем обыкновенную лампу накаливания с мощностью от 40 до 100Вт. Ее необходимо подключить последовательно с ранее проверенной обмоткой в сеть. Не забывайте о технике безопасности, все оголенные провода обязательно изолируем.
Лампа накаливания включенная таким образом в цепь, будет выполнять роль страховки. В случае чего, она ограничит ток и не даст обмотке сгореть. Если лампа не горит, значит все сделано правильно.
Затем переключаем мультиметр в режим измерения переменного напряжения и проверяем напряжение на силовой обмотке трансформатора.
Как видим, напряжение на концах обмотки составляет около 26В. Теперь трансформатор пока отложим в сторону. Далее нам необходим угольный электрод. В строительных магазинах порой можно встретить угольные электроды с медным напылением, но намного проще за сущие копейки купить батарейку формата D, у них внутри имеется угольный стержень, который отлично подойдет для данной самоделки.
Только стоит отметить, что такой электрод имеется только в обычных солевых батарейках, не алкалиновых, а именно в солевых.
Итак, батарейку необходимо разобрать и извлечь угольный стержень (электрод). Испорченную батарейку необходимо утилизировать соответствующим образом сдав в специализированный пункт приема химических источников тока, берегите природу!
Опытным путем было установлено, что система ограничения тока сварки в данном случае не нужна. Сварка будет происходить на максимальных значениях тока, но это не мешает варить провода небольшого сечения. Ток в режиме короткого замыкания у данного трансформатора составляет более 100А. Конечно в таком режиме трансформатор быстро выйдет из строя и попросту сгорит, но такое возможно только из-за залипания электрода, а в нашем случае он угольный и залипнуть к медному проводу просто никак не сможет, так что с этим тоже все хорошо. К тому же ток частично будет ограничен сопротивлением самого электрода и проводов.
За счет образования высокотемпературной дуги у нас есть возможность варить провода, сечение которых в разы больше, чем сечение обмоток самого трансформатора. Трансформаторы от бесперебойника не рассчитаны на долговременную работу под большой нагрузкой, поэтому не исключен перегрев. Но в данном случае мы же не собираемся пользоваться аппаратом часами на пролет, не давая ему отдохнуть. Включил, поварил, выключил. За этот временной промежуток даже обмотки не успеют нагреться.
Теперь займемся изготовлением держателя для электрода и массы. Масса — это образно, тут можно особо не заморачиваться, взять плоскогубцы, присобачить к ним провода и все.
Автор решил изготовить более удобный держатель для электрода. Для этого ему понадобилась монтажная клемма соответствующего диаметра, в которую свободно входит наш угольный электрод. Также понадобится медная трубка. Ее необходимо расплющить и все запаять вместе. Получилась вот такая штука.
Во время работы места паек будут нагреваться, но припой не расплавится, так как соединения обладают довольно большой теплопроводностью, и нагрев достаточно быстро передается рукоятке. Рукоятку необходимо изолировать термостойким каптоновым скотчем.
Затем берем плоскогубцы, снимаем изоляцию и припаиваем к ним провод. Такие массивные участки автор паял мощным паяльником мощностью 300Вт.
Далее необходимо подобрать корпус. Для этого автор использовал корпус от старого компьютерного блока питания.
Аппарат не содержит ни единого полупроводника, подключение проще простого, так что справится любой человек с базовыми знаниями по электронике.
Ну а в конце попробуем сварить вместе провода самого разного сечения и посмотрим, на что способен этот малыш.
Для такого простого и бюджетного аппарата вполне неплохой результат. Основные достоинства аппарата: малая себестоимость, высокая надежность (так как тут нечему ломаться), сравнительно небольшой вес и скромные размеры. Ему поддаются провода большого диаметра, что позволит применить аппарат не только для любительских, но и для профессиональных работ.
Ну а на этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Источник
Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
usamodelkina.ru
Вообще изначально данная статья писалась очень давно, более двух лет назад. Но в данном случае я решил, что информация из нее может быть полезна и использована на благо мастеров 3D печати.
Суть данной статьи в том, чтобы превратить обычный блок питания в маленький бесперебойник с выходом примерно 11-13.5 Вольт.
В качестве примера будет БП с мощностью 36 Ватт, но практически без доработок схема применима к более мощным БП с топологией Флайбек и с доработками к двухтактным БП.
Но сначала просто миниобзор самого БП, сорри за качество фото, снималось на паяльник.
На торце указаны технические характеристики.

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.
Размеры относительно небольшие.


С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения.

После вскрытия моему взору предстала печатная плата данного блока питания.
На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Силовой транзистор 5N60D — только в корпусе ТО-220.
Выходной диод — stps20h100ct — аналогично в корпусе ТО-220.
Схема стабилизации и обратной связи сделана на TL431.
Обратная сторона платы.

