Меню

Led лампа своими руками на светодиодах

    Здравствуйте уважаемые посетители сайта «Радиосхемы«. Хочу предоставить свою разработку сетевой светодиодной лампы, на основе цоколя от КЛЛ. Выкладываю свою конструкцию, возможно кому будет интересно сделать аналогичную переделку, тем более себестоимость её копеечная. Однако в отличии от LED светильников USB, подключать светодиоды напрямую к 220, нельзя — нужен понижающий блок питания.

Принципиальная схема простой LED лампочки

Принципиальная схема простой LED лампочки

    Схема источника питания светодиодов собрана без ограничительных стабилитронов, так как нет их пока в наличии, согласно приведённой схемы, но работает и так. Без стабилитронов на светодиоды поступает 84 В, что пока терпимо, позже найду, добавлю. Понятно, что это увеличивает риск пробоя светодиодов бросками тока при включении. Более подробное описание работы схемы, а также технологию разборки неисправной стеклянной энергосберегалки — читайте на форуме (в архиве).

Изготовление светодиодной лампы на цоколе от КЛЛ

    По сравнению с обычной лампой, светит примерно на 60 Вт, при намного меньшей потребляемой мощности. Фотик не передаст правильную яркость. У меня стоят широкоугольные светодиоды 5 канделл, а при желании, можно поставить четырёхкристальные светодиоды, и тогда яркость будет намного больше!  

Изготовление светодиодной лампы на цоколе от люминисцентной

    Или же поставить широкоугольные светодиоды 10мм — схемку пересчитать не долго! 

СВЕТОДИОДНАЯ ЛАМПОЧКА - ПП

СВЕТОДИОДНАЯ ЛАМПОЧКА - ПП на диоды

    Печатную плату разработал такую, но вы можете корректировать файл Lay под свои детали и вкусы. В принципе допустимо собрать и навесным монтажом, но надёжность снизится — всё таки 220 вольт, так что поаккуратнее!

самодельная светодиодная лампочка на 220 вольт

Небольшая СВЕТОДИОДНАЯ ЛАМПОЧКА СВОИМИ РУКАМИ

    Рабочее напряжение балластного конденсатора должно быть минимум 400 вольт, ни в коем случае не 250! При установке 19-ти светодиодов, конденсатор фильтра нужно поставить 47х100 В. Автор проекта: Igoran.

    Форум по самодельным диодным лампам

   Форум по обсуждению материала СВЕТОДИОДНАЯ ЛАМПОЧКА СВОИМИ РУКАМИ


МИКРОФОНЫ MEMS

Led лампа своими руками на светодиодахМикрофоны MEMS — новое качество в записи звука. Подробное описание технологии.

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света — настоящее чудо. Энергосберегающие лампы — их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Сравнительная таблица ламп

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) — вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток — они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток — отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Различные виды люминесцентных ламп

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование — не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.Светодиодная лента
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем.Светодиодная лента и светильник Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.Схема светодиодной ленты
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже.Схема переделанной светодиодной ленты В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.LED лента на светильнике
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату.Плата управления LED лентой На схеме показано, что должно в итоге получиться, более подробно.Выпрямитель переменного напряжения
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.Готовые светильники

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество — направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Светильник, установленный на кухонном гарнитуре

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

Понадобятся:

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше — пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:

  1. Сначала нужно разобрать старый светильник. В люминесцентных компактных лампах цоколь присоединяется к пластинке с трубками при помощи защелок. Если найти места с защелками и поддеть их отверткой, то цоколь отсоединится достаточно просто. При разборке нужно быть осторожным, чтобы не повредить трубки. Если они лопнут, то наружу попадут ядовитые вещества, содержащиеся в них. При вскрытии следите, чтобы электропроводка, ведущая к цоколю, осталась цела. Также не выбрасывайте содержимое цоколя.Разобранная КЛЛ
  2. Из верхней части с газоразрядными трубками нужно сделать пластинку, к которой будут крепиться светодиоды. Для этого отсоединяем трубки лампочки. В оставшейся пластинке находится 6 отверстий. Чтобы светодиоды надежно крепились в ней, нужно сделать пластмассовое или картонное «дно», которое также будет изолировать светодиоды.Деталь КЛЛ для крепления трубок Использовать будем светодиоды НК6 (фото внизу). Их достоинство в том, что они многокристальные (по 6 кристаллов в диоде) с параллельным подключением. Из-за этого источник света получается достаточно ярким при минимальной мощности.Светодиоды
  3. В крышке делаем по 2 отверстия для каждого светодиода. Прокалывайте отверстия аккуратно и равномерно, чтобы их расположение и задуманная схема соответствовали друг другу. При использовании в качестве «дна» куска пластмассы светодиоды будут крепиться довольно прочно, но в случае применения куска картона понадобится склеить основание со светодиодами с помощью суперклея или жидких гвоздей.Установленные светодиоды
  4. Так как лампочка будет применяться в сети с напряжением 220 вольт, то понадобится драйвер RLD2-1. К нему можно подсоединить 3 одноваттных диода. У нас же 6 светодиодов с мощностью 0,5 ватт каждый. Поэтому схема соединения будет состоять из двух последовательно соединенных частей, в каждой части располагается 3 параллельно подсоединенных светодиода.Схема подключения светодиодов Вверху приведена схема, а в реальности вся конструкция выглядит так:Соединение светодиодов проводами
  5. Перед сборкой нужно изолировать драйвер и плату друг от друга при помощи кусочка картона или пластика. Это позволит избежать короткого замыкания в будущем. Беспокоиться о перегреве не стоит, лампа практически не нагревается.Подключение светодиодов к цоколю
  6. Осталось собрать конструкцию и проверить в деле.Испытание готовой лампы

Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность — всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза — люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных — низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

Видео

Светодиодное освещение позволяет значительно снизить расходы на электроэнергию. У светодиодных ламп есть целый ряд преимуществ, по сравнению с обычными или энергосберегающими лампами накаливания. При наличии необходимых материалов такой источник освещения можно собрать самостоятельно.

Достоинства светодиодных ламп и недостатки

Благодаря своим многочисленным достоинствам, светодиоды уже давно пользуются немалой популярностью. Устанавливая в доме такое освещение, можно не только существенно сэкономить на электроэнергии, но и обезопасить свое здоровье.

Если делать сравнение светодиодных ламп с популярными аналогами, то они отличаются:

  • Слабым тепловыделением.
  • Более низким энергопотреблением (питание светодиодных ламп происходит от электросети) и отсутствием ультрафиолетового излучения.
  • Длительным сроком службы, превышающим 10 лет.
  • Маленьким весом.
  • Быстро разогреваются (почти за секунду).
  • Экологически чистые.

Единственным недостатком таких ламп является их цена, которая гораздо выше, чем стоимость популярных аналогов.

Светодиодная лампа на 220В своими руками

Имея некоторые знания по электротехнике, такой осветительный прибор можно сделать самостоятельно, не используя при этом сложного оборудования. Собранная на 220В позволяет сэкономить на покупке осветительных приборов.

Сделать или купить?

Светодиодная лампа является оптимальным решением для освещения помещения. Но как поступить лучше: приобрести уже готовые модели или сделать их самостоятельно? Давайте рассмотрим плюсы обоих сторон.

Достоинства самодельных светодиодных ламп

  • Этот способ получения светодиодного освещения самый дешевый.
  • Несложная схема сборки позволяет выполнить такую работу самостоятельно даже начинающим электрикам.
  • Если сборка своими руками произведена правильно, эффективность свечения ничем не будет уступать устройствам фабричного производства.
  • Чтобы самодельная светодиодная лампа работала, понадобится напряжение 220 В. Как известно, с этим проблемы абсолютно никакой нет.

Чем покупные изделия лучше?

  • Гарантия качества изделий. Но это только при том условии, что покупается продукция проверенных производителей.
  • Более продолжительный срок службы, превосходящий в несколько раз обычные лампы накаливания.
  • Качественное освещение помещения.
  • Гарантия от производителя. Есть производители, которые возвращают деньги за лампочку или обменивают ее на новую при возникновении неисправности или обнаружении заводского брака.

Но нужно понимать, что покупная светодиодная лампочка обойдется гораздо дороже, чем сделанная самостоятельно. Итак, выбор остается за вами. Далее рассмотрим, как сделать полноценную светодиодную лампу на 220В своими руками.

Как сделать светодиодную лампу из энергосберегающей лампочки

Процедура изготовления такого устройства у специалистов может занять не более часа при наличии заранее заготовленной платы. Самодельная светодиодная лампа на 220 Вольт прослужит достаточно длительное время.

Для работы необходимо приобрести следующие детали:

  • Обычную энергосберегающую лампу (подойдет перегоревшая).
  • Для крепления диодов необходим стеклотекстолит.
  • Поваренная соль и медный купорос.
  • Набор радиодеталей, необходимый для схемы.

Из стеклотекстолита вырезается круг, имеющий небольшой диаметр (отлично подойдет диаметр в 30 мм). Для нанесения на будущую схему дорожки может использоваться самый обыкновенный женский лак для ногтей. Для того, чтобы плату стравить, ее необходимо поместить в раствор с поваренной солью и медным купоросом. Консистенцию его следует составлять по следующей пропорции: поваренная соль — две ложки, медный купорос — одна ложка. Все компоненты необходимо залить горячей водой, тщательным образом размешать и поместить в полученный состав будущую плату. Чаще всего достаточно одних суток для того, чтобы вся медь с платы слезла. Останется только участок, покрытый лаком.

При помощи растворителя оставшийся лак нужно убрать. Дальше делаются в плате отверстия под радиоэлементы. Ее предварительно нужно полудить. Теперь, когда закончены все подготовительные работы, можно приступать к выполнению окончательной пайки.

Необходимо аккуратно разобрать старую лампу. Затем нужно удалить все имеющиеся внутренности. Не забудьте оставить только два провода, припаянные к цоколю лампы. После отсоединения всех внутренностей, припаивается схема к двум проводам. Чтобы закрепить плату внутри пластикового корпуса лампы, используется термоклей.

Изготовление светодиодной лампы из люминесцентной лампочки

Рассмотрим, как сделать лампу, используя люминесцентную лампочку. Принцип ее изготовления несколько схож с тем, который описан выше. Только здесь будет использоваться люминесцентная лампа и разрезанные части светодиодной ленты. Сделанная своими руками светодиодная лампа на 220В будет радовать вас долгим временем работы и приятным светом. Ее можно установить в любую комнату и в любой светильник.

Для работы следует запастись следующими деталями:

  • Оставшимися диодами лампы.
  • Конденсатором.
  • Электролитическим конденсатором.
  • Четырьмя кусочками светодиодной ленты.

Из сгоревшей люминесцентной лампы нужно удалить все внутренности, кроме предохранителя. Затем необходимо разрезать подготовленную светодиодную ленту, которая выпускается так, что ее можно разделить на одинаковые части по 12 В. Должны получиться куски, состоящие из трех светодиодов. Отрезанные куски следует последовательно соединить.

Части светодиодной ленты прикрепляются так, чтобы получилось удлинение цоколя. Для этого лучше использовать пенокартон, хорошо поддающийся шлифовке. К нему можно легко при помощи клея прикрепить диодную ленту. Для создания привлекательного дизайна такого устройства можно выровнять все недочеты, используя жидкие гвозди. После высыхания будут выглядывать только диоды.

Итак, в данной статье было рассмотрено, как сделать лампу своими руками. Если выполнить процесс правильно, следуя инструкциям, прибор сможет прослужить вам много лет.

LED-светильники находят широкое применение в организации бытового, уличного, промышленного освещения. Их важными достоинствами является экономичность, экологичность, неприхотливость в обслуживании.

Изготовленная светодиодная лампа своими руками обязательно найдет свое применение в вашем доме. Подробную инструкцию по изготовлению, как и схемы сборки вы найдете в представленной статье.

Основой светодиодной лампы является односторонний полупроводник, величина которого составляет несколько миллиметров. В нем происходит однонаправленное движение электронов, что позволяет преобразовывать переменный ток в постоянный.

Состоящему из нескольких слоев кристаллу светодиода свойственны два типа электропроводимости: положительно и отрицательно заряженных частиц.

Сторона, где содержится минимальное количество электронов, получила названия дырочной (p-тип), тогда как другая с большим количеством этих частиц именуется электронной (n-тип).

При столкновении элементов на p-n-переходе они сталкиваются, генерируя частицы света фотоны. Если в это время поддерживать систему в постоянном напряжении, светодиод будет излучать стабильный поток света. Этот эффект используется во всех конструкциях LED-ламп.

Четыре разновидности светодиодных устройств

В зависимости от размещения светодиодов подобные модели можно разделить на следующие категории:

  1. DIP
    . Кристалл скомпонован с двумя проводниками, над которыми находится увеличитель. Модификация получила широкое распространение при изготовлении вывесок и гирлянд.
  2. «Пиранья»
    . Приборы собирают аналогично предыдущему варианту, но предусматривают четыре вывода. Надежные и прочные конструкции чаще всего применяют для оснащения автомобилей.
  3. SMD
    . Кристалл размещается сверху, что значительно улучшает отведение тепла, а также помогает уменьшить габариты устройств.
  4. СОВ
    . В этом случае светодиод впаивается непосредственно в плату, что способствует увеличению интенсивности свечения и защите от перегрева.

Существенный недостаток COB-устройств — невозможность замены отдельных элементов, из-за чего приходится приобретать новый механизм из-за одного-единственного вышедшего из строя чипа.

В люстрах и других бытовых осветительных приборах обычно применяется конструкция SMD.

Устройство LED-ламп

Светодиодная лампа состоит из шести следующих частей:

  • светодиод;
  • цоколь;
  • драйвер;
  • рассеиватель;
  • радиатор.

Действующим элементом подобного прибора является светодиод, генерирующий поток световых волн.

Светодиодные приборы могут быть рассчитаны на различное напряжение. Наиболее востребованы небольшие изделия на 12-15 Вт и более крупные светильники на 50 ватт

Цоколь, который может иметь различный вид и размер, применяется и для других видов ламп – люминесцентных, галогенных, накаливания. В то же время некоторые LED-приборы, например, светодиодные ленты, могут обходиться без этой детали.

Важным элементом конструкции служит драйвер, преобразующий сетевое напряжение в ток, на которой работает кристалл.

От этого узла во многом зависит эффективная работа лампы, кроме того, качественный , имеющий хорошую гальваническую развязку, обеспечивает яркий постоянный световой поток без намека на моргание.

Обычный светодиод производит направленный пучок света. Чтобы изменить угол его распределения и обеспечить качественное освещение, используется рассеиватель. Еще одной функцией этого компонента является защита схемы от механических и природных воздействий.

Радиатор предназначен для отвода тепла, излишки которого могут повредить прибору. Надежная работа радиатора позволяет оптимизировать работу лампы и продлить ей жизнь.

Чем меньше эта деталь, тем большую тепловую нагрузку придется выдерживать светодиоду, что скажется на быстроте его выгорания.

Преимущество и недостатки самодельной лампы

Специализированные магазины предлагают большой выбор светодиодных аппаратов. Однако порой в ассортименте невозможно найти прибор, отвечающий необходимым параметрам. Кроме того, LED-приборы традиционно отличаются высокой стоимостью.

К недостаткам изделий следует отнести отсутствие гарантии от производителя. Кроме того, при небрежной сборке подобные устройства могут иметь непривлекательный внешний вид

Между тем, вполне возможно сэкономить средства и получить идеальную лампу, выполнив сборку самостоятельно. Сделать это несложно и достаточно будет элементарных технических знаний и практических умений.

Выполненное своими руками LED-устройство имеет ряд значительных преимуществ над приобретенным в магазине аналогом. Они отличаются экономичностью: при аккуратной сборке и использовании качественных деталей период эксплуатации достигает 100 тысяч часов.

Такие приборы показывают высокую степень энергоэффективности, которая определяется соотношением потребляемой мощности и яркости выработанного света. Наконец, их стоимость на порядок ниже, чем фабричных аналогов.

Проблемы самостоятельного изготовления

Главными вопросами, которые приходится решать при изготовлении LED-ламп, является перевод переменного электрического тока в пульсирующий и его выравнивание до постоянного. Помимо этого, предстоит ограничить силу электропотока 12 вольтами, что необходимо для питания диода.