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.
Но удивила маркировка на плате (она есть и с верхней стороны).
SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?
Эксперименты покажут.
Первое включение, ничего не бахнуло, уже неплохо.

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.
Ток около 2.5 Ампера.

Напряжение измерял после проводов к резисторам, потому немного просело.
Оставил так, пошел попить чайку и покурить, ждал что рванет.
Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не измерял, по ощущениям немного теплый.
Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.
Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.
К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.
Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.
Допилинг
Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.
В общем накидал небольшую добавочную платку к этому блоку питания.
Платка, схема и небольшое описание процесса.
Схема.
И страссированная по ней плата.

Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.
Перенес платку на текстолит, покрыл припоем.

Подобрал детали.

Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12.

Пояснения по схеме.
С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1-10 кОм.
Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.
В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичную обмотку, либо еще лучше — дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 кОм, я поставил 4.3 кОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.
После сборки платы встроил ее в блок питания.
На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Плату обмотал скотчем, и уложил на более-менее свободное место.

После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85.

Вот вид собранного и настроенного устройства.

Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева).

Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения.

Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше.

После этого подключил питание 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева).

В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.
Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.
Вы конечно спросите, при чем здесь 3D принтеры и этот мелкий блок питания.
Все просто, как я писал в самом начале, можно взять мощный блок питания, применить более мощные компоненты в плате которую я делал и получить бесперебойник, который не имеет такого понятия как ‘время переключения’, т.е. фактически ‘онлайн’. А так как печать идет очень долго, то это может быть весьма полезно в плане бесперебойности работы. Кроме того КПД такой системы заметно выше чем у традиционных УПСов.
Для применения с большими токами надо заменить на моей плате диод VD1 на любой Шоттки с током более 30 Ампер (например выпаянный из компьютерного БП) и установить его на радиатор, Реле на любое с током контактов более 20 Ампер и обмоткой с током не более 100мА (а лучше до 80). Кроме того возможно понадобится увеличение тока заряда, это делается путем уменьшения номинала резистора R1 до 0.6-1 Ом.
Есть и промышленные БП с такой функцией, по крайней мере я знаю пару таких производства Meanwell, но:
1. Они очень дорогие
2. Выпускаются мощностью 55 и 150 Ватт, что не так много.
Вроде все, если есть вопросы, буду рад обсудить.
Интересуют сахалин грузоперевозка? Заходите на caravankhv.ru.
Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.
В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.
Структурная схема импульсного источника питания
Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.
Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное напряжение, имеющее форму прямоугольных импульсов необходимой амплитуды.
В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.
[attention type=yellow]Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.[/attention]
Принципиальные схемы импульсных блоков питания
Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.
Сетевой выпрямитель с фильтром
Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:
- однополупериодную;
- нулевую (двухполупериодную со средней точкой);
- двхполупериодную мостовую.
Каждой из них присущи достоинства и недостатки, которые определяют область применения.
Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.
Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения Uф.
Для однополупериодной схемы Кв=0.45.
[attention type=red]Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.[/attention]
Нулевая, или двухполупериодная схема со средней точкой, хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.
Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.
Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.
Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.
[attention type=green]Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения UBM.[/attention]
Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).
Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.
Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной UBM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.
Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.
Высокочастотный преобразователь: его функции и схемы
Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.
Однотактная схема. При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.
- Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
- Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.
Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.
[blockquote_gray]
В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно здесь.[/blockquote_gray]
Двухтактная схема со средней точкой трансформатора (пушпульная). Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.
Двухтактная полумостовая схема. По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.
Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.
Двухтактная мостовая схема. По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.
[attention type=green]Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) IКМАХ и максимальному напряжению коллектор-эмиттер UКЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.[/attention]
Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).
При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.
Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади сечения проводов обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.
Параметры импульсных трансформаторов и ключей ВЧ-преобразователя
Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (UКЭМАХ>=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.
[attention type=red]Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.[/attention]
Выполнение приведенных рекомендаций дает возможность в кратчайшие сроки и с минимумом проблем и затрат собрать силовую часть высокочастотного импульсного преобразователя для бытовых нужд.
Видео о изготовлении простейшего импульсного питающего устройства
Суровая действительность такова, что нет абсолютной уверенности в постоянном источнике электричества из обычной розетки. Электричество могут внезапно отключить. Вспомните словосочетание — «веерное отключение». Мало того, нередко так случается, напряжение в сети есть, но оно крайне нестабильно. Во втором случае помогут автотрансформаторы. А с первой проблемой помогают источники бесперебойного питания ИБП. Ниже мы вместе сделаем бесперебойник своими руками.
Бесперебойник 12 В для роутера
Конечно, основная функция ИБП для компьютеров — сохранение данных и возможность штатно отключить питание устройства от сети.
Но. В наш век цифровых технологий стандартный ноутбук может переждать в автономном режиме до 3–5 часов, пока не включится снова электричество.
Ноутбуком пользоваться можно, но без интернета. Почему? Просто тока в сети нет, и он тоже не работает. Но кабельные лини интернета работают.
А мы так привыкли к интернету, что когда отключают свет, становится как то неуютно без «мировой паутины».
Так никто и ничто не мешает сделать ИБП хотя бы для роутера. Тем более это совсем не сложно и сделать бесперебойник своими руками домашнему умельцу вполне реально.
Самое необходимое
Все что нужно для самодельного ИБП есть на торговой площадке Али-экспресс:
- Пара Аккумуляторов для шуруповерта 18650-й серии.
- Индикатор заряда встраиваемый.
- Плата преобразователя.
- Плата зарядки.
- Адаптер питания 9 V 2 A.
- Корпус из пластика.
Полный комплект деталей:
Аккумулятор 18650 и его разновидности
Основной элемент будущего бесперебойника это аккумулятор литий-ионного типа 18650. По форме и размерам — аналог стандартных пальчиковых батареек ААА или АА.
Емкость пальчиковых аккумуляторов находится в границах 1600–3600 мАч. С выходным напряжением в 3.7 В.
Есть несколько разновидностей батарей класса 1865. Различия только по химическому составу:
- Литий-марганцевые (Lithium Manganese Oxide).
- Литий-кобальтовые (Lithium Cobalt Oxide).
- Литий-железо-фосфатные (Lithium Iron Phosphate или феррофосфатные).
Все они с успехом применяются:
- в телефонных зарядках;
- в ноутбуках;
- фонариках и так далее.
Собираем бесперебойник
Наглядная схема модульного ИБП своими руками:
Итак, процесс сборки пошагово:
- Для начала нужно убедиться, что батареи рабочие. Вольтметром проверяем напряжение. Оно не должно быть ниже 2.7 В. Для нашего ИБП хватит двух батареек.
- Доводим уровень заряда до 100 %.
- В пластиковом корпусе вырезаем места для установки выключателя и контактного разъема для блока питания.
- К припаянным проводам батареек нужно впаять предохранители, выбираем в зависимости от источника потребления, не забудьте взять с запасом. Этим мы исключим случайное короткое замыкание.
- Все открытые места нужно надежно заизолировать. Для этого хорошо подойдет специальная термоусадка.
- Питающие батареи соединяем вместе в один блок изолентой.
- В пластиковом боксе вырезается окно для вольтметра.
- С помощью термопистолета приклеиваем датчик к корпусу. Этим же клеем заизолировать места вывода проводов.
- На аккумулятор закрепляется контроллер заряда. В этом варианте применен двусторонний скотч.
- Провода к контроллеру припаиваются к плате контроллера. Бесперебойник, схема которого видна ниже, почти готов.
- Затем соединяется вся схема нашего ИБП.
- К выходу обязательно припаять конденсатор. Этим мы защитим схему от микробросков и сделаем выравнивание рабочей частоты прибора. Для подбора не забываем, что на 1 Ватт выходной мощности требуется 100 микроФарад.
- Выставляем выходное напряжение на 12 вольт с помощью переменного резистора. Именно такое напряжение необходимо для питания роутера.
- Все элементы закрываем в коробку и ставим новый самодельный ИБП на зарядку.
Как это будет работать
У роутеров есть свои штатные блоки питания. В этой схеме мы его убрали и заменили на 9 вольтовый. От такого напряжения работает новое устройство.
Или более подробно. Новым 9-ти вольтовым блоком питания подается напряжение на повышающий преобразователь, который работает в паре с балансным контроллером заряда. Напряжение 12 Вольт в штатном режиме идет для питания роутера.
Но если произойдет отключение тока, наш контроллер заряда переключит работу ИБП от встроенных батарей. По мере использования аккумуляторов, их выходное напряжение будет падать. Чтобы избежать их полного разряда, контроллер отключит работу в тот момент, когда выходное напряжение достигнет 2.7 В.
Итог работы
Расчетная мощность бесперебойника — четверть ампера. В идеале должно хватить на работу роутера в течение 2.5 часов.
Но из замеров получается, что если самодельный ИБП для дома будет потреблять ток в 1 Ампер, работы нового девайса хватит минут на 30.
Если роутер будет «кушать» 0.5 Ампер, то питания от батареек хватит уже на приблизительно полтора часа.
Таким устройством можно обеспечить бесперебойную работу и других устройств. Например, таких как:
- маршрутизаторы;
- докстанции беспроводного телефона;
- жёсткие диски.
Однотактный автогенератор — ИБП
Схема простейшего обратноходового преобразователя:
Такой однотактный конвертер находит применение в небольших по мощности источниках питания, таких как зарядник для телефона.
Схема простейшего понижающего трансформатора. Применяется в грузовиках для прикуривателей с напряжением в 12 Вольт. То есть там, где необходимо понизить напряжение с 24 В до 12 В. Второе название однотактная схема преобразователя получила следующее — стабилизатор с ШИМ-модуляцией.
Также такую схему можно обнаружить в ресурсоёмких платах расширения, например, таких как видеокарты. При максимуме тока — минимум потерь.
Основной недостаток данной схемы — нет защиты от перегрузок, как по току, так и по напряжению.
Двухтактный ИБП
Если есть желание понизить потери по мощности, то вам требуется двухтактный источник бесперебойного питания 12 В.
Один из вариантов исполнения показан на картинке.
Это схема двухтактного импульсного конвертера. Применяется как в сварочных инверторах, так и в компьютерных блоках питания. Схема рабочая, очень надежная и с хорошим КПД.
В принципе можно создать модель, исходя из расчета самого мощного потребителя в вашем доме. Таких, как бойлер или телевизор. То есть те устройства общая мощность потребления, которых не более 2.5 кВт. Тогда и инвертор делается с запасом до 3 кВт.
Благодаря работе на меньших токах, увеличивается ресурс конденсаторов. Источник бесперебойного питания на 12 вольт может применяться в усилителях мощности.
Где купить
Приобрести ИБП можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:
Заключение
Самодельный бесперебойник имеет неоспоримое преимущество перед заводскими моделями. Они проще в ремонте и их легко модернизировать под свои нужды.
Есть схемы самодельных ИБП с применением солнечных панелей и даже с ветрогенератором, что даёт возможность повысить автономность домашней электросети.
Видео по теме
Простые импульсные блоки питания
![]()
Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…
Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.
Содержание / Contents
↑ Схема ИБП на биполярных транзисторах
↑ Схема ИБП на полевых транзисторах
Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.
Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.
Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.
Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.
Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.
Камрад, рассмотри датагорские рекомендации
🌻 Купон до 1000₽ для новичка на Aliexpress
Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.
🌼 Полезные и проверенные железяки, можно брать
Куплено и опробовано читателями или в лаборатории редакции.
Источник
Делаем ИБП на 12В своими руками
![]()
Суровая действительность такова, что нет абсолютной уверенности в постоянном источнике электричества из обычной розетки. Электричество могут внезапно отключить. Вспомните словосочетание — «веерное отключение». Мало того, нередко так случается, напряжение в сети есть, но оно крайне нестабильно. Во втором случае помогут автотрансформаторы. А с первой проблемой помогают источники бесперебойного питания ИБП. Ниже мы вместе сделаем бесперебойник своими руками.
Бесперебойник 12 В для роутера
Конечно, основная функция ИБП для компьютеров — сохранение данных и возможность штатно отключить питание устройства от сети.
Но. В наш век цифровых технологий стандартный ноутбук может переждать в автономном режиме до 3–5 часов, пока не включится снова электричество.
Ноутбуком пользоваться можно, но без интернета. Почему? Просто тока в сети нет, и он тоже не работает. Но кабельные лини интернета работают.
А мы так привыкли к интернету, что когда отключают свет, становится как то неуютно без «мировой паутины».
Так никто и ничто не мешает сделать ИБП хотя бы для роутера. Тем более это совсем не сложно и сделать бесперебойник своими руками домашнему умельцу вполне реально.
Самое необходимое
Все что нужно для самодельного ИБП есть на торговой площадке Али-экспресс:
Полный комплект деталей:

Аккумулятор 18650 и его разновидности
Основной элемент будущего бесперебойника это аккумулятор литий-ионного типа 18650. По форме и размерам — аналог стандартных пальчиковых батареек ААА или АА.
Емкость пальчиковых аккумуляторов находится в границах 1600–3600 мАч. С выходным напряжением в 3.7 В.

Есть несколько разновидностей батарей класса 1865. Различия только по химическому составу:
Все они с успехом применяются:
Собираем бесперебойник
Наглядная схема модульного ИБП своими руками:

Итак, процесс сборки пошагово:
Как это будет работать
У роутеров есть свои штатные блоки питания. В этой схеме мы его убрали и заменили на 9 вольтовый. От такого напряжения работает новое устройство.
Или более подробно. Новым 9-ти вольтовым блоком питания подается напряжение на повышающий преобразователь, который работает в паре с балансным контроллером заряда. Напряжение 12 Вольт в штатном режиме идет для питания роутера.
Но если произойдет отключение тока, наш контроллер заряда переключит работу ИБП от встроенных батарей. По мере использования аккумуляторов, их выходное напряжение будет падать. Чтобы избежать их полного разряда, контроллер отключит работу в тот момент, когда выходное напряжение достигнет 2.7 В.
Итог работы
Расчетная мощность бесперебойника — четверть ампера. В идеале должно хватить на работу роутера в течение 2.5 часов.
Но из замеров получается, что если самодельный ИБП для дома будет потреблять ток в 1 Ампер, работы нового девайса хватит минут на 30.