Для самостоятельного создания светильника на светодиодах можно воспользоваться деталями, купленными в специализированных магазинах, или элементами из перегоревших приборов

Продумывая устройство, следует также решить ряд конструктивных задач, а именно:

  • как расположить схему и светодиоды;
  • как изолировать систему;
  • как обеспечить теплообмен в устройстве.

Перед сборкой желательно продумать все эти проблемы с учетом требований, которые предъявляются к самодельному источнику света.

Схемы светодиодных ламп

Прежде всего, следует выработать вариант сборки. Существует два основных способа, каждый из которых имеет собственные плюсы и минусы. Ниже мы рассмотрим их подробнее.

Вариант с диодным мостом

Схема включает четыре диода, которые подключаются разнонаправленно. Благодаря этому мост приобретает возможность трансформировать сетевой ток в 220 V в пульсирующий.

Происходит это следующим образом: при проходе по двум диодам синусоидальных полуволн, они изменяются, что вызывает потерю полярности.

При сборке к плюсовому выходу перед мостом подключается конденсатор; перед минусовой клеммой – сопротивление на 100 Ом. Еще один конденсатор устанавливается позади моста: он понадобится для сглаживания перепадов напряжения.

Изготовление светодиодного элемента

Наиболее простым способом создания LED светильника является выполнение источника света на основе сломанного светильника. Необходимо проверить работоспособность обнаруженных деталей, что можно сделать с помощью аккумулятора на 12 V.

Неисправные элементы нужно заменить. Для этого следует распаять контакты, убрав перегоревшие элементы, поставить на их место новые. При этом важно соблюдать чередование анодов и катодов, которые крепятся последовательно.

Если требуется поменять лишь 2-3 штуки чипа, достаточно просто припаять их на участки, где ранее находились вышедшие из строя компоненты.

При полной самостоятельной сборке нужно соединять в ряд по 10 диодов, соблюдая правила полярности. Несколько выполненных цепей припаиваются к проводам.

При изготовлении лампы можно воспользоваться платами со светодиодами, которые можно найти в перегоревших устройствах. Важно лишь проверить их работоспособность

При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя.

Приспособления для более мягкого света

Чтобы избежать мерцания, свойственного LED-светильникам, описанную выше схему можно дополнить несколькими деталями. Таким образом, она должна состоять из диодного моста, резисторов на 100 и 230 Ом, конденсаторов на 400 нФ и 10 мкФ.

Чтобы защитить устройство от перепадов напряжения в начале схемы помещается резистор в 100 Ом, за которым впаивается конденсатор 400 нФ, после него устанавливается диодный мост и еще один резистор на 230 Ом, за которым идет собранная цепочка светодиодов.

Приборы с резисторным сопротивлением

Подобная схема также вполне доступна начинающему мастеру. Для ее выполнения требуются два резистора 12k и две цепочки из одинакового числа светодиодов, которые припаиваются последовательно с учетом полярности. При этом одна полоса со стороны R1 подсоединяется катодом, а другая – с R2 – анодом.

Выполненные по этой схеме светильники имеют более мягкий свет, поскольку действующие элементы зажигаются по очереди, благодаря чему пульсация вспышек почти незаметна невооруженному глазу.

Материалы для изготовления самоделки

Помимо корпуса, для создания лампы потребуются и другие элементы. Это, прежде всего светодиоды, которые можно приобрести в виде LED-лент или отдельных элементов НК6. Сила тока каждой детали равна 100-120 мА; напряжение 3-3,3 V.

Сборка некоторых схем предполагает использование дополнительных звеньев, например, драйвера, поэтому набор компонентов для каждого конкретного случая рассматривается отдельно

Необходимы также выпрямительные диоды 1N4007 либо диодный мост, а также предохранители, обнаружить которые можно в цоколе старого прибора.

Понадобится и конденсатор, емкость и напряжение которого должны соответствовать используемой электросхеме и количеству использованных в ней LED-элементов.

Если не используется готовая плата, нужно подумать о каркасе, к которому крепятся светодиоды. Для его изготовления подойдет теплоустойчивый материал, не являющийся металлом и непроводящий электрический ток.

Как правило, подобную деталь выполняют из прочных пластиков или плотного картона. Для крепления светодиодных элементов к каркасу понадобятся жидкие гвозди или суперклей.

Собираем простую LED-лампу

Рассмотрим выполнение светильника в стандартном цоколе от люминесцентной лампы. Для этого нам придется несколько изменить приведенный выше список материалов.

В этом случае мы используем:

  • старый цоколь Е27;
  • светодиоды НК6;
  • драйвер RLD2-1;
  • кусок пластика или плотного картона;
  • суперклей;
  • электропроводку;
  • паяльник, плоскогубцы, ножницы.

Первоначально требуется разобрать светильник. У люминесцентных устройств подсоединение цоколя к пластинке с трубками осуществляется с помощью защелок. Важно обнаружить место крепежа и поддеть элементы отверткой, что позволит легко отсоединить патрон.

Процесс сборки самодельной светодиодной лампы простой. В корпус от старого прибора вставляется драйвер, поверх которого устанавливается плата со светодиодами

Разбирая прибор, нужно соблюдать предельную осторожность, чтобы не нанести вреда трубкам, внутри которых находится ядовитое вещество. Одновременно необходимо следить за целостностью электропроводки, подсоединенной к цоколю, а также сохранять детали, содержащиеся в нем.

Верхнюю часть с подсоединенными газоразрядными трубками мы используем для выполнения пластинки, необходимой для подсоединения светодиодов. Достаточно удалить трубчатые элементы, а в оставшиеся круглые отверстия закрепить LED-детали.

Для их надежного крепления лучше сделать дополнительную пластмассовую или картонную крышку, которая послужит для изолирования чипов.

В лампе будут применяться светодиоды НК6, каждый из которых состоит из 6 кристаллов с параллельным подключением. Они позволяют создать довольно яркий осветительный прибор при минимуме потребляемого электричества.

Для подключения каждого светодиода к крышке необходимо выполнить по два отверстия. Прокалывать их следует аккуратно в строгом соответствии схеме.

Пластиковая деталь позволяет прочно зафиксировать LED-элементы, тогда как использование картона требует дополнительного закрепления светодиодов к основанию при помощи жидких гвоздей либо суперклея.

Так как устройство рассчитано на применение шести светодиодов мощностью по 0,5 ватт каждый, в схеме нужно предусмотреть три параллельно подсоединенных элемента.

Эффектный светильник можно выполнить, используя светодиодную ленту. Этот элемент вставляется в трубку, применяющуюся для люминесцентного освещения

В конструкции, которая будет работать от электросети мощностью 220 В, нужно предусмотреть драйвер RLD2-1, который следует приобрести в магазине или выполнить самостоятельно.

Во избежание короткого замыкания перед началом сборки важно заизолировать драйвер и плату друг от друга, используя пластик или картон. Поскольку лампа почти не нагревается, не стоит беспокоиться о перегреве.

Подобрав все компоненты можно собрать конструкцию по схеме, а затем подключить ее к электросети, чтобы проверить свечение.

Устройство, работающее от стандартного патрона с питанием 220 В, имеет низкое энергопотребление и мощность равную 3 Ваттам. Последний показатель в 2-3 раза меньше, нежели у люминесцентных устройств и в 10 раз меньше, чем у ламп накаливания.

Хотя световой поток равен всего лишь 100-120 люменов, благодаря ослепительно белому цвету лампа кажется значительно ярче. Собранный светильник можно применять в качестве настольного либо для освещения компактного помещения, например, коридора или чулана.

Выводы и полезное видео по теме

В приведенном ниже видеоролике вы можете увидеть подробный рассказ специалиста о самостоятельной сборке LED-светильника:

Лампы на светодиодах, выполненные самостоятельно, обладают высокими техническими характеристиками. Они почти не уступают фабричным моделям по таким качествам, как прочность, надежность, долговечность.

Сборка подобных устройств доступна практически каждому: для успешного ее выполнения необходимо лишь строго следовать схемам и аккуратно выполнять все предписанные манипуляции.

Возможно вам уже приходилось собирать светодиодную лампу своими руками и вы можете дать ценный совет посетителям нашего сайта? Или после прочтения статьи появились вопросы? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Можно ли своими руками от начала до конца сделать светодиодную лампу (LED), работающую от напряжения 220 вольт? Оказывается, можно. В этом увлекательном занятии вам помогут наши советы и инструкции.

Преимущества светодиодных ламп

Светодиодное освещение в доме — это не просто современно, но и стильно, и ярко. Консервативным любителям ламп накаливания остаются слабенькие «лампочки Ильича» – Федеральный закон «Об энергосбережении», принятый в 2009 году, с 1 января 2011 года запрещает производство, импорт и продажу ламп накаливания мощностью более 100 Вт. Продвинутые пользователи давно перешли на компактные люминесцентные лампы (КЛЛ). Но светодиоды обходят всех своих предшественников:

  • энергопотребление светодиодной лампы меньше в 10 раз, чем у соответствующей лампы накаливания, и почти на 35% меньше, чем у КЛЛ;
  • сила света LED лампы больше соответственно на 8 и на 36%;
  • достижение полной мощности светового потока происходит мгновенно, в отличие от КЛЛ, которым для этого требуется около 2 минут;
  • себестоимость — при условии изготовления лампы самостоятельно — стремится к нулю;
  • светодиодные лампы экологичны, потому что не содержат ртути;
  • срок службы светодиодов измеряется десятками тысяч часов. Поэтому LED лампы практически вечны.

Сухие цифры подтверждают: за LED — будущее.

Конструкция современной заводской LED лампы

Светодиод здесь изначально собран из множества кристаллов. Поэтому для того, чтобы собрать такую лампу, не нужно припаивать многочисленные контакты, надо присоединить лишь одну пару.

Светодиодная лампа состоит из цоколя, драйвера, радиатора, самого светодиода и рассеивателя

Типы светодиодов

Светодиод — полупроводниковый многослойный кристалл с электронно-дырочным переходом. Пропуская через него постоянный ток, мы получаем световое излучение. От обычного диода светодиод отличается и тем, что при неправильном подключении он немедленно сгорает, так как имеет малое значение пробивного напряжения (несколько вольт). Если светодиод перегорает, его надо полностью менять, ремонт невозможен.

Есть четыре основных типа светодиодов:

Самодельная и правильно собранная LED лампа будет служить многие годы, при этом её можно будет ремонтировать.

Перед тем как приступить к самостоятельной сборке, нужно выбрать способ электропитания для нашей будущей лампы. Вариантов много: от батарейки до сети переменного тока на 220 вольт — через трансформатор или напрямую.

Проще всего собрать LED на 12 вольт из перегоревшей «галогенки». Но она потребует довольно массивного внешнего блока питания. Лампа же с обычным цоколем, рассчитанная на напряжение 220 вольт, подходит к любому патрону в доме.

Поэтому в нашем руководстве мы не будем рассматривать создание 12-вольтового LED источника света, а покажем пару вариантов конструирования лампы на 220 вольт.

Поскольку мы не знаем уровня вашей электротехнической подготовки, то не можем дать гарантии, что у вас на выходе получится правильно работающий прибор. Кроме того, вы будете работать с опасным для жизни напряжением, и если что-то будет сделано неточно и неправильно, возможны повреждения и ущерб, за что мы не будем нести ответственность. Поэтому будьте осторожны и внимательны. И у вас всё получится.

Драйверы для светодиодных ламп

Яркость свечения светодиодов прямо зависит от силы тока, проходящего через них. Для устойчивой работы они нуждаются в источнике постоянного напряжения и стабилизированном токе, не превышающем предельно допустимую для них величину.

Резисторами — ограничителями тока — можно обойтись лишь для маломощных светодиодов. Можно упростить несложный расчёт количества и характеристик резисторов, найдя в сети калькулятор светодиодов, в котором не только выдаются данные, но и создаётся готовая электрическая схема конструкции.

Для питания лампы от сети необходимо использовать специальный драйвер, преобразующий входное переменное напряжение в рабочее для светодиодов. Простейшие драйверы состоят из минимального количества деталей: входного конденсатора, нескольких резисторов и диодного моста.

В схеме простейшего драйвера через ограничительный конденсатор напряжение питания подаётся на выпрямительный мост, а затем на лампу

Подключение мощных светодиодов осуществляется через электронные драйверы, контролирующие и стабилизирующие ток и имеющие высокий КПД (90-95%). Они обеспечивают стабильный ток даже при резких изменениях напряжения питания в сети. Резисторы этого делать не умеют.

Рассмотрим самые простые и чаще всего используемые драйверы для светодиодных ламп:

  • линейный драйвер совсем прост и применяется для малых (до 100 мА) рабочих токов или в случаях, когда напряжение источника равно падению напряжения на светодиоде;
  • импульсный понижающий драйвер более сложен. Он разрешает запитывать мощные светодиоды источником намного более высокого напряжения, чем необходимо для их работы. Недостатки: большой размер и электромагнитные помехи, генерируемые дросселем;
  • импульсный повышающий драйвер используется, когда рабочее напряжение светодиода больше, чем напряжение, получаемое от источника питания. Недостатки те же, что и у предыдущего драйвера.

В любую LED лампу на 220 вольт для обеспечения оптимального режима работы всегда встроен электронный драйвер.

Чаще всего несколько неисправных светодиодных ламп разбирают, удаляют перегоревшие светодиоды и радиодетали драйвера, а из целых монтируют одну новую конструкцию.

Но можно сделать светодиодную лампу и из обычной КЛЛ. Это вполне себе привлекательная идея. Мы уверены, что у многих рачительных хозяев в ящиках с деталями и запчастями сохраняются неисправные «энергосберегайки». Выкинуть жалко, применить некуда. Сейчас мы расскажем, как из энергосберегающей лампы (цоколь E27, 220 В) создать светодиодную лампу буквально за пару часов.

Неисправная КЛЛ всегда даёт нам качественный цоколь и корпус под светодиоды. Кроме того, из строя обычно выходит именно газоразрядная трубка, но не электронное устройство для её «поджига». Действующую электронику мы опять откладываем в загашник: её можно разобрать, а в умелых руках эти детали ещё послужат чему-нибудь хорошему.

Виды цоколей современных ламп

Цоколь — это резьбовая система для быстрого соединения и фиксации источника света и патрона, подачи питания источнику от электросети и обеспечения герметичности вакуумной колбы. Маркировка цоколей расшифровывается следующим образом:

  1. Первая буква маркировки обозначает тип цоколя:
    • B — со штифтом;
    • Е — с резьбой (разработан ещё в 1909 году Эдисоном);
    • F — с одним штырём;
    • G — с двумя штырями;
    • H — для ксенона;
    • K и R — соответственно с кабельным и утопленным контактом;
    • P — фокусирующий цоколь (для прожекторов и фонарей);
    • S — софитный;
    • T — телефонный;
    • W — с контактными вводами в стекле колбы.
  2. Вторая буква U, A или V показывает, в каких лампах применяется цоколь: в энергосберегающих, автомобильных или с коническим концом.
  3. Следующие за буквами цифры обозначают диаметр цоколя в миллиметрах.

Самым распространённым цоколем с советских времён считается E27 — резьбовой цоколь диаметром 27 мм на напряжение 220 В.

Создание светодиодной лампы E27 из энергосберегающей с применением готового драйвера

Для самостоятельного изготовления светодиодной лампы нам понадобятся:

  1. Вышедшая из строя лампа КЛЛ.
  2. Пассатижи.
  3. Паяльник.
  4. Припой.
  5. Картон.
  6. Голова на плечах.
  7. Умелые руки.

Мы будем переделывать под светодиодную неисправную КЛЛ марки «Космос».

«Космос» является одной из самых популярных марок современных энергосберегающих ламп, поэтому у многих рачительных хозяев обязательно найдётся несколько её неисправных экземпляров

Пошаговая инструкция изготовления светодиодной лампы

  1. Находим неисправную энергосберегающую лампу, которая давно лежит у нас «на всякий случай». Наша лампа имеет мощность 20 Вт. Пока главный интересующий нас компонент — цоколь.
  2. Аккуратно разбираем старую лампу и удаляем из неё все, кроме цоколя и идущих от него проводов, с которыми мы потом соединим пайкой готовый драйвер. Лампа собрана с помощью выступающих над корпусом защёлок. Нужно разглядеть их и чем-нибудь поддеть. Иногда цоколь крепится к корпусу сложнее — кернением точечных углублений по окружности. Тут придётся высверлить точки кернения или аккуратно пропилить их ножовкой. Один питающий провод припаян к центральному контакту цоколя, второй — к резьбе. Оба они очень короткие. Трубки при этих манипуляциях могут лопнуть, поэтому надо действовать осторожно.
  3. Очищаем цоколь и обезжириваем его ацетоном или спиртом. Повышенное внимание стоит уделить отверстию, которое тоже тщательно очищаем от лишнего припоя. Это нужно для дальнейшей пайки в цоколе.

    Пусковая плата для газоразрядной трубки, встроенная в люминесцентную лампу, для создания светодиодного устройства нам не подойдёт

  4. Крышечка цоколя имеет шесть отверстий — в них крепились газоразрядные трубки. Используем эти дырки для наших светодиодов. Подложим под верхнюю часть вырезанный маникюрными ножницами круг такого же диаметра из подходящего кусочка пластика. Сгодится и плотный картон. Он и зафиксирует контакты светодиодов.

    С обратной стороны цоколь имеет шесть круглых отверстий, в которые мы будем устанавливать светодиоды

  5. У нас имеются многокристальные светодиоды HK6 (напряжение 3,3 В, мощность 0,33 Вт, ток 100-120 мА). Каждый диод собран из шести кристаллов (соединённых параллельно), поэтому светит ярко, хотя мощным и не называется. Учитывая мощность этих светодиодов, соединяем их по три штуки параллельно.

    Каждый светодиод светит довольно ярко сам по себе, поэтому шесть штук в составе лампы обеспечат хорошую силу света

  6. Обе цепочки соединяем последовательно.

    Две цепочки из трёх параллельно включённых светодиодов каждая соединяются последовательно

  7. В результате получаем довольно красивую конструкцию.

    Шесть вставленных в гнёзда светодиодов образуют мощный и равномерный источник света

  8. Простой готовый драйвер можно взять из сломанной светодиодной лампы. Сейчас, чтобы подключить шесть белых одноваттных светодиодов, мы используем такой драйвер на 220 вольт, например, RLD2–1.

    Драйвер подключается к светодиодам по параллельной схеме

  9. Вставляем драйвер в цоколь. Ещё один вырезанный круг пластика или картона помещаем между платой и драйвером, чтобы избежать замыкания между контактами светодиодов и деталями драйвера. Лампа не нагревается, поэтому прокладка годится любая.

    Положительное отличие китайских цоколей от российских: паяются они гораздо лучше

  10. Собираем нашу лампу и проверяем, работает ли она.

    Собрав лампу, необходимо подключить её к источнику напряжения и убедиться, что она горит

Мы создали источник с силой света примерно 150-200 лм и мощностью около 3 Вт, аналогичный 30-ваттной лампе накаливания. Но из-за того, что наша лампа имеет белый цвет свечения, она визуально выглядит ярче. Освещаемый ею участок комнаты можно увеличить, подогнув светодиодные выводы. К тому же мы получили замечательный бонус: трехваттную лампу можно даже не выключать — счётчик её практически не «видит».

Создание светодиодной лампы с применением самодельного драйвера

Гораздо интереснее не применять готовый драйвер, а сделать его самостоятельно. Конечно, если вы хорошо владеете паяльником и имеете базовые навыки чтения электрических схем.

Мы рассмотрим травление платы после рисования на ней схемы вручную. И, конечно, всем будет интересно возиться с химическими реакциями, применяя доступные химикалии. Как в детстве.

Нам понадобятся:

  1. Кусок фольгированного медью с двух сторон стеклотекстолита.
  2. Элементы нашей будущей лампы согласно сгенерированной схеме: резисторы, конденсатор, светодиоды.
  3. Дрель или мини-дрель для сверления стеклотекстолита.
  4. Пассатижи.
  5. Паяльник.
  6. Припой и канифоль.
  7. Лак для ногтей или канцелярский корректирующий карандаш.
  8. Поваренная соль, медный купорос или раствор хлорида железа.
  9. Голова на плечах.
  10. Умелые руки.
  11. Аккуратность и внимательность.

Текстолит используется в случаях, когда нужны электроизоляционные свойства. Это многослойный пластик, слои которого состоят из ткани (в зависимости от вида волокон тканевого слоя бывают базальттекстолиты, углеродотекстолиты и прочие) и связующего вещества (полиэфирная смола, бакелит и прочее):

  • стеклотекстолит — это стеклоткань, пропитанная эпоксидной смолой. Он отличается высоким удельным сопротивлением и термостойкостью — от 140 до 1800 o C;
  • фольгированный стеклотекстолит — это материал, покрытый слоем гальванической медной фольги толщиной 35-50 мкм. Он используется для изготовления печатных плат. Толщина композита — от 0,5 до 3 мм, площадь листа — до 1 м 2 .

Для изготовления печатных плат используется фольгированный стеклотекстолит

Схема драйвера для светодиодной лампы

Драйвер для LED лампы вполне можно сделать самостоятельно, например, опираясь на простейшую схему, которую мы рассмотрели в начале статьи. Туда необходимо лишь добавить несколько деталей:

  1. Резистор R3, чтобы разряжать конденсатор при отключении питания.
  2. Пару стабилитронов VD2 и VD3 для шунтирования конденсатора, если сгорит или оборвётся светодиодная цепь.

Если мы правильно подберём напряжение стабилизации, то сможем ограничиться и одним стабилитроном. Если же мы заложим напряжение больше 220 В, а под него выберем конденсатор, то обойдёмся вообще без дополнительных деталей. Но драйвер получится по размеру больше, и плата может не уместиться в цоколе.

Эта схема позволяет изготовить драйвер для лампы из 20 светодиодов

Эту схему мы создали, чтобы сделать лампу из 20 светодиодов. Если их больше или меньше, нужно подобрать другую ёмкость конденсатора С1, чтобы через светодиоды по-прежнему проходил ток 20 мА.

Драйвер будет понижать напряжение сети и пытаться сгладить скачки напряжения. Через резистор и токоограничивающий конденсатор напряжение сети подаётся на мостовой выпрямитель на диодах. Через другой резистор подаётся постоянное напряжение на блок светодиодов, и они начинают светить. Пульсации этого выпрямленного напряжения сглаживаются конденсатором, а когда лампа от сети отключается, то первый конденсатор разряжается ещё одним резистором.

Будет удобнее, если конструкция драйвера смонтирована с помощью печатной платы, а не представляет собой некий ком в воздухе из проводов и деталей. Плату вполне можно сделать самому.

Пошаговая инструкция по изготовлению светодиодной лампы с самодельным драйвером

  1. Генерируем с помощью компьютерной программы собственный рисунок для травления платы согласно задуманной конструкции драйвера. Очень удобна и популярна среди радиолюбителей бесплатная компьютерная программа Sprint Layout, позволяющая самостоятельно проектировать печатные платы невысокой сложности и получать изображение их разводки. Есть ещё одна прекрасная отечественная программа — DipTrace, рисующая не только платы, но и принципиальные схемы.

    Бесплатная компьютерная программа Sprint Layout генерирует подробную схему травления платы для драйвера

  2. Вырезаем из стеклотекстолита круг диаметром 3 см. Это и будет наша плата.
  3. Выбираем способ переноса схемы на плату. Все способы — страшно интересные. Можно:
    • нарисовать схему прямо на куске стеклотекстолита канцелярским корректирующим карандашом или специальным маркером для печатных плат, который продаётся в магазине радиодеталей. Тут есть тонкость: лишь этот маркер позволяет рисовать дорожки меньше или равные 1 мм. В остальных случаях ширина дорожки, как ни старайся, не будет меньше 2 мм. Да и медные пятачки для пайки выйдут неаккуратными. Поэтому нужно после нанесения рисунка подкорректировать его бритвой или скальпелем;
    • распечатать схему на струйном принтере на фотобумаге и припарить распечатку утюгом к стеклотекстолиту. Элементы схемы покроются краской;
    • нарисовать схему лаком для ногтей, который точно есть в любом доме, где живёт женщина. Это самый простой способ, им и воспользуемся. Старательно и аккуратно кисточкой от флакона рисуем дорожки на плате. Ждём, пока лак хорошо высохнет.
  4. Разводим раствор: 1 столовую ложку медного купороса и 2 столовые ложки поваренной соли размешиваем в кипятке. Медный купорос используется в сельском хозяйстве, поэтому его можно купить в садоводческих и строительных магазинах.
  5. Опускаем плату в раствор на полчаса. В результате останутся только медные дорожки, которые мы защитили лаком, остальная медь исчезнет во время реакции.
  6. Ацетоном удаляем оставшийся лак со стеклотекстолита. Сразу же нужно залудить (покрыть припоем с помощью паяльника) края платы и места контактов, чтобы медь стремительно не окислилась.

    Места контактов пропаиваются слоем припоя, смешанного с канифолью, чтобы защитить медные дорожки от окисления

  7. Согласно схеме делаем отверстия дрелью.
  8. Пропаиваем на плате светодиоды и все детали самодельного драйвера со стороны печатных дорожек.
  9. Устанавливаем плату в корпус лампы.

    После всех проведённых операций должна получиться светодиодная лампа, эквивалентная 100-ваттной лампе накаливания

Замечания по безопасности

  1. Хотя самостоятельная сборка светодиодной лампы — не очень сложный процесс, к нему не стоит даже приступать, если вы не обладаете хотя бы начальными электротехническими знаниями. Иначе собранная вами лампа при внутреннем коротком замыкании может навредить всей электрической сети вашего дома, включая дорогие электроприборы. Специфика светодиодной техники в том, что если некоторые элементы её схемы подключить неправильно, то возможен даже взрыв. Так что надо быть предельно аккуратным.
  2. Обычно светильники используются при напряжении 220 В переменного тока. Но конструкции, рассчитанные на напряжение в 12 В, подключать к обычной сети ни в коем случае нельзя, и вы должны об этом всегда помнить.
  3. В процессе изготовления самодельной светодиодной лампы компоненты светильника часто не могут быть сразу полностью изолированы от питающей сети 220 В. Поэтому вас может серьёзно ударить током. Даже если конструкция подключена к сети через блок питания, то вполне возможно, что она имеет простую схему без трансформатора и гальванической развязки. Поэтому к конструкции нельзя прикасаться руками, пока конденсаторы не разрядятся.
  4. Если лампа не заработала, то в большинстве случаев виновата некачественная спайка деталей. Вы были невнимательны или поспешно действовали паяльником. Но не отчаивайтесь. Пробуйте дальше!

Видео: учимся паять

Странное дело: в наш век, когда в магазинах есть абсолютно всё, как правило, недорогое и весьма разнообразное, после двадцатилетней эйфории люди всё чаще возвращаются к тому, чтобы делать домашние вещи своими руками. Немыслимо расцвело рукоделие, занятия столярным и слесарным мастерством. И в этот ряд уверенно возвращается простая прикладная электротехника.

LED лампочки 13,5 Вт для достаточного освещения помещения площадью 8 м 2 должно было быть вполне достаточно. Но на деле оказалось, что света немного не хватало.

Анализ показал, что причина недостаточного освещения при достаточной мощности лампы крылась в конструкции LED лампы. В нижней ее части, параллельной горизонту и направленной вниз находилось всего 36 светодиодов, а от остальных 162 световой поток шел в боковые стороны и в дополнение снижался, проходя через матовое стекло плафона. Таким образом, реальная освещенность пола была эквивалентна освещению светодиодной лампочкой направленного света мощностью не более трех ватт.

Из-за ошибочного выбора типа лампочки недостаточная освещенность помещения кухни, особенно в зимнее время, создавала дискомфорт, и пришло осознание того, что пора лампочку в люстре заменить на LED лампу другой конструкции.

Поиск недорогой светодиодной лампочки мощностью около 16-18 Вт с широким углом направленного теплого света не увенчалась успехом. Лампы с мощными одноваттными светодиодами из-за установленной оптики имели малый угол или не подходил цоколь. А подходящие лампы были очень дорогими. Лампы с маломощными светодиодами типа LED-Y-SMD352 или LED-Y-SMD5050 не устраивали по мощности.

Так как имеющийся светильник имел большой плафон, то возникла идея сделать мощную LED лампу своими руками из нескольких маломощных. В результате было куплено четыре недорогие лампы типа MR16 мощностью 4,5 Вт, для них четыре патрона с цоколем GU5.3 и из них сделана одна мощная лампа, свечение которой вы видите на фотографии.

Затраты составили менее $10, времени на переделку ушло несколько часов. Результат получился отличный. Правда, светильник стал выглядеть необычно, как будто соединились прошлое и хай-тек. Сделанная мощная LED лампа из нескольких маломощных получила дополнительное преимущество – в случае перегорания одной из них помещение будет продолжать освещаться в достаточной степени оставшимися лампочками, можно легко менять оттенок света, установив, например, две лампочки теплого, а две холодного света.

Изготовление мощной LED лампы

Любая работа по изготовлению самоделок начинается с эскизных работ – измерения размеров деталей и с учетом их габаритных и присоединительных размеров составления общего эскиза будущего изделия.

Для изготовления составной одной мощной LED лампы из нескольких маломощных понадобится цоколь под патрон Е27 с основанием от энергосберегающей ламы , четыре лампы MR16 и четыре патрона для них GU5.3. Габаритные и присоединительные размеры их вы видите на фотографии эскизов.

Далее, исходя из полученных размеров деталей, нужно начертить эскиз основания будущей лампы. В качестве основания была выбрана пластина из стеклотекстолита толщиной 1,5 мм и диаметром 90 мм. Основание можно сделать также из любого металла, например, алюминия или стали толщиной 1 мм.

Следующий шаг это разметка будущего основания лампы. С помощью штангенциркуля или школьного циркуля наносится образующая линия основания. Далее наносятся в соответствии с эскизом точки сверления отверстий под цоколи для лампочек и проводов. Круглую форму основанию можно придать с помощью электрического или ручного лобзика. Основание можно сделать и прямоугольной формы, вырезав его с помощью ножниц по металлу. После выпиливания или резки острые кромки нужно снять с помощью мелкой наждачной бумаги.

Для получения отверстий в точно размеченных местах лучше сначала их просверлить тонким сверлом, например диаметром 1 мм, а затем уже рассверлить до нужного диаметра более толстым сверлом.

Цоколи GU5.3 к основанию решено было закрепить с помощью винтов с метрической резьбой М3. Поэтому сначала были просверлены отверстия диаметром 2,5 мм, а затем с помощью метчика нарезана резьба.

У отверстий, через которые будут проходить электрические провода, с помощью сверла большего диаметра были сняты острые края и сделаны фаски.

Основание для самодельной лампы готово и можно приступать к монтажу на него деталей. Для придания основанию эстетического вида можно его покрасить краской или оклеить пленкой.

Самым простым способом является оклейка основания самоклеящейся алюминиевой фольгой. Полоски достаточной ширины у меня не оказалось, и поэтому получился шов. Если нет фольги, покрытой липким слоем, то можно приклеить с помощью клея, например, «Момент» обыкновенную алюминиевую фольгу, которую используют для бытовых нужд или обертку от шоколадки.

Цоколь от основания энергосберегающей лампы Е27 к основанию крепится с помощью двух уголков метрическими винтами, согнутых под прямым углом из планок, зажимающих сетевой провод в электрических вилках С1-b советского образца. Уголки можно сделать, нарезав полоски из стального листа толщиной 1-2 мм, а в качестве крепежа использовать саморезы .

Для того, чтобы основание энергосберегающей лампы не попортило изоляцию проводов, идущих от цоколей GU5.3, в нем с четырех сторон с помощью круглого напильника были сделаны выборки.

Первыми на основание будущей составной лампы устанавливаются и закрепляются электрические патроны GU5.3. Провода, выходящие из патронов, были довольно длинными. Я не стал их укорачивать, так как места для укладки проводов в основании от энергосберегающей лампы было достаточно.

Далее по одному проводу, идущему из каждого патрона, скручиваются вместе. Оставшиеся четыре провода от патронов тоже скручиваются вместе. Полученные скрутки пропаиваются с помощью паяльника оловянно-свинцовым припоем . Если нет возможности паять, то соединение можно выполнить с помощью клеммной колодки .