Если роутер будет «кушать» 0.5 Ампер, то питания от батареек хватит уже на приблизительно полтора часа.

Таким устройством можно обеспечить бесперебойную работу и других устройств. Например, таких как:
Однотактный автогенератор — ИБП
Схема простейшего обратноходового преобразователя:

Такой однотактный конвертер находит применение в небольших по мощности источниках питания, таких как зарядник для телефона.

Схема простейшего понижающего трансформатора. Применяется в грузовиках для прикуривателей с напряжением в 12 Вольт. То есть там, где необходимо понизить напряжение с 24 В до 12 В. Второе название однотактная схема преобразователя получила следующее — стабилизатор с ШИМ-модуляцией.
Также такую схему можно обнаружить в ресурсоёмких платах расширения, например, таких как видеокарты. При максимуме тока — минимум потерь.
Основной недостаток данной схемы — нет защиты от перегрузок, как по току, так и по напряжению.
Двухтактный ИБП
Если есть желание понизить потери по мощности, то вам требуется двухтактный источник бесперебойного питания 12 В.
Один из вариантов исполнения показан на картинке.

Это схема двухтактного импульсного конвертера. Применяется как в сварочных инверторах, так и в компьютерных блоках питания. Схема рабочая, очень надежная и с хорошим КПД.
В принципе можно создать модель, исходя из расчета самого мощного потребителя в вашем доме. Таких, как бойлер или телевизор. То есть те устройства общая мощность потребления, которых не более 2.5 кВт. Тогда и инвертор делается с запасом до 3 кВт.
Благодаря работе на меньших токах, увеличивается ресурс конденсаторов. Источник бесперебойного питания на 12 вольт может применяться в усилителях мощности.
Заключение
Самодельный бесперебойник имеет неоспоримое преимущество перед заводскими моделями. Они проще в ремонте и их легко модернизировать под свои нужды.
Есть схемы самодельных ИБП с применением солнечных панелей и даже с ветрогенератором, что даёт возможность повысить автономность домашней электросети.
Где купить
Приобрести ИБП можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:
Видео по теме
Источник
Ибп на транзисторах своими руками
Изготовим простой, но достаточно надежный преобразователь – инвертор своими руками. Рабочая схема такого инвертора или, говоря по другому, импульсного блока питания ИБП, изображена на рисунке. Эта схема является классической и с небольшими изменениями и дополнениями повсеместно используется.
Своей целью в рекомендации к изготовлению этого преобразователя я считаю изготовление простого и доступного для каждого начинающего электрика – любителя, электронного прибора. При некотором практическом навыке это несложно, хотя и придется приложить немного усилий и «потратить нервов».
Зададимся целью создать источник питания постоянного напряжения на 15 вольт и мощностью 20 ватт в нагрузке. Можно задаться любым выходным напряжением и мощностью.
Схема состоит из нескольких узлов: выпрямителя, устройства запуска, генератора импульсов, выходного устройства.
Устройство запуска представляет из себя генератор пилообразного напряжения и состоит из резистора R2 конденсатора С2 и стабилитрона D7.
Импульсы от этого генератора подаются на базу ключевого транзистора Т2.
Генератор запускающих импульсов работает только в момент пуска, а потом выключается.
Генератор прямоугольных импульсов преобразует постоянное напряжение 310 вольт в переменное напряжение высокой частоты 30 — 45 килогерц.
Трансформатор Тр1 служит для подачи импульсов управления на базы ключевых транзисторов Т1 и Т2.
Выходной трансформатор Тр2 преобразует высокое переменное напряжение в низкое выходное переменное напряжение (согласно коэффициента трансформации).
Сразу после включения питания 220 вольт, начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7) (точка 1). От него запускающие импульсы поступают на базу транзистора Т2 (точка 2). Происходит запуск автогенератора.
Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы (точка 3).
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9, Д10 (двухполупериодное выпрямление) и сглаживается конденсаторами С5 и С6. На выходе получается постоянное напряжение заданной величины.
Предпочтение такой схемы двухполупериодного выпрямления ( с двумя диодами), перед схемой с помощью мостика, состоит в большем КПД выпрямительного устройства.
Рабочее напряжение между коллектором и эмиттером на транзисторах Т1 и Т2, не превышает напряжения питания 310 вольт.
Откуда берутся эти 310 вольт?
Перечень деталей схемы :
Резисторы : R1 – 27 Ом, 1 ватт; R2 – 470 Ком; R3 = R4 = 8 Ом; R5 – 50 — 100 Ом. любой мощности.
Конденсаторы: С1 – 50 МкФ 350 В; С2 – 47 нФ 250 В; С3, С4 – 200 нФ 250 В; С5 – 1,0 МкФ 50 В керамический; С6 – 100 МкФ.
Диоды : Д1 – Д4, Д5, Д6, Д8 — N4007; Д7 – динистор DB3; Д9, Д10 — КД213 или другие с частой до 100 КГц и током не ниже 3 ампер.
Транзисторы: Т1, Т2 – 13003, 700 В, 1,6 А или 13005, этот транзистор помощнее.
Транзисторы лучше поставить на два небольшие радиатора по 5 — 8 см.кв., чтобы не грелись.
Трансформаторы:
Тр1 — ферритовое кольцо К10×6х4, НМ2000, w1 = w2 = 7 витков, w3 = 21 витков, провод 0,3 – 0,4 мм.
Тр2 — ферритовое кольцо К28×18х8, НМ2000;
w1 – 254 витков провода 0,25 — 0,35 мм.;
w2-1 и w2-2 по 28 витков провода 0,6- 0,7 мм.;
w3 – 12 витков провода 0,3 мм.
Размеры кольца рассчитаны на мощность побольше 20 ватт. но это неплохо, будет запас по диаметру провода и его размещению в окне ферритового кольца.
Если нет такого ферритового кольца, можно взять кольцо с размерами побольше. Количество витков в обмотках можно оставить то же, а диаметры проводов в обмотках немного увеличить. Тогда мощность инвертора увеличится.
Наладка схемы двухтактного преобразователя – инвертора.
Источник
Как сделать импульсный блок питания своими руками – 3 лучшие схемы
Импульсные блоки питания — принцип работы и особенности
![]()
Основная особенность импульсных БП в повышенной рабочей частоте, которая в сотни раз больше сетевой частоты 50 Гц. При высоких частотах с минимальными количествами витков в обмотках, можно получить большое напряжение. К примеру, для получения 12 Вольт выходного напряжении при токе 1 Ампер (в случае сетевого трансформатора), нужно намотать 5 витков проводом сечением примерно 0,6–0,7 мм.
Если говорить об импульсном трансформаторе, задающая схема которого, работает на частоте 65 кГц, то для получения 12 Вольт с током 1А, достаточно намотать всего 3 витка проводом 0,25–0,3 мм. Именно поэтому многие производители электроники используют именно импульсный блок питания.
Однако, несмотря на то, что такие блоки гораздо дешевле, компактнее, обладают большой мощностью и малым весом, они имеют электронную начинку, следовательно — менее надежны, если сравнить с сетевым трансформатором. Доказать их ненадежность очень просто — возьмите любой импульсный блок питания без защиты и замкните выходные клеммы. В лучшем случае блок выйдет из строя, в худшем — взорвется и никакой предохранитель не спасет блок.
Практика показывает, что предохранитель в импульсном блоке питания сгорает в самую последнюю очередь, первым делом вылетают силовые ключи и задающий генератор, затем поочередно все части схемы.
Импульсные БП имеют ряд защит как на входе, так и на выходе, но и они спасают не всегда. Для того, чтобы ограничить бросок тока при запуске схемы — почти во всех ИИП с мощностью более 50 Ватт используют термистор, который стоит на входе схем.
Давайте сейчас рассмотрим ТОП-3 лучших схем импульсных блоков питания, которые можно собрать своими руками.
Простой импульсный блок питания своими руками
Рассмотрим, как сделать самый простой миниатюрный импульсный блок питания. Создать прибор по представленной схеме сможет любой начинающий радиолюбитель. Он не только компактный, но и работает в широком диапазоне питающих напряжений.
Самодельный импульсный блок питания обладает относительно небольшой мощностью, в пределах 2-х Ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.
Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.
![]()
Важным моментом является намотка трансформатора — и на печатной плате, и на схеме указаны начала обмоток, потому проблем возникнуть не должно. Количество витков обмоток мы позаимствовали от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток то же.
Первой мотаем первичную обмотку, которая состоит из 200 витков, сечение провода от 0,08 до 0,1 мм. Затем ставим изоляцию и таким же проводом мотаем базовую обмотку, которая содержит от 5 до 10 витков.
Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение нужно. В среднем получается около 1 Вольта на один виток.
Один момент — блок однотактный и между половинками сердечника должен быть немагнитный зазор. Он имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна). Если нет трансформатора с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.
Готовый трансформатор собираем обратно, половинки сердечника стягиваем скотчем либо намертво приклеиваем суперклеем.
Схема не имеет стабилизации выходного напряжения и узлов защиты, но ей не страшны короткие замыкания. При КЗ естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, потому все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.
Резистор указанного номинала ограничивает входной ток на уровне 14,5 мА. По закону Ома, зная напряжение в сети, легко можно рассчитать мощность, которая составляет в районе 3,3 Ватт. Это мощность на входе, с учетом КПД преобразователя, выходная мощность будет на 20–30 % меньше этого. Увеличить мощность можно, снизив сопротивление указанного резистора.
Силовой транзистор — это маломощный высоковольтный биполярный транзистор обратной проводимости. Подойдут ключи типа MJE13001, 13003, 13005. Более мощные ставить нет смысла, первого варианта вполне хватает.
На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь можно использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.
![]()
Что касается недостатков схемы:
Ограниченная выходная мощность — чтобы на этой основе построить БП на 10–20 Ватт, нужно снизить сопротивление и увеличить мощность. Это нужно, чтобы нагрев не выходил за рамки, но это неудобно и увеличивает размеры блока питания.
Ограничительный резистор на входе снижает КПД, не намного, но всё-таки снижает. Но из-за этого обеспечивается безопасная работа блока.
Схожие схемы применяются там, где нужна мощность в пределах 3–5 Ватт, например этот блок предназначен для питания небольшого кулера, поэтому мощность ограничена в пределах 2-х Ватт.
Областей применения такого простого импульсного блока питания очень много, поскольку он имеет гальваническую развязку от сети, следовательно, безопасен, а его выходное напряжение никак не связано с сетью. Отличный вариант для запитки светодиодов, вентиляторов охлаждения, питания каких-то маломощных схем и многого другого.
Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу

Корпус этого самодельного импульсного блока питания состоит из двух частей — основа Kradex Z4A, а так же вентилятор (кулер), который можно увидеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.
Что касается необходимых деталей, то нам понадобятся:
Можно также разобрать несколько старых БП от компьютеров и насобирать необходимых деталей оттуда, но лучше по возможности использовать новые детали и микросхемы — это повысит шанс на успех.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009. Можно использовать транзисторы на меньший ток — MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет.
Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 Вольт от диодного моста VDS1 в необходимое нам (в данном случае 30–31 вольт). Данные по перемотке или намотке с нуля трансформатора обсудим чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций.
Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 в нашем случае были использованы от неисправных блоков питания компьютеров. L6 использован без изменения обмотки, он представляет собой цилиндр с десятком витков толстого медного провода. L5 необходимо перемотать, поскольку в компьютере используется несколько уровней напряжения — нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий — он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.
Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.
Со вторичной обмотки напряжение выпрямляется и сглаживается конденсатором — просто и сердито. Таким образом, получаем 12 Вольт, необходимые для управляющей части схемы блока питания. Далее 12 Вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 — это напряжение используется для схемы индикации напряжения и тока.

На фото печатная плата с микроконтроллером. Амперметр и вольтметр к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе суперклеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.
Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 — 4 операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.
Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70–80 кГц, а то и меньше.
Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжение вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат.
Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, поскольку для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например, электроплита.
При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT (5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника.
Далее после намотки сердечник трансформатора необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника стягиваются металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.
Печатные платы проектировались для корпуса Z4A. Он подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора.
![]()
Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтобы он высасывал воздух из корпуса. По факту охлаждение вентилятором требуется нечасто, к тому же даже при больших нагрузках элементы схемы сильно не греются.
Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике.
Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В нашем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди — индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения, а также быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.
Защита по току (стабилизация) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения — чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.
Основные характеристики импульсного блока питания зависят в основном от применяемой элементной базы, в данном варианте они следующие:
Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже — возрастут пульсации. Это особенность именно импульсного блока, в аналоговых БП выходная емкость, как правило, не превышает 10 мкФ в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков Ампер и Вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, когда необходима большая выходная.
Прилагаем также печатные платы (вольтметр и амперметр сюда не входят, поскольку можно применять абсолютно любые).
Видео о тестировании данного блока питания:
Стабилизированный импульсный блок питания на SG3525 своими руками
Рассмотрим пошагово, как сделать стабилизированный блок питания на микросхеме SG3525. Сразу поговорим о достоинствах данной схемы. Первое, самое важное — это стабилизация выходного напряжения. Также тут есть софт старт, защита от короткого замыкания и самозапит.
![]()
![]()
Для начала давайте рассмотрим схему устройства.
![]()
Новички сразу же обратят внимание на 2 трансформатора. В схеме один из них силовой, а второй — для гальванической развязки.
Не стоит думать, что из-за этого схема усложнится. Наоборот все становится проще, безопаснее и дешевле. К примеру, если ставить на выходе микросхемы драйвер, то для нее нужна обвязка.
![]()
![]()
Смотрим дальше. В данной схеме реализован микростарт и самозапит.
![]()