Осталось выложить провода по спирали и их концы соединить с концами проводов, подсоединенных к цоколю основания энергосберегающей лампы. Цветовая маркировка проводов в данном случае значения не имеют.

Скрученные провода, идущие от патронов и цоколя, соосно внахлест прикладываются друг к другу и скрепляются каплей припоя. На место пайки для изоляции надевается кусок хлорвиниловой трубки.

Осталось заправить провода в основание энергосберегающей лампы и зафиксировать его на основании лампы с помощью двух винтов. Новая составная лампа готова и можно ее вкручивать в патрон светильника и устанавливать в патроны GU5.3 светодиодные лампочки.

Испытания показали, что светодиодные лампочки в патронах удерживаются с достаточной силой. Но вероятность их выпадения все же, существовала. Поэтому для надежного их закрепления в центре основания была дополнительно установлена стойка с резьбой.

После установки LED лампочек к стойке с помощью винта М3 закреплялась большая шайба, которая прижимала лампочки за края к патронам и исключала со временем их самопроизвольное выскальзывание. Вместо шайбы на стойке можно закрепить, например, матовое стекло для получения более мягкого света или декоративное украшение.

На фотографии изображена сделанная своими руками мощная LED лампочка из четырех маломощных. Снимок лампы сделан со стороны цоколя. Лампа чем-то напоминает мне современный космический летательный аппарат.

А на этой фотографии запечатлен вид самодельной лампы из четырех маломощных MR16 со стороны их установки.

Все, кто из знакомых видел светильник с модернизированной лампой, удивлялись диковинке, и отмечали отличную освещенность, которую обеспечивали лампочки в помещении кухни. Хотя, придумывая эту конструкцию, я в воображении хорошо представлял, что в конечном итоге должно получиться, но результат превзошел все мои ожидания. Получилось гораздо интереснее.

Предложенную технологию изготовления светодиодной лампы можно использовать для изготовления адаптера с целью возможности установки лампочки в светильник с типом цоколя, отличного от типа патрона светильника.

Всем мастерам привет! Сегодня хочу Вам показать несколько конструкций светодиодных ламп, которые можно сделать из отслуживших свой срок «энергосберегаек» и . Суть идеи в том, что можно дать новую жизнь старым вещам и они ещё долго будут служить на благо человеку. Схема общая для всех трёх конструкций — обычный бестрансформаторный источник питания. Подробнее о его работе можно почитать здесь.

Светодиодная лампа для ночника

Первая конструкция небольшой мощности, поэтому планируется установить её в ночник. Лампа собирается на базе четырёх трёхкристальных светодиодов SMD5050. Ток потребления 4,5 мА. Балластный конденсатор 0,1 мкФ.

Светодиодная лампа 2 ватта

Лампа на 2 ватта из пятидесяти четырёх однокристальных светодиодов SMD3528 в настольный светильник. Ток потребления 11 мА. Конденсатор 0,47 мкФ.

Лампа на 5,5 ватт из тридцати трёхкристальных светодиодов SMD5050 в прихожую. Ток её потребления 60 мА. Конденсатор 1,5 мкФ.

Схема питания LED ламп

Собирается всё очень просто, вот схема, для которой нам понадобится:

  • резистор 100 Ом * 1 Вт,
  • резистор 1 Мом * 0,25 Вт, нужен для разряда неполярного конденсатора после выключения питания,
  • любой диодный мост с рабочим напряжением не менее 400 вольт (или сборка из четырёх диодов, которые можно взять из тех же «энергосберегаек»),
  • неполярный конденсатор от 0,1 до 2,0 мкФ на напряжение не менее 275 вольт (лучше 400 вольт), он ограничивает ток подводимый к светодиодам,
  • электролитический конденсатор от 2 мкФ и предельным напряжением не менее 400 вольт (тоже можно взять из «энергосберегайки»), он сглаживает пульсации напряжения, исключая мерцание светодиодов,
  • и, конечно, любые одинаковые светодиоды.

Все светодиоды соединяются последовательно (плюс к минусу) и подключаются к схеме, соблюдая полярность. Неполярный конденсатор подбирается исходя из тока светодиодов, который можно посмотреть в даташите на данный светодиод, вот по этой таблице:

Но лучше, конечно, вставив в разрыв питания светодиодов мультиметр (на режиме 200 мА) проконтролировать ток, что бы он не превышал номинальный ток светодиодов, во избежание преждевременного выхода их из строя.

ПРЕДУПРЕЖДЕНИЕ: Данная схема не имеет гальванической развязки с сетью, поэтому необходимо соблюдать осторожность при работе, не касаться руками оголённых участков цепи, включенного в сеть прибора, во избежание удара током!

Архивы на печатные платы для ламп можете скачать по этой ссылке . Удачи Вам в творческих начинаниях и до новых встреч на страницах сайта Радиосхемы
! С Вами был Тёмыч
.

Обсудить статью КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ

Сегодня в магазинах можно купить различные светодиодные лампы, имеющие стандартные,  для существующих светильников, габариты. Но и на рынке хендмэйда сегодня можно купить мнжество готовых модулей, из которых легко собрать светодиодную лампу.

Led лампа своими руками на светодиодах

Рассмотрим процесс изготовления LED лампы своими руками на светодиодах SMD 5730 в корпусе от компактной люминесцентной лампы.

Для сборки нам потребуются светодиоды SMD 5730;

 Алюминиевая плата под светодиоды SMD 5730;

Драйвер для питания светодиодов SMD 5730;

И, как говорилось выше,  корпус от КЛЛ (куда влезет вся схема в сборе).

Led лампа своими руками на светодиодах

Имеем корпус от КЛЛ  MR 16 с алюминиевым отражателем и пластиковым отсеком для драйвера.  Внутренний диаметр отражателя позволяет запихнуть вовнутрь круглые алюминиевые платы со светодиодами диаметром от 26 мм и до 50 мм.

Имея возможность варьировать количеством светодиодов и размерами плат, останавливаем внимание на плате диаметром 40 мм с контактами под распайку восьми полуваттных светодиодов SMD 5730. Приобретаем плату и нужное количество светодиодов.

Теперь необходимо рассчитать драйвер для питания светодиодов от сети 220 вольт. Внимательно рассматриваем плату. Дорожки на плате коммутируют параллельно две группы по  четыре светодиода. Исходя из технических характеристик  светодиодов выбираем подходящий драйвер.

Технические характеристики светодиодов SMD 5730:

Тип светодиода

Мощность светодиода, Вт

Цвет свечения

Размер, мм

Световой поток, лм

Угол, град.

Ток, мА

Напряжение, В

SMD5730

0,5

белый

5,7×3,0

45

120

180

3,1-3,3

Драйвер

   В общем случае драйвер — это источник тока для светодиодов. Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность.  На практике это означает следующее. Допустим, параметры драйвера: ток — 300 миллиампер, мощность — 3 Вт. Делим 3 на 0,3 — получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из которых  рассчитан на 300 мА, а напряжение на светодиоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет  3 вольта, а ток 300 мА. Подключим последовательно цепочку из трех таких светодиодов — напряжение на выходе драйвера будет  9 вольт, а ток 300 мА, так как при последовательном подключении светодиодов потребляемый ток всей цепочки остается равен току 1 светодиода, а падение напряжений на каждом диоде складывается.  Рабочий  драйвер  при любом подключении светодиодов не выдаст больше тока, чем он рассчитан. Поэтому, если к драйверу мощностью 3 Вт и током 300 мА мы подключим две параллельные цепочки светодиодов SMD 5730, то каждая цепочка будет потреблять ток 150 мА, что в сумме составит 300 мА. Максимально допустимый ток светодиода SMD 5730 — 180 мА. Питание светодиода SMD 5730 чуть меньшим током только продлит его срок службы из-за меньшего нагрева.  Выбираем для реализации задуманного этот АС-DC драйвер, и отправляемся в мастерскую.

Детали для самостоятельной сборки лампы на светодиодах SMD 5730

Вначале, чтобы убедиться на практике в правильности своих рассуждений, быстренько впаиваем светодиоды на плату и подключаем к драйверу.

Схема лампы на светодиодах 5730 в сборе

Включаем.

По яркости свечения вполне приличный результат. 

Проверяем на нагрев все модули. Плата нагревается до 50 °C, а драйвер всего  до 40 °C.

Плата со светодиодами 5730 и драйвером 300 мА

Так как в дальнейшем плата будет находиться в алюминиевом отражателе, который, в свою очередь, будет контактировать с металлическим корпусом светильника,  допускаем, что общей площади  теплоотвода  будет достаточно для охлаждения светодиодов, и будут они жить долго, а светить будут ярко.

Теперь дело за малым. Все эти модули (плата и драйвер) необходимо закрепить и разместить в корпусе от КЛЛ. 

LED лампа своими руками на светодиодах SMD 5730 в корпусе от КЛЛ

Вначале тремя шурупами закрепляем плату  с припаянными проводами внутри отражателя на внутренней поверхности отсека драйвера.  Затем припаиваем сетевые провода от драйвера к контактам разъема МR 16. Впаиваем провода от платы к драйверу. Проверяем работоспособность. Окончательно собираем.  Готово!

Сборка LED лампы своими руками

Последний штрих.

Кроме вышеперечисленных деталей для сборки LED лампы своими руками на светодиодах SMD 5730, по совсем бросовой цене дополнительно была приобретена хрустальная линза от какого-то светильника R 50.

Свелодиодная лампа с хрустальной линзой

Несколькими точками суперклея фиксируем хрустальную линзу к алюминиевому отражателю, и получаем суперэксклюзивную  LED лампу с разъемом МR 16, сделанную своими руками на светодиодах SMD 5730, которую и помещаем в потолочный светильник R 50.

Эксклюзивная LED лампа с хрустальной линзой на светодиодах SMD 5730 своими руками

В итоге – масса удовольствия, куча полезной информации и эксклюзивный свет над столом на 300 Lm, который, кстати, обошелся дешевле магазинной светодиодной лампочки с такими же параметрами. Потребляет такая лампочка от сети всего 3 Вт, что тоже актуально в свете последних тарифов на электроэнергию.

Внимание!

SMD  светодиоды  5730 необходимо паять очень быстро, не допуская перегрева, так как они конструктивно выполнены из легкоплавкого пластика, да и лишний перегрев может привести к досрочной деградации кристаллов.

Оглавление:
Светодиодная лампа своими руками: переделываем энергосберегающую лампочку
Как сделать светодиодную лампу своими руками: 220V – это не панацея

Мало кто не задумывается о вопросе экономии электрической энергии, и практически каждый, кто рассуждает на эту тему, приходит к выводу, что реально существуют только два варианта решения этой проблемы – это переход на многотарифную систему расчетов и использование электрооборудования с низким потреблением электричества. Варианты эти верные, но не всегда и не ко всем электроприборам применимые. Первый вариант целесообразен при использовании электрического отопления, а второй огромной экономии не предоставляет (хотя в больших домах она будет существенной). Одним из электрических приборов с низким потреблением энергии являются светодиодные лампы, и именно о том, как делается светодиодная лампа своими руками, пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы рассмотрим два варианта перехода на подобные осветительные приборы.

Светодиодная лампа своими руками: переделываем энергосберегающую лампочку

Для начала давайте разберемся с вопросом, что нам потребуется для осуществления этого «безнадежного» мероприятия. В принципе, не так уж и много.

  1. Старая энергосберегающая лампа (сгоревшая подойдет идеально).
  2. Кусок одностороннего стеклотекстолита для пайки деталей. В принципе, можно обойтись без него, только в этом случае придется крепко поразмыслить над вопросом, как крепить светодиоды?
  3. Набор радиодеталей согласно выбранной вами схеме, включая и светодиоды. На мой взгляд, лучше отдать предпочтение наиболее простым деталям – их полно на любом радиорынке, и стоят они сущие копейки. Согласно нашей схеме, которая приведена ниже, понадобится один конденсатор емкостью 0,022Mf и напряжением 400V, сопротивление на 1мОм и пара сопротивлений на 200Ом. Сами же светодиоды дешевле выпаять из ленты – за сравнительно небольшие деньги вы приобретете диоды в количестве, достаточном для освещения всей квартиры.

    как изготовить светодиодную лампу схема

    Как изготовить светодиодную лампу схема

Смотрим дальше и разбираемся с вопросом изготовления самой схемы. Для начала вырезаем из текстолита круг диаметром 30мм, как указано на приведенном ниже рисунке и рисуем на нем дорожки с помощью женского лака для ногтей. Пока он сохнет, займемся немного химией и изготовим растворитель для меди – понадобится медный купорос и обыкновенная поваренная соль. Из этих ингредиентов делается водный раствор в пропорции 1:2 (к примеру, столовая ложка купороса и две таких же ложки соли). Все это разводится теплой водой, в которую помещается будущая плата. На следующий день вся медь с текстолита исчезнет и останется только та, которая была защищена лаком.

светодиодная лампа своими руками схема

Светодиодная лампа своими руками схема

Теперь остается только паять. Но перед этим при помощи растворителя удаляем лак и пролуживаем все дорожки. Далее миллиметровым сверлом в местах установки деталей сверлим отверстия. Теперь можно паять схему в полном объеме. Если вы умеете пользоваться паяльником, то сборка светодиодной лампы 220V своими руками, а вернее схемы ее драйвера, не займет и получаса.

светодиодная лампа фото

Светодиодная лампа фото

Теперь поговорим о сборке. Для начала необходимо разобрать старую лампу. Возиться с ней не нужно – оптимальным вариантом будет пропилить полотном по металлу по периметру у самого конца ее пластиковой части. После этого удаляем все существующие внутренности, за исключением проводов, идущих от цоколя лампы. Снова берем паяльник в руки и припаиваем изготовленную схему к проводам, идущим от цоколя старой энергосберегающей лампы. Вот, в принципе, и все – остается только закрепить плату со светодиодами внутри пластика и все готово, можно испытывать! Кстати, плату можно просто приклеить, например, термоклеем, который быстро застывает.

как сделать светодиодную лампу

Как сделать светодиодную лампу

Как сделать светодиодную лампу своими руками: 220V – это не панацея

К сожалению, далеко не у всех людей имеется тяга к пайке всевозможных радиодеталей, и, возможно, для них описанный выше способ решения вопроса, как изготовить светодиодную лампу, покажется неприемлемым. Для таких людей существует более простой вариант решения этой проблемы – он сводится к тому, чтобы вместо драйвера для одной лампочки использовать полноценный блок питания, который предназначен для подключения светодиодной ленты. Такой путь позволяет использовать целые части ленты, не прибегая к глобальным переделкам и пайкам.

Единственная проблема, которая возникает при такой постановке вопроса, это габариты блока питания, а они диктуют определенные требования. По сути, они предлагают либо полностью переделывать электрическую проводку: (понадобится выделить все освещение дома в единую ветку) или же каждый осветительный прибор или их группу запитывать отдельным трансформатором. Если в доме используются точечные светильники, то здесь вообще проблем нет – находим первый в цепи осветительный прибор и вставляем перед ним блок питания, после чего меняем все ламы 220V на самодельные светодиодные 12V.

как сделать лампу из светодиодной ленты фото

Как сделать лампу из светодиодной ленты фото

Теперь поговорим о самих лампочках – их можно собрать из отрезков пластиковых трубок. По сути, понадобится наклеить с их боков отрезки светодиодной ленты, соединить их с помощью паяльника по параллельной схеме и установить на конце пучка проводов два штырька, которые будут играть роль цоколя. Если светильники вашей квартиры имеют стандартный патрон для установки лампы, то здесь дела обстоят еще проще – в такой ситуации придется немного модернизировать старые энергосберегающие лампы, только уже без использования внутренних схем. Как и в прошлый раз, лампа разбирается, и все, что имеется у нее внутри, за исключением проводов цоколя, удаляется. На ее колпачок, там, где выходили люминесцентные трубки, приклеивается пластиковый цилиндр, на который наклеиваются отрезки светодиодной ленты. Подключаются эти ленты к проводам, идущим от цоколя.