Это очень продуктивное решение, оно позволяет избавиться от потребности в дежурном блоке питания. И действительно, делать блок питания для блока питания не очень хорошая идея, а такое решение просто идеально.
![]()
Работает всё следующим образом: от постоянки заряжается конденсатор и когда его напряжение превысит заданный уровень, открывается данный блок и разряжает конденсатор на схему.
![]()
![]()
![]()
![]()
Его энергии вполне достаточно для запуска микросхемы, а как только она запустилась, напряжение со вторичной обмотки начало питать саму микросхему. Также к микростарту необходимо добавить вот этот резистор по выходу, он служит нагрузкой.
![]()
Без этого резистора блок не запустится. Данный резистор для каждого напряжения свой и его необходимо рассчитать из таких соображений, что при номинальном выходном напряжении на нем рассеивался 1 Вт мощности.
Считаем сопротивление резистора:
R = U в квадрате/P
R = 24 в квадрате/1
R = 576/1 = 560 Ом.
Также на схеме есть софт старт. Реализован он с помощью вот этого конденсатора.
![]()
И защита по току, которая в случае короткого замыкания начнет сокращать ширину ШИМ.
![]()
Частота данного блока питания изменяется с помощью вот этого резистора и кондёра.
![]()
![]()
Теперь поговорим о самом важном — стабилизации выходного напряжения. За нее отвечают вот эти элементы:
![]()
Как видим здесь установлены 2 стабилитрона. С их помощью можно получить любое напряжение на выходе.
Расчет стабилизации напряжения:
U вых = 2 + U стаб1 + U стаб2
U вых = 2 + 11 + 11 = 24В
Возможна погрешность +- 0.5 В.
Чтобы стабилизация работала корректно нужен запас по напряжению в трансформаторе, иначе при уменьшении входного напряжения микросхема попросту не сможет выдать нужного напряжения. Поэтому при расчете трансформатора следует нажать на вот эту кнопку и программа автоматом добавит вам напряжения на вторичной обмотке для запаса.
![]()
![]()
Теперь можно перейти к рассмотрению печатной платы. Как видим, тут все довольно таки компактно. Также видим место под трансформатор, он тороидальный. Без особых проблем его можно заменить на Ш-образный.
![]()
Оптрон и стабилитроны расположены возле микросхемы, а не на выходе.
![]()
Ну некуда их было поставить на выход. Если не нравится, сделайте свою разводку печатной платы.
Вы можете спросить, почему бы не увеличить плату и не сделать все нормально? Ответ следующий: сделано это с тем расчетом, чтобы дешевле было заказать плату на производстве, так как платы размером больше 100 кв. мм стоят гораздо дороже.
Ну а теперь настало время собрать схему. Тут все стандартно. Запаиваем без особых проблем. Наматываем трансформатор и устанавливаем.
![]()
![]()
![]()
Стоит также обратить внимание на отдельные важные моменты. К таким моментам относится входной дроссель. Его можно мотать на сердечнике проницаемостью 2000 НМ, размеры 20х13х7 мм.
![]()
![]()
Желательно развести обмотки на 2 части. Для изоляции используются обыкновенные пластмассовые стяжки. Мотаем проводом 0,8 мм. Количество витков каждой обмотки 10–13.
А теперь самая страшная часть схемы — ТГР.
![]()
На самом деле он мотается не тяжелее чем дроссель. Берём кольцо с проницаемостью 2000 НМ (размеры такие же, как и у дросселя, можно меньше, это не критично) и мотаем в 3 жилы проводом МГТФ 20 витков.
![]()
![]()
Нет такого провода — не беда, можно и обыкновенным эмалированным с диаметром 0,4–0,6 мм.
![]()
![]()
Единственное где нужно быть внимательным, это при установке его на плату. Соблюдайте фазировку! Выходные обмотки включены встречно — это важно.
![]()
Следует также показать, что происходит на затворах транзисторов. Это для тех, у кого есть осциллограф.
![]()
![]()
Как видим довольно четкий сигнал. Он немного завален, но на работу это не влияет.
Ну вот и вся информация про блок. Первое включение желательно производить от низковольтного питания, отключив эту схему и подав 12В одновременно и на силу, и на управление.
![]()
![]()
Проверяем напряжение на выходе. Если оно присутствует, то уже можно включать в сеть.
![]()
Для начала проверим выходное напряжение. Как видим блок рассчитан на напряжение 24В, но получилось чуть меньше из-за разброса стабилитронов.
![]()
Такая погрешность не критична.
Теперь давайте проверим самое главное — стабилизацию. Для этого возьмем лампу на 24В, мощностью 100Вт и подключим ее в нагрузку.
![]()
![]()
Как видим, напряжение не просело и блок выдержал без проблем. Можно нагрузить еще сильнее.
![]()
Как видим результат тот же, напряжение стабильно. Также проверим защиту от короткого замыкания. Для этого выкручиваем резистор в верхнее положение и коротим выводы.
![]()
![]()
![]()
Ничего не взорвалось и блок себя спас. Ну а теперь, подстраивая номинал резистора, можно выбрать любой ток ограничения короткого замыкания под ваши нужды.
Печатную плату, схему и другие необходимые материалы можно скачать ниже.
Видео о данном импульсном блоке питания:
Источник



























































































