При изготовлении двенадцативольтовых светодиодных ламп своими руками особое внимание нужно уделить полярности – они работают от постоянного тока и являются зависимыми. Если перепутать плюс с минусом, то светодиоды гореть не будут. На ленте этот момент указывается знаками «+» и «-», при этом последовательность подключения нужно четко соблюдать.

Во всех изготавливаемых лампах «плюс» лучше припаять к нижней части цоколя. Если при подключении самодельных ламп они гореть не будут, то нужно будет переподключить к проводам выход блока питания.

лампа светодиодная 12v своими руками

Лампа светодиодная 12v своими руками

По большому счету, имея в своем распоряжении готовый драйвер и моток светодиодной ленты, можно изготовить в домашних условиях не только лампочку, но и полноценный светильник. Его сделать несложно, так как разместить в готовом корпусе светодиодное оборудование проще, чем выдумывать конструкцию лампы и делать это так, чтобы она еще и имела эстетический вид. Взять, к примеру, настольную лампу – все, что понадобится для ее переделки, это вырезать вставку в плафон, установить на ней светодиоды, и, по сути, светильник готов. Светодиодная настольная лампа своими руками при наличии всего необходимого собирается максимум в течение часа. Таким способом можно переделать практически любой осветительный прибор, который имеет полость для установки драйвера – это может быть люстра или даже настенное бра. В некоторых ситуациях, возможно, понадобится лишить блок питания корпуса – тогда он станет намного компактнее.

В общем, варианты перехода на более экономичное освещение есть, и выбирать между ними только вам. Может быть, вы не захотите возиться с самостоятельным изготовлением подобных осветительных приборов, а, возможно, решите, что это самый оптимальный для вас вариант. В любом случае, вне зависимости от того, будет ли изготовлена светодиодная лампа своими руками или просто куплена, результат не заставит себя долго ждать, и уже на следующий месяц вы увидите значительные сокращения потребленной электрической энергии.

Автор статьи Александр Куликов

Светодиодная лампа

Все о светодиодах
Ликбез о питании светодиодов, схемы включения
Электронный балласт для светодиодной лампы
Стабилизатор тока светодиода
Корпуса светодиодов
Надежность белых светодиодов
Эффективное использование светодиодов. Советы конструктору.

Светодиодные (или LED-) лампы – это, конечно, замечательно: и современно, и экономно, и «линии партии» соответствует. Но очень уж дорого! А главное – нет уверенности (поверьте, её нет и у специалистов!), что они такие уж вечные и полезные для глаз. Единственное, о чем можно сказать точно – это их экологическая чистота в сравнении с «энергосберегающими». И тут еще один интересный момент.

По большому счету, наличие битого стекла и паров ртути там, где вы живёте, зависит как раз не от того, какими лампами вы сами пользуетесь (свою-то в мусорку бросите, да ещё и не ближайшую!), а от окружающих, которые принесут в вашу (а милые детишки расхлопают прямо под дверью). Поэтому, если даже не можете сделать сами, не хотите заказывать умельцам, то хотя бы делитесь ссылкой: чем больше людей откроет для себя ПРАВИЛЬНЫЕ лампочки, тем здоровее будете и вы!

Идея выложить этот текст на всеобщее обозрение возникла после того, как один знакомый пожаловался, как он «кожей спины» ощущает вред энергосберегающих (они же – КЛЛ – компактные люминесцентные лампы), и спросил, советую ли тратиться на светодиодные. Вот, как говорится, «папы этого ответ помещаю в книжке».

Главный совет — не доверять статьям (типа моих), какими бы научными и объективными они ни казались! Всё равно ведь задача продать. Ну, разве что — в википедии… Да и то — видел же заказы на статьи в вики: значит — со скрытой рекламой чего-то!

КЛЛ пугают правильно. Вреднее, разве что — ДРЛ или ДНАТ! (К счастью, хоть их в жилых помещениях никто не использует). И основные факторы — не ВЧ-облучение или ультрафиолет (они сказываются, только если буквально на голове лампочка — настольная или бра над самой книжкой), а пульсации светового потока и плохой индекс цветопередачи.

То, что неестественный спектр неприятен и вреден, думаю, объяснять не надо. Пульсации же светового потока мешают не только фотографированию или рассматриванию быстро движущихся предметов (видели, как снежинки «пунктиром» летят под ртутным фонарём), вызывая стробоскопический эффект, но и крайне негативно сказываются на зрении. Глаз пытается аккомодироваться, но с такой частотой, разумеется, не успевает. Происходит переутомление мышц радужной оболочки и выгорание сетчатки, которую она не успевает диафрагмировать во время пиков яркости, перегрузка аварийными импульсами зрительного нерва. (Не следует путать «нормальные» пульсации промышленно частоты с видимыми мерцаниями ламп дневного света, срок службы которых подходит к концу: видимые как раз не так вредны для глаз и нервной системы).

Пульсаций может не быть и в энергосберегающих лампах, если ХОРОШИЕ. А могут быть и в светодиодных. Более того, на прилавках сейчас в основном светодиодные лампы самой низкой ценовой категории (нужно же как-то конкурировать с КЛЛ), да и сам принцип запитки диодов позволяет сэкономить на электронной схеме. Так что шансов «попасть на пульсации» очень много. Тут и авторитет производителя не поможет, нужно только проверять осциллографом. А цветопередача в светодиодных лампочках тоже неважнецкая. Даже те, что смешением красного, зеленого и синего создают «белый», не сравнятся с накальными источниками, не говоря уж про галогеночки: вроде и похоже, но спектр очень узкополосный. А те, что действительно эффективнее энергосберегающих по световой отдаче (более 100 Лм/Вт), вообще на двухцветной системе: голубой + оранжевый. Тоже кажется белым, но это уж совсем пародия!

Вывод: если важен не эстетический эффект, а жалко глаза свои, любимые, и денежку, то нужно, чтоб какой-то умелец или мастерская сделали по спецзаказу — из кучи РАЗНЫХ светодиодов (чтоб хотя бы десяток полос в спектре был) и с АНАЛОГОВЫМ стабилизатором тока (без пульсаций и ВЧ).

Именно такие использую для себя. А про деньги – в том смысле, что проблемы вредности полностью решают высокотемпературные галогенки, но цена… Даже их начальное устройство (по-настоящему, с постоянным током) обойдётся не дешевле светодиодных, а уж дальнейшая эксплуатация – НА ПОРЯДОК дороже выльется!

Далее будет описан способ и схемное решение, по которому любой телемастер, ремонтник телефонов, компьютеров или даже ЖЕКовский электрик – любой, кто в руках паяльник держать умеет, элементарные схемы читать и закон Ома применять – сделает светодиодную лампу ЛУЧШЕ ПРОМЫШЛЕННОЙ, причем недорого. Можно еще (при наличии предпринимательских способностей) сыграть на том, что этот мастер взамен получает «ноу-хау» и сможет потом промышлять действительно безвредными, экономными и вечными лампами. Может, первую и бесплатно сделает…

Для начала (и для выбора диодов, и для окончательной приёмки ламп) нужен спектроскоп. Самый примитивный. Спектроскоп — это несложное оптическое устройство, содержащее призму для разложения света. Можно опять же самодельный собрать, купить по дешевке у каких-нибудь старьёвщиков или одолжить в кабинете физики. Даже если до изготовления ламп и не дойдёт, всё равно будет возможность узнать массу интересного – чем мы глаза портим.

Можно также исследовать пульсации осциллографом с фотодиодом, но уже только из научного интереса к другим источникам света. Для контроля наших ламп он не потребуется, так как их схема исключает пульсации в принципе. А вот обучать работе с осциллографом… Это не спектроскоп, в который заглянуть – и всё видно… Но можно и без спектроскопа обойтись: просто купить светодиоды РАЗНЫХ марок.

Кстати! Можно и без прибора пульсации посмотреть. Так же, как работоспособность невидимого цвета – инфракрасных и ультрафиолетовых – диодов проверяют, глядя на них через камеру, точно так любой мобильник с фотоаппаратом покажет пульсации в 100 Гц (в сети 50 Гц, но, поскольку работает и положительный, и отрицательный полупериод, частота удваивается). Для проверки достаточно навести камеру на обычную лампу дневного света – «трубку», растровый светильник на потолке с расстояния 0,5м или ближе. Там пульсации бешеные – процентов 50 – сразу (вернее – через пару секунд, когда аппарат установит яркость) видно на дисплее горизонтальные полосы. Чем они отчетливее, тем хуже. На лампах накаливания большой мощности – почти не заметны: достаточно массивный волосок не успевает остыть/нагреться 100 раз в секунду.

Спектр   Спектр

На рисунках – маломощная лампа дневного света (полосы слабые, поскольку электронная схема питания, как в КЛЛ) и красивый трёхцветный китайский ночник (светодиодный, но ВООБЩЕ без сглаживания пульсаций).

Если полосы совсем не удаётся заметить, источник света очень хороший. Например – галогеночки, запитанные постоянным током. Не просто выпрямленным, а стабилизированным. Но такое почти не используют: очень уж не экономно. Не заметить пульсаций можно и в КЛЛ или LED-лампах хорошего производителя. Но наш «детектор» просто не показывает высокочастотных гармоник, которыми богат любой источник с импульсным питанием. Мы же будем делать аналоговый.

Теперь немного подробнее о спектрах. Они очень разные у различных источников света. Тепловые (планковские) излучатели имеют сплошные широкодиапазонные спектры с распределением излучаемой энергии по частоте в соответствии с формулой Планка и неярко выраженным максимумом на длине волны, зависимость которой от температуры определяется законом Вина. Это происходит благодаря тепловому движению молекул с огромным разбросом скоростей, а значит – и энергий.

Спектр

Такие спектры наиболее естественны и безвредны для глаз. Но, как видно из графиков, для получения света, наиболее близкого к дневному (с максимумом на волне 555 нм), требуется и температура около 6000 К – как на поверхности Солнца! Нити же накала большинства ламп не нагреваются и до 3000 К. Значит, львиная доля излучаемой ими энергии приходится на невидимую инфракрасную область (тепло), откуда и столь низкая эффективность (КПД ламп накаливания не превышает 5%).

Солнечный спектр

Спектр солнца

Солнечный спектр испещрён тысячами линий поглощения элементов, присутствующих в его атмосфере: поглощая из проходящего света кванты строго определенной энергии, они затем излучают их в произвольных направлениях (и, как правило, на более низких частотах), лишая земного наблюдателя узкой частички спектра. Например, самая отчетливая (в красной области) – линия кислорода – 759,37 нм.

У свечения газов несколько иная природа. Электромагнитные волны (в том числе и видимые – свет) излучаются не из-за хаотичного движения молекул, а ионизированными атомами при восстановлении электрона на полагающуюся ему орбиту строго определенной энергии – с испусканием соответствующего кванта. Поэтому спектры газов имеют очень узкие полосы излучения. Например, тот же кислород светился бы так:

Спектр газов

Очень похожий спектр имеют всем известные неоновые индикаторы и трубки наружной рекламы.

Люминофор же на осветительных лампах (ДРЛ, КЛЛ, трубках «дневного света») имеет полосы более размытые (поскольку люминофор излучает уже как твёрдое тело) и точнее отвечающие дневному, но всё равно достаточно узкие. Спектр получается рваным и не таким уж близким к солнечному.

Вот диаграммы одних их наиболее популярных сегодня люминофоров, имеющих спектр с номером (по классификации Philips) 754 и – самый качественный – 954:

Спектр люминофора 954

Наконец, во включенном светодиоде, как и в любом кристалле под действием электрического поля, происходит штарковское расщепление возможных энергетических уровней атомов. Это приводит к излучению квантов с некоторым разбросом длины волны, размазыванию спектральных линий. В результате даже у двухцветных белых светодиодов получается не слишком игольчатая цветовая диаграмма.

Спектр белого светодиода  Спектр белого светодиода

Примерно такую же картинку можно наблюдать в свой спектроскоп, только без графиков (они получаются лишь при помощи приборов с высочайшей разрешающей способностью и цифровой обработкой информации). В объективе будет наблюдаться просто размытая радуга (это хорошо) или отдельные полоски на темном фоне (плохо). Вот, как выглядит спектр четырёх разных диодов. Кстати, в данном случае белый – очень неплохого качества. Если попадутся такие, можно смело покупать и комплектовать из них, по крайней мере, половину всех светодиодов нашего светильника.

Спектр белого светодиода 1

Однако ясно, что наиболее близкий к сплошному спектр можно получить, смешав РАЗЛИЧНЫЕ: чтобы провалы в излучении одного источника компенсировались максимумами другого – не совпадающими по длине волны с максимумами третьего и т.д.

Солидные производители и продавцы предоставляют каталоги, в которых указаны основные параметры излучения или даже приведены спектры. В базарном же варианте поможет только спектроскоп (не обязательно ходить с ним по рынку, можно сделать пробную закупку по одному диоду, а затем спокойно исследовать их в затемнённой комнате).

Вольтамперная характеристика

Для объективного сравнения разных светодиодов (не забываем, что нас интересует не только спектр, но и световая отдача) потребуется стабилизатор тока: светодиоды (как и любые диоды) имеют почти вертикальную вольтамперную характеристику, с существенным разбросом от образца к образцу (особенно – для разных типов) и очень сильно зависящую от температуры. Поэтому при одном и том же напряжении ток может отличаться в разы. То есть не только сравнить яркости было бы невозможно, а при питании, например, около 2,5 В синий может вообще не засветиться, а красный – сгореть.

Светодиоды

Поэтому задаём именно ток. Практически для всех маломощных светодиодов его максимально допустимое значение составляет 20 мА. Мощные бывают на 350 мА, 700 и т.д. В проверочном стабилизаторе (дабы не сжечь еще при выборе) следует сделать 2 фиксированных значения – 15 и 200 мА. Визуально маломощные светодиоды отличаются полностью пластиковым корпусом без каких-либо площадок для теплоотвода и тонкими (круглого или квадратного сечения) выводами, направленными в одну сторону.

Чтобы можно было запитать одновременно два диода (для удобства сравнения), потребуется источник не менее 9 В: компактнее, конечно, «Крона» (для мощных диодов – щелочная), но лучше – набрать батарею из 8-10 «пальчиков» или использовать 12-вольтовый аккумулятор. Конструктивно же клеммы ХТ лучше оформить в виде миниатюрных «крокодилов» носами друг к другу на расстоянии около 10 мм и ходом подвижных «челюстей» в одной плоскости. Дополнительный (пустой) зажим ХТ0 должен составлять с ними примерно равносторонний треугольник: для последовательного включения двух диодов. Можно чтобы они свободно болтались на умеренно мягких проводах длиной (между «крокодилом» и вводом в корпус устройства) буквально 1 см – чтобы не могли коснуться друг друга (впрочем, замыкания схема не боится), а при поднимании носами от корпуса расходились сантиметра на 3 (под самые мощные диоды).

Схема питания светодиода

Выключатель питания SA1 лучше сделать кнопкой (без фиксации): чтобы невозможно было забыть надолго включенным (даже без светодиодов происходит разряд батареи через R1). SA2 – миниатюрный тумблер и т.п. – им и будет переключаться ток 15/200мА. Транзистор VT1 – КТ3102 или любой другой маломощный «супербетта», а VT2 – КТ829 или любой мощный составной (подойдут, разумеется, и импортные аналоги). Резистор R3 можно заменить двумя параллельно соединёнными по 15 Ом, а при помощи R2 (желательно – многооборотного) устанавливают необходимое значение тока, подсоединив вместо светодиода миллиамперметр. Если получится, например, 16 и 180 мА – ничего страшного, главное, что этот ток будет одинаковым для разных испытуемых диодов. В принципе мощность R3 должна быть не менее 0,5 Вт, а транзистору VT2 должен быть обеспечен теплоотвод. Но поскольку мощные светодиоды никто, конечно, при испытаниях на радиаторы ставить не будет, продолжительность включения с большим током всё равно не может превышать нескольких секунд. За такое время элементы схемы также нагреться не успеют.

Поклонники интегральной схемотехники могут собрать аналогичное устройство на основе любых регулируемых стабилизаторов – LM317, 1083, 1084, 1117, КР142ЕН12, ЕН22 и т.п. – включив их по схеме стабилизации тока. Это сэкономит пару паек, но вряд ли будет дешевле (особенно, если применять микросхемы с низким падением напряжения «low drop» для возможности использования всё-таки одной «кроны»).

Итак, вооружившись стабилизатором, приступаем к выбору. (Повторяю: можно обойтись и без этого, если доверяете продавцам, имеете подробные каталоги или просто не стремитесь к слишком качественному результату).

Сначала проводим предварительный отбор на основании каталога или слов продавца: отсеиваем те, что не подойдут точно. Оставшихся же кандидатов ставим парами в наш стабилизатор и визуально определяем, какие создают больший световой поток. Не путайте с яркостью (какие сильнее режут глаза прямой наводкой) и светосилой (потоком в единице телесного угла). Если направить луч, например, на лист бумаги и рассматривать световое пятно на разном расстоянии, видно, что у диодов бывает различный угол расхождения луча, а также четкость границы этого пятна. Разумеется, узко и четко сфокусированные субъективно кажутся ярче, но это не значит, что они дают БОЛЬШЕ СВЕТА. Объективно оценить именно световой поток можно, например, измеряя освещенность в затемнённой комнате, когда на потолок в ней направляются различные диоды (естественно, из нашего стабилизатора, с одинакового расстояния, под одним и тем же углом и т.д.) – вот тут будет сказываться не направленность, светосила, яркость, а только СВЕТОВАЯ ОТДАЧА, то есть КПД.

Разумеется, можно учитывать соотношение цена/качество. Если, скажем, диод даёт едва заметно большее количество света, а стоит при этом в 10 раз дороже… Хотя это может еще свидетельствовать о более серьёзном производителе, а значит – большем сроке службы, стабильности параметров и т.д.

Лишь определившись с наиболее эффективными, из них уже стоит выбирать по спектру. Заметим, что могут понадобиться не только белые. Но к этому вопросу вернёмся уже при конструировании конкретного светильника. Другими словами, прежде, чем бежать за диодами, дочитайте всё-таки статью: возможно, остановите выбор сразу на более сложном варианте.

И вот – собственно изготовление.

Сразу оговорюсь, что рецепт изготовления рассчитан на человека, имеющего элементарные знания в электротехнике. Если вы, читающий и этими знаниями не обладающий, а собирающийся заказывать изготовление специалисту, встретите незнакомый термин – не волнуйтесь, любой электрик поймёт. И второе: это рецепт ТЕХНИЧЕСКИЙ, за эстетикой – не ко мне.

Можно, конечно, продумать дизайн или скопировать какой-то фирменный светодиодный светильник, заказать токарю некие блюдца алюминиевые, покрывать их хромом, золотом… Это уж дело хозяйское, электрическая схема от этого не меняется (только возникнут дополнительные проблемы с изолированием, если всё будет металлическим). Я же опишу, как сделать на основе китайского светодиодного фонарика – очень дёшево и хоть с каким-то внешним видом (всё-таки не картонная коробка, а какой-никакой промышленный корпус и с готовым отражателем).

Светодиодный фонарик

Более того: фонарик можно использовать негодный. Те, кто, как мы уже договорились, умеет держать паяльник, нередко сами располагают подобным хламом или знают, у кого спросить. У 90% таких фонариков выходит из строя аккумулятор (от неправильного заряда или просто от старости). А если даже и какой из диодов сгорел, так нам и они не нужны (во всяком случае – не все).

Светодиодный фонарик 1    Светодиодный фонарик 3

Итак, разбираем фонарик. Выбрасываем аккумулятор (если негодный) и элементы зарядного устройства. Очевидно, не пригодится и вилка: подсоединяться будем либо просто гибкими проводами, либо можно потом будет попытаться приклеить (вплавить) цоколь от лампочки.

Если не нужен остро направленный луч (для местного освещения, но с большого расстояния), то выбрасываем и отражатель, а вместо него наденем на светодиоды просто кружок белого картона с отверстиями, размеченными через отверстия в отражателе. Но с этой операцией не торопимся: вряд ли количество и расположение диодов не изменится.

Сбоку от диодов пластик корпуса (особенно – черный) тоже желательно прикрыть белой полоской без всякого клея – достаточно упругости бумаги, стремящейся распрямиться. Не нужно брать другие материалы: обычная глянцевая бумага меньше боится нагрева, чем любой пластик, и дольше не выгорает (не желтеет) на свету. А влаги в светильнике у нас не должно быть в принципе (в конце статьи коснёмся уличных и подводных).

Выключатель, скорее всего, также не пригодится: светильник всё-таки обычно включается в более удобном месте, чем на самой лампочке. Но можно и оставить, если эта лампа будет висеть без абажура где-то низко – дело хозяйское. Не следует только забывать, что выключатели в дешевых фонариках обычно очень примитивны, ненадёжны и вообще не рассчитаны на 220 В. Однако в любом случае не стоит его удалять (разве что – откусить выводы для экономии места в корпусе), иначе придётся чем-то закрывать лишнее отверстие.

Теперь – самое, пожалуй, главное: определимся с количеством светодиодов, которые будем использовать. Это зависит от того, для чего мы хотим применять лампу, а также от того, сколько их уже есть в фонарике. Скажем, если хочется сделать достаточно мощную лампу для основной люстры в комнате, потребуется несколько мощных излучателей (возможно – в комбинации с маломощными), о чем речь пойдёт в конце. Скорее всего, фонарик тогда вообще не пригодится.

Если же требуется лишь местное освещение (с чего и советую начать), вполне достаточно одного – двух десятков маломощных. Такое количество может сразу быть в фонарике (не обязательно же он всего на 5 диодов, как наш разобранный). Часть мы всё равно будем заменять, но в любом случае намного проще, когда уже есть готовые отверстия и луженые печатные проводники для монтажа. В наш же точно придётся добавлять. Даже если нужна совсем небольшая мощность (для ночника или, например, подсветки клавиатуры), то хотя бы ради выравнивания спектра нужно (как отмечалось выше) большее количество РАЗНЫХ источников. В частности, в наш 5-диодный я бы советовал добавить три зелёных, пару красных (по кругу между белыми) и один белый с очень хорошей отдачей (но тоже 20-миллиамперный) другого производителя – по центру. Размещать, естественно, надо равномерно, чередуя цвета, чтоб даже на близком расстоянии (пока лучи от каждого диода не успели сильно разойтись и смешаться) всё равно получалось бы ровное – без цветных пятен – освещение. Это касается и многодиодных фонарей, и полностью самодельных светильников, которых коснёмся ниже.

Кстати, перепаивать и резать печатный монтаж (даже если оставить только родные излучатели) нам всё равно придётся: в большинстве фонариков диоды соединены параллельно (или в несколько параллельных групп) – для удобства низковольтного питания без преобразователей. Мы же должны включить их последовательно: ведь боремся за меньший потребляемый ток, а напряжение лишнее всё равно еще придётся гасить балластом (хоть и реактивным). Кроме того, равенства токов через диоды (вспомним их вертикальные характеристики) при параллельном соединении можно достичь только на абсолютно идентичных образцах (одного производителя, марки и даже партии). Разные же можно включать только последовательно.

Тут подходим к важному моменту: светодиоды очень боятся нагрева. Благополучно паять их без специального оборудования весьма непросто. Еще сложнее выпаять старый или подсоединиться к той же заводской пайке: там может быть довольно-таки тугоплавкий бессвинцовый припой, да и сами диоды китайцы впаивают (вопреки ТУ на них и всем правилам монтажа) по «самые уши» – значительно ближе к корпусу, чем это допустимо, и без малейшего зазора для теплоотвода. На конвейере, где пайка занимает меньше секунды, они сгореть не успевают. При работе же обычным паяльником (с длительностью пайки 2-3 секунды) обязательно оставлять зазор хотя бы 3 мм для отвода тепла пинцетом.

Исходя из всего этого, ясно, что лучше лишний раз перерезать монтаж и залудить площадку для новой пайки, чем трогать старую. В частности, в нашем «пятизвёздочном» фонаре диоды впаивались между концентрическими проводниками. Режем их почти радиально (острым монтажным ножом или резаком для пластика), создавая зазор не менее 0,5 мм и снимая фаску с рёбер образовавшейся царапины, чтобы заусеницы или задравшиеся (смятые) края фольги не могли замкнуться, распрямившись. Поперечное сечение паза должно выглядеть примерно так:

Как резать дорожки на плате

Сверлим отверстия под новые диоды, счищаем возле них лак и лудим новые площадки. Затем, соблюдая полярность и оговоренные выше предосторожности – впаиваем. Полярность маломощных светодиодов определяется по ножкам («+» длиннее) или (если ножки уже откушены) – по шлицу на корпусе (он со стороны «минуса»). Если всё правильно, должно получиться последовательно.

Как резать паять

При других конфигурациях монтажа нужно будет приложить смекалку электрика: как при помощи минимального количества резов и перемычек добиться необходимого соединения.

После монтажа следует каждый диод (или по два) проверить нашим же стабилизатором: чтоб потом не было сюрпризов при настройке схемы в виде аварийного режима с перегоранием предохранителя.

Наконец, приступаем к монтажу электронной части (которая не сложней, чем наш испытательный стабилизатор). Вполне возможно обойтись и без печатной платы, особенно – если предохранитель FU заключить в блочный держатель и диодный мост использовать монолитный с отверстием для крепления к корпусу, например, BR36, BR310 и т.п. (100-кратный запас по току еще никому не мешал). На их выводах прекрасно распаяются остальные детали. Если (забегая вперед) реле К1 не удастся достать совсем миниатюрное, его также лучше закрепить «спиной» или боком к корпусу.

Схема

Конденсатор С1 должен обеспечивать реактивный балласт около 10 кОм, что на промышленной частоте достигается при ёмкости около 0,35 мкФ (Rc=1/315C). Лучше (чтобы при испытаниях ток не превысил 20 мА) поставить С1=0,33 мкФ (не менее 400 В), а при необходимости (недостаточном токе) – допаивать ему в параллель значительно меньшую ёмкость. R1 – просто для достаточно быстрого разряда С1 без сколько-нибудь существенной рассеиваемой мощности. Например, 1 МОм. R2 – в пределах 100-150 Ом, 1-2 Вт (можно импортный уменьшенных габаритов: средняя мощность на нём не будет превышать 0,05 Вт, но он должен иметь приличное сечение, чтобы выдерживать импульсную аварийную мощность до 800 Вт). Мосту или дискретным диодам выпрямителя (если абстрагироваться от крепежа)  достаточно выдерживать ток 0,05 А (в импульсе 3 А) и обратное напряжение 600 В. Вполне подойдут копеечные 1N4006. Конденсатор С2 обеспечивает сглаживание вредных пульсаций, а также смягчает режимы светодиодов за счет плавного включения и выключения (включение на глаз трудно отличить от обычного, но для полупроводника в достижении номинального тока, например, за 100 микросекунд или миллисекунд – разница огромная). Так что, его ёмкость – чем больше, тем лучше. Однако, поскольку габариты и цена тоже имеют значение, для 20-миллиамперной лампы достаточно 470 мкФ, а 1000 – было бы вообще превосходно. Разумеется, конденсатор нужен электролитический высокотемпературный (105°С) и с повышенным сроком службы – серий EXR, CD26L и т.п. Его допустимое напряжение должно, по крайней мере, превышать суммарное рабочее напряжение светодиодов. В идеале же – быть не менее 350 В, поскольку в случае обрыва хотя бы одного из диодов или соединительных проводников на этом конденсаторе образуется полное амплитудное напряжение сети. Однако 1000 мкФ * 350 В – это деталька размером с женский кулак, да и цены немалой. Поэтому рациональнее ограничиться всё-таки напряжением излучателей, а на случай их обрыва предусмотреть нехитрую защиту (взрыв от перенапряжения подобного конденсатора – это не просто хлопок с разбрызгиванием электролита, он может представлять определенную опасность для людей и уж точно – для стеклянного светильника).

Рабочее напряжение светодиодов (можно опять взглянуть на их вольтамперные характеристики) составляет приблизительно 1,8 В – красного, 2,9 В – зелёного и 3,2 В – голубого и белого (можно замерить на диодах, подключенных к нашему стабилизатору). То есть в нашем примере (2 зелёных, 2 красных и 6 белых) должно быть около 29 В. Ближайший номинал напряжения в электролитических конденсаторах – 35 В. Но поскольку он довольно редок, а запас не помешает, то 50 В будет в самый раз. 1000 мкФ*50 В – вовсе не большой и не дорогой конденсатор, даже если брать из самых качественных серий. Защиту же на случай обрыва обеспечит стабилитрон VD1 с напряжением стабилизации выше напряжения на диодах, но ниже допустимого у конденсатора. Скажем, 36 В. Мощность от него потребуется 36 В * 20 мА=720 мВт. Вполне справится 1-ваттный импортный стабилитрон в корпусе DO-41, которых сейчас полно – любых номиналов и по смешной цене. А для большей надёжности (или если аналогичный расчет даст большую мощность) можно использовать несколько последовательно соединённых: их напряжения и мощности сложатся. Например, в нашем случае – 2 по 18-20 В.

Заметим, что такая защита не отключает лампу от сети: она не взорвётся и сможет находиться в таком состоянии неограниченное время – не светясь, но потребляя свою обычную мощность, пока её не отключат вручную. Поэтому для более мощных ламп (да и для повышенной безопасности маломощных) имеет смысл ввести в схему реле К1, которое при обрыве светодиодов и появлении тока через стабилитрон (стабилитроны) сработает и замкнёт контактом К1.1 сеть 220 В через R2 и предохранитель FU с номиналом 0,25-1 А. (Именно на этот случай R2 должен быть не совсем маленьким). Плавкая вставка моментально сгорит и полностью обесточит схему.

Схема 12

Напряжение срабатывания реле в сумме с напряжением стабилитронов не должно превышать максимального для конденсатора, а ток срабатывания – не превышать 15 мА (быть, во всяком случае, меньше, чем рабочий ток светодиодов). Контакты же его должны при сетевом напряжении уверенно коммутировать ток хотя бы в 1 А. Малогабаритных реле с такими параметрами не так уж и много. Я, например, остановился на недешевом, зато очень маленьком V23079-A1005-B301 производства “Siemens”, запараллелив в нём для токовой выносливости группы контактов. Поскольку напряжение срабатывания у него около 18 В, стабилитрон в нашем примере должен быть на напряжение 31-36 В (его мощность при наличии реле уже совершенно не важна). Впрочем, как уже сказано, для такого слабого фонарика подобная защита и не обязательна. Это – чтобы не возвращаться к вопросам схемотехники, когда речь пойдёт о мощных лампах.

Схема 13

Защитой же самих светодиодов от перегрузки при долговременных (порядка секунд) всплесках сетевого напряжения, а также дополнительным фактором снижения пульсаций при той же ёмкости С2 может стать транзистор VT, образующий для излучателей параллельный стабилизатор тока, величина которого настраивается потенциометром R3 с высокой надёжностью контакта и сопротивлением 100 Ом. Предельно допустимое напряжение транзистора должно раза в полтора превышать суммарное напряжение на светодиодах, а мощность даже при повышенной температуре достигать их суммарной мощности (в лампах на 2 Вт и выше его можно установить на тот же радиатор, что служит теплоотводом излучателей, не забывая об изолировании их друг от друга, если и у транзистора, и у диодов металлическая плоскость для охлаждения имеет связь с одним из выводов). Для снижения мощности, рассеиваемой на транзисторе (но не общей мощности в корпусе лампы), можно в его коллекторную цепь включить резистор R4 с сопротивлением не превышающим эквивалентного сопротивления светодиодной цепочки и такой же мощностью. В нашем случае R4=30 В / 20 мА=1,5 кОм, а его мощность = 30 В * 20 мА = 600 мВт (выбираем 1 Вт). Мощность, рассеиваемая транзистором, в данном случае не превысит половины этого значения, и, например, КТ817 (для нашего напряжения – с буквами В или Г) выдержит такой режим без радиатора. Транзисторы в корпусах TO-220 могут эксплуатироваться без радиаторов до мощностей 0,5 — 1 Вт – в зависимости от близости стенок корпуса и условий для естественной конвекции воздуха (закутанный во что-то теплоизолирующее сгорит, конечно, и при 0,5 Вт). Свыше 1 Вт – только устанавливать на радиатор, не забывая, что без возможности теплообмена с окружающей средой и от него толку немного: необходимо либо предусматривать вентиляционные отверстия, либо делать радиатором металлический корпус (изолируя установленные на него компоненты).

Но это опять было отступление, касающееся мощных ламп. А пока рассмотрим наладку нашего фонарика на примере самой «сложной» схемы – с транзистором и без реле. Кстати, в таком варианте (когда за рассеивание тепла отвечает транзистор) логично и стабилитрон (стабилитроны) соединить не с «минусом», а с его базой: тогда их, как и в случае с реле, можно использовать совсем маломощные.

Схема 14

Установив для начала (как уже говорилось) С1=0,33 мкФ, сразу при включении замеряем ток, который выдаёт наш балласт, присоединив (еще до включения) миллиамперметр прямо к выходу моста (параллельно С2). Он не должен превышать 20 мА.

Внимание! Подключая миллиамперметр к уже заряженному конденсатору, вы рискуете его сжечь. Поэтому – никаких удерживаний щупов руками: только крокодилы, прицепленные к хорошо зачищенному месту, или другое НАДЁЖНОЕ соединение, которое не трогаем, пока не отключим схему от сети! И переключение диапазонов измерения во включенном состоянии не делать: при этом также может прерываться цепь и успеть зарядиться конденсатор!

Если ток не больше, пока оставляем балласт в покое: точнее подгоним потом (ток уменьшится, когда вместо амперметра будут светодиоды, а потом еще – когда заработает транзистор). Теперь переключаем мультиметр на измерение постоянного напряжения и (уже не опасаясь прерывания контакта, но помня, что схема под фазой!) контролируем напряжение на крайних выводах R3: при выведенном транзисторе (левом по схеме положении движка) оно (в вольтах), умноженное на 10 будет равно току через диоды в миллиамперах (предполагается, что ваш прибор достаточно точен, а в резисторе действительно 100 Ом). Проверим, что закрыт транзистор: напряжение на R4 должно быть нулевым или составлять сотые доли вольта.

Вот теперь точнее подбираем балластную ёмкость С1, добавляя в параллель меньшие конденсаторы (но тоже не менее 400 В!), пока не получим ток, скажем, 19 мА (то есть напряжение на R3 1,9 В). Желательно в это же время контролировать напряжение в сети: чтоб оно было действительно 220 В (а если у вас оно ОБЫЧНО существенно повышено или понижено, то и настраивать лучше при обычном, типовом, так сказать). Можно потом (когда закончим и с транзистором) заменить всю эту батарею одним конденсатором, если найдётся необходимой ёмкости (она может быть очень «кривая» – например, 0,41 мкФ). Следует помнить, что погрешности недорогих плёночных конденсаторов сетевого напряжения обычно весьма велики, и изделие с номиналом, скажем, 0,33 может иметь ёмкость 0,3 или 0,37 мкФ (чаще – больше номинала). Поэтому, если нечем достаточно точно измерить ёмкость, испытания с новым конденсатором следует проводить очень внимательно, с готовностью моментально отключить схему, если ток окажется больше 20 мА (кратковременной – на пару секунд, достаточных для измерения – перегрузки на 10-20% светодиоды не боятся).

Транзистор VT начинает открываться, когда напряжение на введённой части R3, определяемое током через светодиоды, превысит определённый уровень, который мы сейчас и выставим, вращая ручку потенциометра. При этом он отбирает у излучателей часть тока: ведь суммарный (повторяю – при стабильном напряжении в сети) ограничен балластом. Контролировать эту часть удобнее всего по напряжению на R4 (опять же – по закону Ома: если R = 1,5 кОм, то каждые 1,5 В будут соответствовать одному миллиамперу). Этот расчет придётся освоить: ведь количество светодиодов (а значит – и R4) у вас, скорее всего, будет другим.

Чем больше ток транзистора, тем больше он принимает участие не только в защите диодов, но и в сглаживании пульсаций. Но при этом рассеивается дополнительная мощность, то есть происходит лишний нагрев изделия и снижение КПД. Тут уж дело хозяйское. В небольшой лампе можно и половину мощности транзистору отдать (увеличив, соответственно, ёмкость балласта, чтобы ток через светодиоды всё-таки не был меньше 15мА). Ведь если речь идёт, скажем, про 1Вт, то это ничто в масштабах квартиры, хоть и 50% составит. Зато режим диодов и гладкость света будут идеальными.

Но с другой стороны – к чему лишний нагрев? При достаточной ёмкости С2 пульсаций и так не будет, а от перегрузки и едва приоткрытый транзистор защитит… Короче, я бы советовал отпустить ему миллиампера три, чтоб светодиодам (без изменения балласта) осталось 16-17 мА: достаточный запас для хорошего срока службы.

Со стабилитроном вообще не должно быть никаких проблем, если он выбран на правильное напряжение, которое, как уже говорилось, должно быть больше суммарного рабочего напряжения излучателей, но меньше допустимого напряжения С2. В конце наладки можно проверить и аварийный режим: разорвать цепь светодиодов (конечно, не выпаивая лишний раз диод, а только какой-нибудь соединительный проводник). Напряжение на С2 должно повыситься, но не превысить номинального. Следует убедиться, что в таком режиме (и с закрытым корпусом) и через минуту, и через час транзистор и стабилитрон не перегреваются. Градусов 70-80 вполне допустимо, а вот 100 – уже нет. (Напомню еще раз, что касаться деталей голой рукой можно только после отсоединения ОБОИХ питающих проводников от сети).

Испытанную схему можно собирать весьма плотно, смело заливать силиконом – за исключением самих излучателей (возможно, когда-то какой-нибудь из них всё же придётся заменять) и нагревающихся элементов. К заднему торцу (если лампа будет использоваться в стандартном светильнике) можно приклеить (вплавить) цоколь Е27 или Е14 – какой нужен. Только их лучше брать не от обычных стеклянных лампочек (очень трудно и очищать, и паять), а от сгоревшей энергосберегашки, например: и медные выводы есть, и закреплено на пластмассе, которую с пластиком же соединять, естественно, проще, чем металл.

Но чаще подобные изделия используются, конечно, нестандартно (смотрите примеры ниже, плюс полностью скрытые в чем-то бескорпусные варианты), и проблемы с цоколем отпадают. Ведь заменять такую лампочку не придётся НИКОГДА.

В принципе – готово. Но не забываем, что это фактически модель. С малой мощностью и совершенно смешной эстетикой. Впрочем, уже долговечная, экономичная и безвредная. И пока недорогая (кроме фонарика – не больше 150 р при самых качественных комплектующих). Если не предъявляются особые требования к внешнему виду (или есть возможность использовать для маскировки какой-то абажур, скрыть в элементах интерьера), её вполне можно использовать для близкого освещения книги при чтении, подсветки клавиатуры и т.п. Компьютерщики-холостяки, например, и не так еще комнату уродуют – и ничего. Зато удобно, выгодно, практично, и глаза не чешутся!

Светодиодный фонарик 4 Светодиодный фонарик 5 Светодиодный фонарик 6 Светодиодный фонарик 7 Светодиодный фонарик 8

Например, ночник «Звезда» – 12 маломощных белых диодов. Возможно, в ночнике интереснее смотрелись бы цветные, зато под этими читать можно! А в направленном для чтения – всего 4 диода – примерно 0,25 Вт! Правда, С2 маловат: заметны пульсации – горизонтальные полосы.

Для подсветки клавиатуры – с одним мощным, но зато включенным в треть накала – 0,33Вт.

Светодиодный фонарик 9  Светодиодный фонарик 10

Рассмотрим теперь, что можно сделать, вложив несколько большие средства (или располагая хотя бы более серьёзным негодным фонариком).

Прежде всего, речь идёт о повышении мощности: чтобы перейти уже к освещению целых комнат. Хотя и с точки зрения дизайна, и эргономики, и техники – в связи с изначальной направленностью светодиодов – их рациональнее использовать в качестве местного освещения или точечных маломощных светильников, встроенных в мебель, ступени, потолок и т.д. Малое тепловыделение как раз позволяет устанавливать их даже на легкоплавких или горючих основаниях и полностью заглублять в самые различные материалы. Но всё-таки мощности хотя бы в 3-5 Вт достигать нужно.

Для этого есть два естественно напрашивающихся пути: увеличивать количество светодиодов или повышать мощность каждого. Кстати, переходных, промежуточных вариантов нет: как уже отмечалось, диоды бывают на 20 мА, а далее – сразу на 300, со всеми вытекающими изменениями схемы и проблемами с отводом тепла. Превращать всю лампу в сплошной радиатор (как в промышленных изделиях) при кустарном производстве очень сложно и дорого. Да и хороший спектр из трёх-пяти излучателей составить невозможно (тем более что и выбор-то мощных всегда значительно скромнее).

Светодиодный фонарик 11

Увеличение же количества 20-миллиамперных тоже не беспредельно: для нормальной работы реактивного балласта необходимо, чтоб хотя бы половина питающего напряжения падала на нём. Иначе будет антистабилизация: при незначительных изменениях питания – существенные колебания тока через излучатели. То есть суммарное напряжение на последовательной цепочке светодиодов не должно превышать 100 — 140 В. Значит, имеем технический предел полезной мощности около 2 Вт. При использовании нескольких параллельных цепочек возникают проблемы с выравниванием токов в них, независимой защитой и т. д. Получается всё равно, что собрать несколько отдельных полноценных схем, начиная от балласта. Но в таком случае логичнее уже делать их в раздельных корпусах, то есть просто изготавливать несколько ламп. Ведь в помещении любого стиля и назначения всегда 5, например, одноваттных светильников дают больше возможностей для красивого и удобного освещения, чем один 5-ваттный.

Комбинирование в одном изделии мощных и маленьких светодиодов приводит к тем же проблемам даже в большей степени (кто-нибудь видел хоть один промышленный светильник с разными диодами?) и является нерациональным. Например, в сфотографированном «компютерном» когда-то было 2 мощных диода и 4 двадцатимиллиамперных. В результате, как уж я ни балансировал токи, на сегодняшний день в живых остался только один…

Светодиодный фонарик 12 Светодиодный фонарик 13 Светодиодный фонарик 41 Светодиодный фонарик 15 Светодиодный фонарик 16 Светодиодный фонарик 17

А вот пример почти максимального использования маломощных: 33 диода суммарным напряжением 90 В (потому, что 4 из них зелёных и 10 красных) – этакий односторонний ёжик (полностью самодельный, без основы-фонарика) для эффективного освещения угла примерно в 70°. Транзистором установлен ток диодов 17 мА, то есть полезная мощность 1,5 Вт, потребляемая – около двух. Фотографировалось в процессе пайки, так что хорошо видна разница в пульсациях совсем без С2 и с ёмкостью 1000 мкФ. При допустимом напряжении 160 В такой конденсатор имеет уже непомерные габариты. Поэтому использован на 100 В. А поскольку запас по отношению к рабочему напряжению получился совсем небольшим, применена качественная защита на том самом сименсовском реле. И кстати, впаивание не «по самые уши», как видите, обеспечивает возможность не только теплоотвода при пайке, но и ориентации диодов в немного разных направлениях.

Исходя из перечисленных сложностей, лично я вижу решение вопроса о повышении мощности самодельных ламп в использовании нескольких 1-ваттных диодов в сильно недогруженном режиме. Конечно, для 5-ваттной лампы их придётся купить штук 15. Но сейчас они уже не очень дороги, а расходы эти окупятся массой преимуществ:

1) продукция даже самого дешевого производителя при трёхкратном, например, «запасе прочности» будет служить действительно ВЕЧНО;

2) совсем не такой острой станет проблема отвода тепла, позволяя, как и для маломощных диодов, использовать пластиковые корпуса и всевозможные упрощения конструкции;

3) достаточно большое количество излучателей позволит (опять же, как для 20-миллиамперных) составить желаемый спектр;

4) ток, потребляемый из сети, остаётся небольшим (а напряжение, как уже говорилось, при длине цепочки до 30 диодов нас практически не волнует);

5) эффективность (световая отдача) диода в недогруженном режиме выше, чем в номинальном, то есть общий КПД устройства возрастёт.

Светодиод 121

Рекомендую приобретать не совсем «голые» светодиоды, а уже установленные при помощи заводского оборудования на монтажную пластину «звезда». Цена от этого почти не меняется, а вот обеспечить вручную такой тепловой контакт весьма трудно. Кроме того, эти «звёзды» значительно упрощают дальнейший монтаж, исключают выход диода из строя при пайке и являются уже сами по себе небольшим радиатором. Они представляют собой скорее шестигранники из алюминия с полукружиями по углам для крепежа.

Светодиод 122

На металл наклеен очень тонкий (проводящий тепло) стеклотекстолит с печатными проводниками. Основание получается полностью изолированным, а выводы подпаиваются не к тем же точкам, что светодиод. То есть такое изделие можно смело паять и крепить к общему радиатору, металлическому корпусу – чему угодно. Только не подвергать особым механическим нагрузкам: тонкий алюминий легко гнётся, а при этом отслаивается текстолит или ломается диод.

Одноваттный излучатель на «звезде» может рассеивать до 0,3 Вт при её установке на пластик и примерно 0,4 Вт в «подвешенном» состоянии – со свободной конвекцией воздуха со всех сторон. Более мощный диод на таком же радиаторе будет не намного выносливее, поэтому нет смысла покупать дорогие. Таким образом, для большинства конструкций можно рекомендовать рабочий ток около 100 мА. Для этого балластная ёмкость С1 должна быть увеличена до 1,5 — 2,2 мкФ (наладка уже не требует той осторожности: можно и на десяток секунд превысить ток втрое!) и уменьшены номиналы R1, R2 – примерно до 510 кОм и 100 Ом соответственно. Допустимый ток перегорания плавкой вставки в релейной схеме будет уже в пределах 0,5 — 1,5 А. Кстати, без релейной защиты в мощных лампах уже никак (не рассеивать же несколько ватт вхолостую на стабилитронах), а вот токостабилизирующий транзистор будет слишком расточительным (да и не таким уж необходимым при трёхкратном запасе). То есть рекомендуется вторая сверху схема.

Для сглаживания пульсаций с тем же качеством ёмкость С2 должна в идеале увеличиваться пропорционально току. Однако ставить 4700 мкФ * 50 В, конечно, слишком. Вполне достаточно и 2200.

R3 и соотношение между номинальными напряжениями С2, VD1, К1 и суммарным рабочим напряжением светодиодов остаются такими же, как описывалось выше. Напряжение на каждом диоде в недогруженном режиме будет меньше (но совсем чуть-чуть, не в 3 раза!) – примерно 3 В на белом.

Светодиод 124

Очень удобно остановиться на «чертовой дюжине» диодов (около 4 Вт): и напряжение благоприятное для 50-вольтового конденсатора (39 — 40 В), и диаграммы направленности диодов будут довольно близко соответствовать равномерной полусферической освещенности при размещении их на четырёхгранной усеченной пирамиде. А такую фигуру легко сделать (например, из листового алюминия толщиной 1 — 2 мм): с основанием 65 * 65 мм, высотой граней 50 и верхним сечением 24 * 24 (высота пирамиды при этом будет примерно 45 – не так важно). На каждой грани тогда удобно разместить по 3 диода: например, зелёный и два белых разной «теплоты», а на вершине – еще один белый.

И в заключение – пару слов о герметичных светильниках.

В связи с низковольтным питанием каждого излучателя и отсутствием в них раскалённых элементов светодиоды лучше любого известного источника света подходят для мест влажных, пожаро- и взрывоопасных, чувствительных к электричеству. Благодаря малому нагреву возможна их очень тщательная герметизация.

Но даже при нарушении изоляции, светодиодами можно освещать фонтаны и холодильники, бассейны и аквариумы, использовать в кулинарии, животноводстве, медицине в непосредственном контакте с любыми веществами и живыми организмами. Трёхвольтовое питание единичного диода или их параллельной группы можно ощутить разве что языком. К нему совершенно равнодушны рыбы, не происходит диссоциация воды (с разложением анодных материалов) или окисление молока.

Но это не наш случай! Во-первых, при наличии большой заряженной ёмкости даже трёхвольтовая цепь не является искробезопасной. А во-вторых, в связи с бестрансформаторным питанием любая точка нашей схемы (пусть рабочее напряжение диодов и 30 В) находится относительно заземленных предметов под фазой 220 В! Имейте это в виду и при освещении опасных или чувствительных мест используйте ДЕЙСТВИТЕЛЬНО НИЗКОВОЛЬТНОЕ питание, получаемое при помощи понижающих трансформаторов с разделенными обмотками, и обязательно заземляйте вторичные цепи. А еще лучше (благо – потребление энергии у светодиодов совсем небольшое) применять в таких местах гальванические источники тока, аккумуляторы: нулевые пульсации и полная безопасность. Стабилизировать же ток в таком случае можно схемой, аналогичной нашему испытательному устройству.

Назад к каталогу статей >>>

Всем нам необходимо освещение. Без него при наступлении темноты жизнь бы практически прекратилась. Но человечество веками изобретает все новые приборы и устройства, дающие так необходимый нам свет.

Начиная от дугоразрядных ламп, — время работы которых очень короткое, – люди изобрели лампу накаливания. Хотя они долговечнее и эффективнее дугоразрядных, их потребление и срок службы оставляет желать лучшего, не считая того, что КПД у них очень низкое, из-за большого выделения тепла.

Появились люминесцентные – энергосберегающие лампы с большим ресурсом и экономией. Но и тут не все так гладко. Содержание в них паров ртути – делает их опасными не только для жителей квартиры где она установлена, но и для окружающей среды в целом.

Сегодня, без сомнения, первенство по приборам освещения занимают светодиодные лампы.

В чем преимущество светодиодных ламп?

Вот несколько из них:

— долгий срок работы;

— минимальное потребление энергии при большой яркости;

— экологически чистые;

— высокий КПД;

— минимум выделения тепла;

— в некоторых случаях возможность ремонта.

Это лишь несколько преимуществ LED ламп перед другими источниками света.

Но есть небольшой минус. Сейчас такие лампы достаточно дорогие, и не каждый может их себе позволить.

Есть простой выход! Сделать светодиодную (LED) лампу своими руками. И это вполне возможно.

ЛампаЛампа

Что может понадобиться

Первое, что необходимо – это естественно сама основа. А это светодиоды белого свечения.

Где их можно взять? Часто в хозяйстве у вас или у ваших знакомых может заваляться старый китайский фонарик с подсевшей батареей, всякие неработающие подсветки, лампы с вышедшей из строя электроникой и так далее. Опыт показывает, что у большинства семей дома валяются поломанные приборы с рабочими светодиодами.

В конце концов можно просто купить на радиорынке те светодиоды, что понадобятся для работы.

Как выбрать светодиоды?

Все зависит от того, где вы эти самодельные лампы будете использовать. Если вам надо яркий свет в гостиной, то необходимы сверхяркие приборы в большом количестве. А если для коридора, туалета, ванной или прихожей – достаточно несколько штук.

Все довольно просто – больше светодиодов, больше света. Иногда необходимы просто индикаторные лампы, показывающие работу устройства, или то, что напряжение подано. Такое иногда необходимо на предприятиях и на заводском оборудовании. В таком случае достаточно одного обычного светодиода красного или зеленого цвета. Можно даже использовать советские АЛ307, широко используемые в старых магнитофонах и другой аппаратуры.

Лампа

Электронная начинка

Понятно, что для понижения напряжения сети с 220 вольт в 5 для питания светодиодов, необходимо специальное устройство. Ведь напряжение питания одного светодиода обычно около трех вольт. Тут-то и пригодиться плата от старого зарядного устройства, желательно небольшого размера и импульсного исполнения.

ЛампаЛампаИмпульсного — это без громоздкого трансформатора. Нужно это для того, чтобы плата без труда влезла в корпус от старой, отслужившей свой срок энергосберегающей лампы с патроном. Такие можно найти у себя или у друзей. Выбирать нужно лампы с максимальной мощностью, так как корпус у них побольше.Лампа

Корпус

О корпусе уже немного было сказано выше, теперь главное отделить стеклянную спираль от самого патрона. Делать это нужно очень осторожно, чтобы не повредить колбу с парами ртути.

Отверткой подковыриваем место соединения патрона с верхней частью, и аккуратно отделяем одно от другого.

Далее откусываем проводки, идущие к электродам спирали. Когда все отделилось, вытаскиваем из корпуса патрона старый электронный блок. При этом оставляем провода, идущие от патрона, откусывая их на плате. Эти провода понадобятся нам для дальнейшей работы.

ЛампаЛампа

Рассеиватель

Тут просторы для творчества могут очень большие. Например, стеклянная подвеска от советской люстры, или переднее стекло от старого фонарика.

ЛампаИногда плата от зарядки может быть достаточно длинной и в корпусе патрона не хватит места для ее установки. Тогда на помощь придет пластмассовая коробка, например, от лекарств. Вырезается недостающая длина, и приклеивается к корпусу патрона. Диаметр колбы нужно подобрать соразмерный с диаметром корпуса патрона.ЛампаЕсли лампа будет использоваться как индикатор или ночник, то рассеивателем может послужить крышка от этой же баночки, как на фото ниже.ЛампаСледует понимать, что чем ярче вы хотите получить света, тем прозрачнее должен быть рассеиватель. Сделать свет направленным, поможет стекло с линзой. Такие стекла использовали в советских фонариках, так что его можно при желании поискать.

Сборка

Итак, корпус и все необходимое готово. Теперь припаиваем концы проводов от цоколя к плате зарядки, туда где были присоединены провода сети 220 в. Делаем несколько витков изоленты вокруг платы и засовываем ее в корпус патрона.

ЛампаИногда бывает, что на зарядках светодиод уже припаян на выходе, и если этого свечения будет вам достаточно, просто оставляем его так, как есть и наклеиваем стекло.

Если света мало, соединяем параллельно столько светодиодов, сколько нужно, припаивая их параллельно выходу 5 в (Обычно параллельно выходному конденсатору 1000*10 вольт) и улаживаем их так, чтобы поместились в корпус. В общем, тут также дело каждого, как кому лучше. Можно сделать аккуратно — приготовив из фольгированного стеклотекстолита круглую плату с дорожками, и напаяв на ней диоды. Самое главное, чтобы нигде ничего не «коротило» между собой.

Лампа

Заключение

При работах с электричеством, следует быть очень осторожными. Все действия производить, предварительно отключив устройство от сети и разрядив высоковольтные конденсаторы. Помните — светодиоды полярные, поэтому прежде чем припаивать, убедитесь где анод, а где катод. Иначе ничего не засветиться. Также не используйте слишком мощные светодиоды. Ток отдачи платы зарядки ограничен от 500—700 мА. Ток обычного светодиода около 35 мА. Поэтому должно хватить на 10 и более штук. Но встречаются экземпляры очень мощные. Поэтому все заранее подсчитайте.

        Поделиться:

Если Вам интересно, как сделать светодиодную лампу своими руками в домашних условиях, далее мы предоставим несколько пошаговых инструкций с фото и видео примерами, которые позволят собрать LED лампочку не более чем за час. Все предоставленные ниже идеи будут перечислены от наиболее простой к более сложной, что позволит Вам выбрать подходящий вариант в зависимости от навыков обращения с паяльником и электрическими схемами.

Идея №1 – Модернизируем галогенную лампочку

Проще всего самому сделать светодиодную лампу из перегоревшей галогенной лампочки с типом цоколя – GU4. Исходные материалыВ этом случае Вам понадобятся следующие материалы и инструменты:

  • Светодиоды. Их количество выберите сами в зависимости от того, насколько ярким должно быть светодиодное освещение. Сразу же обращаем Ваше внимание на то, что больше 22 диодов выбирать не стоит (это усложнит процесс сборки и к тому же сделает лампочку чересчур яркой).
  • Супер-клей (подойдет и обычный, но он будет дольше застывать, что не позволит сделать LED лампу быстро).
  • Небольшой кусок медного провода.
  • Резисторы. Их количество и мощность рассчитает онлайн-калькулятор.
  • Небольшой кусок листового алюминия (альтернативный вариант – обычная банка из под пива либо газированного напитка).
  • Доступ к интернету. Вам нужно будет открыть специальный онлайн калькулятор для расчета схемы светодиодной лампы.
  • Молоток, паяльник и дырокол.

Подготовив все материалы можно переходить непосредственно к сборке диодной лампочки. Инструкцию по созданию самодельного источника света мы предоставим пошагово, с фото примерами каждого этапа, чтобы Вы наглядно увидели процесс монтажа.

Итак, чтобы сделать светодиодную лампу на 12 вольт, Вам необходимо выполнить следующие действия:

  1. Удалите из старой галогенной лампочки верхнее стекло, а также белую замазку возле штырькового цоколя (как показано на фото ниже). Для этого лучше всего использовать отвертку.Удаление лишнего
  2. Переверните лампу цоколем вверх и аккуратно с помощью молотка выбейте штырьки из посадочного места. Старая галогенная лампочка должна выпасть.Демонтаж старой лампочки из отражателя
  3. Согласно выбранного Вами количества светодиодов придумайте схему их расположения, на основании чего сделайте бумажный трафарет. Можете воспользоваться уже существующей заготовкой и распечатать одну из готовых схем, которые предоставлены на картинке:Схема расположения светодиодов
  4. Приклейте трафарет к листу алюминия с помощью супер-клея, вырежьте лист по форме трафарета, после чего дыроколом сделайте посадочные места под светодиоды.Создание трафарета дыроколом
  5. Сгенерируйте в интернете чертеж сборки светодиодной лампы для Ваших условий. В нашем случае для создания LED лампочки в домашних условиях из 22 диодов нужно собрать следующую схему:Пример схемы
  6. Положите алюминиевый диск на удобную подставку и вставьте в посадочные места светодиоды, как показано на фото. Чтобы упростить процесс пайки, подгибайте ножку катода одного диода к ножке анода другого.Удобное положение для пайки
  7. Аккуратно проклейте все светодиоды, сделав их единой конструкцией. Важный момент – клей не должен попасть на ножки диодов, т.к. при пайке будет выделятся крайне неприятный дым.Проклеивание диодов
  8. Когда клей застынет, приступите к пайке ножек. Кстати, для этого рекомендуем Вам сделать паяльник своими руками, что также не займет много времени. Согласно схеме спаяйте диоды LED лампы, оставив только одну плюсовую ножку и одну минусовую для подключения питания. Ножку «-» рекомендуется вполовину обрезать, чтобы в последующем не перепутать полярность контактов самодельной светодиодной лампочки.Все аноды и катодыОбразец после пайки
  9. Согласно схеме припаяйте резисторы к минусовым контактам. В результате согласно нашему примеру должно получиться 6 плюсовых выводов и 6 минусовых (с резисторами).Пайка резисторов
  10. Спаяйте резисторы согласно сгенерированной схеме.Спаянные резисторы
  11. К образовавшимся двум контактам припаяйте по одинаковому кусочку медного провода, что в результате позволит сделать штырьковой цоколь светодиодной лампы в домашних условиях. По аналогии с предыдущим советом одну ножку на время сделайте покороче (минусовую), чтобы потом ничего не перепутать и правильно выполнить подключение.Самодельный цоколь из медной проволокиРазная длина ножек
  12. Чтобы в будущем не произошло короткое замыкание, тщательно проклейте пространство между выведенными ножками.Защита от короткого замыкания
  13. Выполните финишную сборку LED лампочки: диск поместите на отражатель и тщательно проклейте его.Установка лампочек в отражатель
  14. Маркером подпишите на корпусе собранной светодиодной лампы где «+» и где «-», также обозначьте, что самодельный источник света рассчитан на подключение к питанию 12 Вольт, а не 220.Обозначение полярностиВыравнивание ножек цоколя
  15. Выполните проверку собранной самоделки. Для этого подключите светодиодную лампочку к автомобильному аккумулятору либо блоку питания 220/12 Вольт.Контрольная проверка

Вот таким вот простым способом можно сделать светодиодную лампу своими руками из подручных средств. Как Вы видите, ничего сложно нет и особо много времени на сборку потратить не потребуется! Рекомендуем обязательно просмотреть несколько лучших идей по созданию лампочки в домашних условиях, которые мы предоставили в видео галерее:

Идея №2 – «Экономка» в ход!

Вторая, не менее интересная идея – собрать лампочку из энергосберегающей лампы. Тут также нет особо серьезных работ и со сборкой справиться даже не очень опытный электрик. Старая люминесцентная лампаДля начала Вы должны подготовить следующие материалы и инструменты для сборки светодиодной лампы своими руками:

  1. Вышедшая из строя «экономка».
  2. Кусок стеклотекстолита.
  3. Согласно сгенерированной схеме (об это мы говорили выше) составляющие элементы: резисторы, конденсатор, светодиоды. В нашем примере схема будет следующей:Наглядная схема соединения элементов
  4. Дрель для сверления стеклотекстолита. В этом случае лучше сделать мини дрель своими руками, которой можно будет удобно делать отверстия.
  5. Паяльник.
  6. Поваренная соль, медный купорос и лак для ногтей.

Подготовив все материалы можно переходить к сборке. Данная инструкция более креативная, поэтому если Вы решили сделать диодную лампочку из сгоревшей экономки, внимательно смотрите фото примеры.

Этапы работ:

  1. Вырежьте из стеклотекстолита круг, диаметром 3 см.
  2. С помощью лака прорисуйте дорожки на плате по данному примеру:Пример дорожек на стеклотекстолите
  3. Сделайте раствор из 1 столовой ложки медного купороса и 2 столовых ложек поваренной соли. Все это размешайте в теплой воде.
  4. Когда лак застынет, на сутки опустите плату в раствор. В результате останутся только медные дорожки, которые Вы защитили лаком, остальная медь исчезнет во время реакции.
  5. Ацетоном удалите оставшейся лак с стеклотекстолита и пролудите чистые дорожки.
  6. Согласно схеме сделайте отверстия мини дрелью.
  7. Пропаяйте все элементы самодельного драйвера.
  8. Аккуратно разберите старую энергосберегающую лампу и удалите из нее все кроме проводов, идущих от цоколя.Экономка в разобранном виде
  9. Закрепите Ваш вариант платы со светодиодами, спаяйте провода и заклейте. Если Вы все делали правильно, результат должен быть таким, как на фото ниже.Фото светодиодная лампа своими руками

По данной инструкции можно запросто сделать светодиодную лампу из люминесцентной либо галогенной лампочки!

Идея №3 – LED лента за основу

Если же Вы не так хорошо владеете паяльником и в то же время понятие не имеете, как собирать схему на стеклотекстолите, лучше сделать светодиодную лампу своими руками из LED ленты. В этом случае вместо драйвера можно использовать блок питания, который преобразует 220 Вольт в сети в 12. Единственный весомый недостаток данного способа – большие габариты блока питания, поэтому такой вариант рекомендуется использовать в том случае, если Вы решили сделать в комнате светодиодное освещение точечными светильниками. Можно попробовать собрать все лампочки для них своими руками и подключить к единому блоку питанию, который спрячется без проблем в потолке.Отрезки LED ленты фото

Итак, все, что нужно сделать, это:

  1. Изготовьте каркас будущей лампы. Для этого отрежьте небольшой кусок пластиковой трубы.
  2. С каждой стороны трубы проклейте по небольшому отрезку светодиодной ленты. Резать LED ленту нужно только в определенных местах, которые указываются производителем (обычно через каждые 3-4 диода).
  3. Соедините все отрезки по параллельной схеме с помощью паяльника, после чего припаяйте к каждому пучку проводов по отрезку медной проволоки (для удобства соединения с блоком питания). Если Вы решили установить самодельную диодную лампочку в старую энергосберегающую, просто припаяйте выводы от ленты к проводам цоколя по аналогии с инструкцией выше.Пример лампочки для автоПростая самоделка

Вот и вся инструкция по сборке светодиодной лампы из ленты. Как Вы видите, все гораздо проще, чем даже сделать лампочку по сгенерированной схеме. На этом наши простые инструкции заканчиваются, и теперь Вы знаете, как сделать светодиодную лампу своими руками из энергосберегающей лампочки, диодной ленты и галогенного источника света! Надеемся, что предоставленные идеи были для Вас полезными и понятными!

Похожие материалы:

  • Как правильно паять провода
  • Как сделать автономное отопление квартиры электричеством
  • Как сделать светодиодный прожектор своими руками

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *